
1

Advanced Operations Research

Prof. G. Srinivasan

Department of Management Studies

Indian Institute of Technology, Madras

Lecture - 20

Shortest Path Problem

We continue our discussion on the shortest path problem. In the previous lecture, I explained the

shortest path problem using this numerical example.

(Refer Slide Time: 00:22)

The problem was to find out the shortest distance and the shortest path from 1 to 7. We have

already said that this arc could represent a cost or a distance or a time. We would like to find out

the shortest path and the corresponding sum of weights associated with the shortest path. We

started with a 0 here, and then we first found out the minimum distance that is reachable from

this. 2, is reachable at 15, 3 was reachable at 20 so we picked the minimum and labeled this as

15. From 2 we proceeded to subsequently label 3 at 20, 4 at 25, 5 and 6 at 40 and 7 at 50. We

found out that the shortest path was 1 to 2, 2 to 5, 5 to 7 with total cost or distance equal to 50.

2

(Refer Slide Time: 01:21)

We then proceeded to explain a tabular form or a labeling algorithm to do the same thing that we

did on the network. This rudimentary algorithm is the Dijkstra’s algorithm and we now present a

labeling version of the Dijkstra’s algorithm. Here 1 was the source node so we start with 1 we

write the rest of the nodes here from 2 to 7. We go back to this network to see which ones are

directly reachable from 1. They happen to be 1 to 2 with 15 and 1 to 3 with 20. We write 15 and

20 here, 1 4, 1 5, 1 6, and 1 7 do not exist. Therefore, we write a dash here or we can write

infinity, saying that at present the distance is infinity. Among these values, there are only two of

them, between these two we pick the one which has the smallest numbers which is 15 and mark

it with the star or with some form of a label.

Since node 2 is marked we write 2 here and then we proceed to this network to find out what are

all the other nodes that are reachable from 2. They happen to be 4 and 5. Now 2 to 4 with 15 plus

10 is equal to 25 and 2 to 5 with 15 plus 25 is equal to 40. We look at these values. If you look at

4, 4 is reachable with 15 plus 10 is equal to 25. Earlier, the distance was infinity, 25 being

smaller than infinity, we changed this value to 25. Similarly, 40 being smaller than infinity, the

value are updated here from infinity to 40. Now, 20, that was a distance from 1 to 3, remains as

20 because 3 is not reachable from 2, so 20 remains as 20. We have three values 20, 25 and 40.

Out of these three values, we pick the minimum one, which happens to be for 20 and then we

mark a label here.

3

Since 3 is marked, we write 3 here and then go back to this network to see what are all the things

that are reachable from 3. They turn out to be 3 to 4 and 3 to 6. 3 to 4 is 20 plus 15, is 35. 35,

happens to be more than this 25, so we retain this 25. Now, 5, is not reachable from 3, so 40

remains as 40. 6 is reachable from 3, 20 plus 20 is equal to 40, 40 being less than infinity,

infinity value is changed to 40. Again, there are three values; choose the minimum which

happens to be at 25, which also happens to be for node number 4. So, node number 4 comes here

and this process is repeated till node number 7, which is the destination node; it is labeled and

the value is equal to 50.

What we have done here is we have systematically written this. This labeling version of

Dijkstra’s algorithm is far easier to understand and implement, if one was to write a computer

program to find out the shortest path on the network. The same 50 which happens to be the

shortest distance, obviously, the same 50 we have got here. While for this, we said it is 1 to 2, 2

to 5, and 5 to 7. The motivation came from the fact that 0 plus 15 is 15, 15 plus 25 is 40, 40 plus

10 is equal to 50. We have a path, such that every label for every i j in that path, the label

corresponding j is the sum of the label corresponding to i, plus this Cij.

For example, you could, if we call this as some w2, which is the label corresponding to 2, then w2

is w1 plus c12, w5 is w2 plus c25 and w7 is w5 plus c27. There is a path from 1 to 7 and we got this

50. How can we identify this path from this table? This is something we need to do. What

happens is the final value is 50. There is a change, move upwards, so this change is happened

from 55 to 50, because we passed through node number 5. The first thing, we have to do is write

7, which is the destination. Since, there is a change here from 55 to 50, that change has happened

because we have passed through this 5, so, we write 5 here.

Now, come back to this, we will be at 5, now, move upwards again. Here, there is a change from

infinity to 40 and this change has happened, because we had moved from 2, so we write 2 here.

Then this is the change, and then come back here to 2, we moved here, there is a change and this

change happened, because we labeled this 2, so we write 2 here and then we write 1 here. To

repeat, we got this 50, there is a change from 55 to 50. We represent the first destination node

here. Then there is a change from 55 to 50. This change has happened because we moved from 5.

So, 5 come here, so automatically, we go to node number 5, which is 40. Move upwards, there is

4

a change between this infinity and 40, because we moved from here to the labeled node 2, so we

write 2 here. Then, we come back to this 2, we realise there is no change; therefore, it is 1 2. The

path becomes 1 to 2, 2 to 5, and 5 to 7, with weight equal to 50. This is how we explain the

labeling algorithm for the Dijkstra’s and the way to get both the shortest distance as well as the

shortest path.

(Refer Slide Time: 08:21)

What else can this Dijkstra’s algorithm do?

When we look at shortest path so far we have seen shortest path from a given source to a given

destination. The second type of problem that we can think of is from a given source to any

destination. Let us see if the Dijkstra’s algorithm can solve this problem as well. If we assume

that our given source is 1 we can easily show that these label is that we have written here, not

only helps us in getting the shortest distance from 1 2 7, we have actually solved the shortest

path from 1 to 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7. We can show that the shortest distance from

1 to 2 is 15, 1 to 3 is 20, which is obvious for 4. It is 25 for 5 and 6 it is 40 and for 7, it is 50.

The Dijkstra’s algorithm not only solves the first problem whereas it helps us to find the shortest

path and the shortest distance from a given source to a given destination. It also solves the

second problem where it does it for a given source to all destinations. With one pass of the

algorithm, we have actually solved both these problems. There is a third problem which is like

5

from any source to a given destination can be seen as a third problem. This can be done in more

than one way, one of which is to do a backward pass of the algorithm from here to here.

Remember, what we did first is a forward pass from 1 to 7. We can actually do a backward pass

from 7 to back, if we do that, we will be able to find out the shortest distance from every one of

this to 7, because a backward pass implies that we are actually trying to find out the distance

from 7 to every other node in the network. Backward pass of the Dijkstra’s algorithm would help

us to find the shortest path from every node to a destination or from destination to every node on

the network.

The fourth problem is between every source to every destination, which means, we wish to find

out something from 2 to 6 or 3 to 5 or 4 to 7 and so on. One of the ways of using this algorithm is

to do this, keep every vertex as the source and run it n times if there are n vertices. Running the

Dijkstra’s algorithm n times, in this case 7 times, would help us get the shortest path from every

source to every destination in this network. Effectively, the algorithm that we have seen actually

solves all four of them, but with certain increasing amount of computation and complexity.

Effectively, it solves both these in a single stroke, given 1 as source and 7 as destination. In a

single pass of the algorithm, either through this method or through this method, we can find out

the shortest distance from 1 to 7, which is from a given source to a given destination.

We can also find the shortest distance from a given source 1 to every other node as destination

using the same algorithm. This is one more pass of the algorithm, which is a backward pass;

whereas, this is a little more complex where we have to run this algorithm 7 times or (n minus 1)

times, 6 times as the case may be. We can find out the shortest distance from every source node

to every destination node on this network. There are other algorithms which try to handle this

problem a little more efficiently where they specifically address this problem and where we find

out the shortest distance from every node to every other node in the network.

There is a more popular algorithm called the Floyd’s algorithm which we are not going to look at

in this course. Nevertheless, we understand that we can run the Dijkstra’s algorithm (n minus 1)

times with each of these nodes as the starting nodes. Keeping each of these nodes as a starting

node and solving this problem to find out the shortest path from a given source node to every

destination node we will be able to handle the fourth one. Effectively, we understand that we can

6

use this algorithm to solve all these four problems though there are slightly more efficient

algorithms to solve this.

With this, let us come back and try to understand how the Dijkstra’s algorithm is optimal. Or

how do we confidently say that, whatever we have done here or the labels essentially represent

the correct shortest path and the corresponding shortest distance. In order to do that, we first

formulate the shortest path problem as a linear programming problem and then try to write the

dual of the linear programming problem to understand how these labels work.

(Refer Slide Time: 14:20)

Let us write the linear programming formulation for this. The formulation will be like this: Xij

equal to 1, if arc i - j is in the shortest path and is equal to 0, otherwise. The objective function

will be to minimize CijXij, so Xij will be equal to 1, if arc i - j is in the shortest path and 0

otherwise.

Now, if we take this node 1, which is a starting node, we should have at least one arc that leaves

this node. We should write a constraint that X12 plus X13 should be equal to 1, because we have

to leave this node in order to reach this destination. We can leave this node either through this or

through this. We say X12 plus X13 is equal to 1. If we take this node, this is an intermediate node.

The shortest path may pass through this, may not pass through this. This being an intermediate

node the only thing we need to do is to model what is called the flow balance equation. If this

7

lies in the shortest path, then you enter and then you leave. If it does not lie in the shortest path

you do not worry about it.

That is written in the form of a constraint which is like this: minus X12 plus X24 plus X25 is equal

to 0. What does this constraint do if this lies in the shortest path? Then, you have to enter this

node which means X12 should be equal to 1, which also means that you should leave this node by

either to 4 or to 5, so the constraint will take care of it, X12 is 1. Then this contribution is minus

1, so one of them will take a plus 1, so that you get a 0. Therefore, if it enters 2 through X12, it

has to leave either through X24 or through X45.

If it does not lie in the shortest path then this will be 0, automatically these two will be 0 and

therefore, this constraint will take care of that requirement. For any intermediate node, all we

need to do is to model the flow balance equation, so whatever comes in should go out. For this

node, we will have minus X13 plus X34 plus X36 is equal to 0. For this 1, we will have minus X24

minus X34 plus X45 plus X46 plus X47 is equal to 0.

Remember, there are 5 arcs associated with this node. Two of them enter this node and three of

them leave this node. For 5, there are three arcs associated, so you get minus X25 minus X45 plus

X57 is equal to 0. For 6, we get minus X36 minus X46 plus X67 is equal to 0 and for 7, 7 being the

destination node, you have to reach 7. So, we write X57 or X47 or X67, sum of them should be

equal to 1. So the constraint will be X57 plus X47 plus X67 is equal to 1. We write it in a slightly

different way. We write it as minus X47 minus X57 minus X67 is equal to minus 1. Please note

that this constraint should ordinarily read as X47 plus X57 plus X67 is equal to 1, but we have

multiplied this by minus 1. We have written minus X47 minus X57 minus X67 is equal to minus 1.

We have Xij is equal to 0 1. This completes the linear or linear integer programming formulation

of the shortest path problem, because Xij is equal to 0 1, makes Xij a binary variable. Therefore

this formulation is a linear integer formulation where all the variables are restricted to be binary

variables.

Let us go back and try to understand that this problem is a network problem. We have seen some

characteristics of network problems earlier when we have looked at transportation and

assignment problems. We also said the transportation and assignment problems have an

8

important property called unimodularity and because of this unimodularity property, even if you

solve the linear integer problem by relaxing this binary variable and by writing it as continuous

variable and by relaxing this we would still get solutions which are either 0 or 1.

We have already seen a little bit about this unimodularity property. Unimodularity property

would simply mean the rank of the constraint coefficient matrix. We can actually show the way

this matrix is structure simple addition on the left-hand side and simple addition on the right-

hand side, would give us 0 equal to 0. In fact, one of the reasons we have written this in this

form, particularly here, is to facilitate that, if you add all the left-hand sides and all the right-hand

sides, you will see this 1 and minus 1 cancel out. Every Xij will cancel out to give a 0 is equal to

0 which tells us that this is a linearly dependent system of equations.

Before that we also observe that this formulation will have as many constraints as the number of

nodes or vertices and as many variables as a number of arcs or edges. There are n vertices, we

have a linearly dependent system and we can also show that the rank is (n minus 1). Then, we

also realise that the determinant of the corresponding matrix will have a plus 1 or a minus 1.

Because of that property, B inverse will be integer value and therefore, the actual values of Xij

will only be integers. In this case 0 1, even if we relax the binary assumption and treat it as a

continuous variables because of this unimodularity property, we can ignore this 0 1, treat it as a

continuous variables, solve it as a linear programming problems. We would still get values for 0

1, for these variables.

Another way of showing unimodularity is that, if we have a constraint coefficient matrix, such

that it can be written in this form, where every variable appears in only two constraints, whether

plus 1 and minus 1, then we could show that, this one is unimodularity. In more than one way,

we can establish the unimodularity characteristic of this matrix. Therefore, we can relax this 0 1

assumption and then treat it as a linear programming problem. Once we treated as a linear

programming problem, it is easy to write the dual. We start writing the dual of this problem and

therefore we introduce dual variables w1 to w7, call them w1, w2, w3 and so on, till w7.

9

(Refer Slide Time: 23:07)

Now, we write the dual of this problem. From duality, once we have defined dual variables w1 to

w7, primal being a minimization problem, dual is a maximization problem. We will get

maximize w1 minus w7, 1 into w1 minus 1 into w7; will be the objective function, maximize w1

minus w7. Each variable Xij appears in the i
th

 and the j
th

 constraint here. We look at this w1 minus

w2. If we look at variable X12 w1 minuss w2, we have a c12 here. Remember, the primal is a

minimization problem; dual is a maximization problem. So minimization problem with all

greater than or equal to constraint would give us some maximization problem with less than or

equal to this. wi minus wj is less than or equal to Cij. In our case, w1 minus w2 will be less than or

equal to c12 which is 15.

Similarly, we can write w1 minus w3 is less than or equal to 20. From this, we now start writing

w2 minus w4 is less than or equal to 10; w2 minus w5 is less than or equal to 25; w3 minus w4 is

less than or equal to 15; w3 minus w6 is less than or equal to 20; w4 minus w5 is less than or equal

to 20; w4 minus w6 is less than or equal to 15; w4 minus w7 less than or equal to 3;. w5 minus w7

less than or equal to 10; w6 minus w7 less than or equal to 20; and importantly, wj is unrestricted

in size. The unrestricted in size comes because all the primal constraints are equations, so dual

variables are unrestricted in size. This completes the dual of the problem. If one can also see that

the dual has seven variables corresponding to seven constraints of the primal, which correspond

10

to seven nodes in this network. The primal has twelve variables, which correspond to eleven

arcs.

There are eleven arcs in this network. There are eleven variables here. These correspond to 11

constraints in the dual. Dual will have as many variables as the number of nodes and as many

constraints as the number of arcs. Where, the primal will have as many constraints as a number

of nodes and as many variables as the number of arcs. With this primal and with this dual, let us

try and get a solution to this problem.

Let us start with w7 equal to 0 that we like to put. So, w7 is equal to 0, would actually give us

from here w6 is 20 and w5 is 10 out of this. This would give us w4 as less than or equal to 30.

This would give us w4 less than are equal to 35. This would give w4 less than or equal to 30. We

write w4 is equal to 30. From this, using this 20, w3 is less than equal to 40, so, w3 is less than

equal to 45. You get w3 is 40. From here w2 is 35, w2 minus w4 would give us 40, this would

give us w2 is equal to 35 and from here, we have w1 is less than or equal to 60. w1 is less than or

equal to 50, so, w1 is equal to 50.

If we start with the solution w7 equal to 0 and work backwards, we get w7 equal to 0, w6 is 20, w5

is 10, w4 is 30, w3 is 40, w2 is 35, and w1 is 50; w1 minus w7, so this w value is 50. We realise

that this is a feasible solution to this dual. This is feasible to the dual in the sense that now if we

look at this value w1 minus w2 is equal to 15, this is satisfied as an equation. w1 minus w3 is 50

minus 40 is less than, so this is an inequality; w2 minus w4 is 5, so inequality; w2 minus w5, so,

equation; w3 minus w4 is 10 inequality; w3 minus w6, 20, inequality; w4 minus w5, 20, equation;

w4 minus w6 inequality; w4 minus w7 equation; w5 minus w7 equation and w6 minus w7 equation.

Now, all these dual feasible solution satisfies all these unrestricted inside. We also realise that,

this is satisfied as an equation, this is satisfied as an equation, this is satisfied as an equation, this

is satisfied as an equation. If we apply complementary slackness to this dual feasible solution,

wherever it is satisfied as an equation, the corresponding variable is a basic variable in the

primal. X12 is a basic variable. I am just circling them so X12 is a basic variable. 2 5 is a basic

variable. I am again doing this, now 4 5 is a basic variable. You may have 4 7 as a basic variable,

I have 5 7 and I have 6 7. These are my basic variables.

11

There are six basic variables, which is also understandable. There are seven constraints. It is a

linearly dependent system, so we will have (n minus 1) basic variable. There are six basic

variables. Now, corresponding to these basic variables, can we define a solution to the primal?

This would give us X12 is equal to 1; this is satisfied because X12 is 1, X12 plus X25 is equal to 0.

Remember, these are non-basic and therefore they take value 0. Therefore minus X12 plus X25 is

equal to 0 would give us X25 is equal to 1. As far as this is concerned, X13, X34, X36. We go back

to this 1 3, 1 is 50, 3 is 40 so inequality. 3 is 40, 30 inequality. 4 6 is 30 plus 20, again inequality.

We come back to this, 4 5 and 4 7 right now, we put X25 is equal to 1.

This would give us a contribution of minus 1. We have four minus X45 and X57 is equal to 0. This

would give us X57 is equal to 1. From here, you would have minus X57 is equal to minus 1. You

will have X47 is equal to X67 equal to anyone from here. X13 or X34 or X36 is equal to 0. We

would have one more basic variable to represent this equation. But then that basic variable would

also take a value 0. So corresponding to this feasible solution, we observe that X12 is equal to 1,

X25 is equal to 1, X57 is equal to 1, satisfies the complementary slackness condition. It also

provides a basic feasible solution to the primal. This would give us Z is equal to 50, 1 to 2 is 15,

2 to 5 is 25, 5 to 7 is 10 so this would give us Z is equal to 50.

We realize two things: one is, having written the dual, and we have got a dual feasible solution

by inspection. Corresponding to this dual feasible solution we applied complementary slackness.

We first found out which are the ones that are satisfied as equation and which are the ones that

are satisfied as inequalities. Those that are satisfied as equation, we go back here; we try to

identify the corresponding basic variable for those that are satisfied as an equation. From that we

observe that 1 to 2, 2 to 5, 5 to 7 is equal to 1 is primal feasible. In more than one way we can

show the optimality. One is that, we have a primal a dual feasible solution. We apply

complementary slackness and we obtained primal feasible solution.

Another way is to show that we have a dual feasible solution with value equal to 50; we have a

primal feasible solution, with value equal to 50. They automatically, the values being equal they

satisfy the complementary slackness condition, therefore they are optimum. This is a way to

understand that we get the same 50 here, as the optimal solution, both from the primal and the

dual of the linear programming problem. We have got the same 50 here, which represents the

12

optimal solution. This is a way to show from the linear programming formulation that the answer

you have got here, which is 50, is indeed the optimal solution.

We need to discuss a little bit more on what do these w s represent? This w’s effectively

representing the labels that we have actually given here. There are seven values of w. We also

realise that one of them is 0. Then we progressively move towards getting this 50. Alternately, if

we look at this carefully, the seven labels, that we have given here for w1 to w7 are actually

different from the labels that we obtained there. it is because we have w1 is 0 here, w1 is 50 there,

w2 is 15 here, w2 35 there, w3 is 20 here, w3 was 40 there, w4 is 25 here, w4 was 30. You got

different values of these labels.

Is there any relationship between these labels and these values that we actually got? Yes, there is

a relationship between these values that we have here, as well as these labels and the relationship

looks from this point of view, this is 0 and that was 50, from 7 it 50 and 0. Effectively, we add up

to 50, which is the value of Z.

More importantly, the difference lies in the fact that, if we have done a backward pass of this

algorithm, starting from 0 here, then the labels that we would have got would be exactly those

labels that we have got here. The only difference is when I have described this part of the

algorithm; I have described a forward pass starting from 0 for the source and 50 to the

destination. When I describe the dual here, I started with destination equal to 0 and the source

getting the value 50. Effectively, these labels represent the labels corresponding to a backward

pass of the Dijkstra’s algorithm, whereas here we have done the forward pass. We have already

seen whether you do a forward pass or a backward pass, you will still get the shortest distance

from the source 1 to the destination. The Dijkstra’s algorithm is actually a very nice primal dual

implementation of the linear programming formulation of the shortest path problem.

There is also an interesting relationship between these forward passes and the backward passes.

13

(Refer Slide Time: 37:57)

The dual was w1 minus w7 subject to wi minus wj is less than or equal to Cij, then we said wj

unrestricted. What we had written here are the eleven constraints corresponding to the eleven

arcs which satisfy wi minus wj is less than or equal to Cij. We can do one more thing, because

this is unrestricted. I can always replace wj by minus wj and therefore we will write this as

maximize minus w1 plus w7, subject to minus wi plus wj is still less than or equal to Cij. Then we

say minus wj or wj unrestricted. This will lead us to a situation where you want to minimize w7

minus w1, subject to w minus wi plus wj is less than or equal to Cij and wj unrestricted.

We start writing a dual in this form and then expand it, and then get the labels. Then, the

corresponding labels that we would got here would exactly be these labels which are 0, 15, 20,

etc respectively. There is a nice trick that lies in the fact that, because this wj is unrestricted, we

can simply replace wj by a minus wj and yet retain it.

So, starting now with w7 equal to 0, would actually give us the forward pass of the Dijkstra’s

algorithm. The way we actually did it here we did the backward pass of the algorithm; whereas,

in this place, we did the forward path of the algorithm. Nevertheless, we have seen a framework

through which we will be able to show that the labels generated by the Dijkstra’s algorithms

were indeed optimal. That is the most important thing to learn from the shortest path point of

view

14

The shortest path problem, even though formulated this way, because of unimodularity property

has a continuous variable. We can write the dual and then we can get a dual solution by

inspection and prove that the corresponding dual solution is indeed optimal. Provided, we

generate the dual solution based on a certain principle and that principle was the same principle

that we followed when we generated these labels. If each of these labels represent some dual

variables and represents some wj, then, what we did was, we made sure that wi minus wj is less

than or equal to Cij, then we then picked that wj that was minimum.

If we are able do that then we are intuitively generating a feasible solution to the dual of the

shortest path problem and by complementary slackness conditions, it will be optimal. Therefore,

the labeling algorithm that we have seen for the Dijkstra’s algorithm is indeed optimal. The next

thing that can happen is we make one important assumption which was told in the earlier lecture.

For the optimality of the Dijkstra’s algorithm, all the Cijs have to be greater than or equal to 0.

We get into the next question, can sum of these Cij be negative or can they take negative values?

Let us see what happens if some of these Cijs can take negative values.

(Refer Slide Time: 41:55)

Let us take a simple network to explain this. Consider a simple network where the distance here

is 20. We call this as 10, we call this as minus 15, call this as 10, and we call this as 5. Let these

be the distances that we have here. If we start Dijkstra’s algorithm for this, we will label this with

15

0. We have 1 to 2 is 20, 1 to 3 is 10, so we label this as 10. Then we will do this 1 to 2 is 20, 3 to

4 is 10 plus 10 is equal to 20. Let us say we label here as 20, now will do 10 plus 10 is 20, 20

plus 10, 25, so we would label this as 20 and say that the Dijkstra’s algorithm terminates like

this. The single pass of the Dijkstra’s algorithm would give us a shortest distance from 1 to 4 as

20; whereas, we know that if we take the path 1 to 2, 2 to 3, 3 to 4 the distance is 20 minus 15

plus 5, which is actually 10 and not 20.

The reason we did not get the correct answer here is because we violated one of the assumptions

that Cij has to be greater than or equal to 0. We modify the shortest path algorithm, if we have

these negatives. Such problems are called shortest path problems with arbitrary cost. Arbitrary

cost would mean either a positive or a 0 or a negative cost. We can modify this algorithm

through this.

What we do there is this, instead of these labels, let me simply call them as w1. One being the

source, we call this as w1 is equal to 0 will have w2 equal to infinity, w3 equal to infinity and w4

is equal to infinity. What is the dual of the shortest path problem? Dual of the shortest path

problem is wi minus wj is less than or equal to Cij. So, first thing is if we are able to find wi and

wj such that if we write the dual this way by changing this, we get wj minus wi is less than or

equal to Cij. If we replace this unrestricted variable by the negative of that, you will get wj minus

wi is less than or equal to cij If you are able to get an ij such that wj minus wi is greater than Cij,

then we can actually correct the wj. We look at this pair 1 2, wj minus wi is greater than Cij.

16

(Refer Slide Time: 45:47)

Please observe that we are looking at this particular form of the dual. This is the first form of the

dual. Here, we got wi minus wj less than equal to Cij, wj, unrestricted. This form comes because

wj is an unrestricted variable. I am replacing this wj by minus wj which would continue to be

unrestricted. So, wj unrestricted, but you will have minus i plus wj is less than or equal to Cij. We

are using this form of the dual. Here, you have an ij pair such that wj minus wi is greater than Cij,

so update this one. So, pass 1 of the algorithm. We have w2 is updated to 20. Now again, go back

to wi minus wj infinity and 0, wj minus wj is greater than Cij, upgrade w3 to 10. Here, you have wj

minus wi is infinity minus 20 is greater than Cij, upgrade w4 to 25 such that you have wj minus wi

is equal to Cij in this case. Now, the values are updated from the original values till first pass you

get 25.

17

(Refer Slide Time: 47:14)

Go to the second pass and check whether for all ij, wj minus wj is less than or equal to Cij. 20

minus 0 is equal to 20, satisfied. 10 minus 0 is equal to 10, satisfied. Come back to this wj minus

wi is minus 10, is greater than Cij, so, update this to 5, now this one is satisfied. Again in pass 3,

verify for all ij, whether wj minus wi is less than or equal to Cij. wj minus wi is equal to Cij, wj

minus wi is less than or equal to Cij wj is 5 minus 20 is less than or equal to 15, 25 minus 5 is less

than or equal to 20. wj minus wi is greater than Cij, 25 minus 5 is 20, 20 is greater than 10. Now

change w4 to 15, so w4 becomes 15. Once again go back to the algorithm to check whether for all

ij’s, wj minus wj is less than or equal to Cij, wj minus wj is equal to Cij, wj minus wj is less than

Cij. wj minus wj is equal to Cij, wj minus wj is less than Cij, wj minus wj is equal to Cij. So this set

of wjs satisfies the condition: wj minus wj less than or equal to Cij. Therefore, this value is

optimal.

The only difference is if we have arbitrary cost, if we have some Cij less than 0. It is necessary to

run or modify the Dijkstra’s algorithm, so that the dual condition is satisfied by the resultant

once. The first type of thing which is a Dijkstra’s algorithm, they come under the category of

what is called label setting algorithm where you have Cij greater than or equal to 0. Once the

label has set, the label will not change. So these come under the category of label setting

algorithms.

18

The optimality principle is that, once a label is fixed, which means I have determined the shortest

path from the source to that node, I will not change the label. But when we have arbitrary cost

like a negative coming here, then it may be necessary to correct the label as we move along and

we apply this duality condition. These algorithms come under the category of order called label

correcting algorithms. The labels that are set here 0, 20, etc., are now corrected. They are not

fixed as it was done in the earlier case. So, they come under the category of order called label

correcting algorithms. This way we can handle shortest path problems, even if some of them

have arbitrary cost. There is another important thing that can happen.

(Refer Slide Time: 51:17)

Let us look at this same network with the slight change. Let us say this cost is minus 40. Once

again, it is very similar to the earlier example, except that one Cij is negative and it is minus 40.

Most importantly, it is going to create a big problem for us. Let us make another interesting

change here. Instead of this 5, let me put this 5 and this arc here.

Let us look at a network like this. Remember the changes that I have made. One change is this is

minus 40; here. I have changed the direction and it goes like this. The disadvantage with a

network like this is, if we look at 2 to 3, 3 to 4, 4 to 2, we have a minus 40, 10 and 5. If we look

at this cycle, this cycle has a total length of minus 25, minus 40 plus 10 minus 5. So, this has a

total length of minus 25. This is a negative length cycle.

19

(Refer Slide Time: 52:53)

When we have a negative length cycle and we are interested in finding the shortest path from 1

to 4, 1 will always say that I can start with 0. I come back to 20, I complete one cycle. I get 20

minus 25, which is minus 5. I complete another cycle, I get minus 30, I get minus 55 and it goes

on. The algorithm will not terminate here. One of the things is whether you use the basic

Dijkstra’s algorithm; we ensure that all Cij’s are greater than or equal to 0.

There is no question of negative sign whereas in the modified label correcting algorithm, we said

if we have arbitrary cost, we can still handle it, provided, there are no negative cycles. If there is

a negative cycle in the network, then the label correcting algorithm will keep on correcting the

labels till it starts getting negative values and it gets smaller and smaller, wj’s become much

smaller and smaller as we proceed.

The other question that comes is how do I know that there is a negative cycle in a network? This

is a very small network. This has been created only to explain this principle. By inspection, one

can say that this is a negative sign, but if we are dealing with a very large network, how would

somebody know that there is a negative cycle here? The answer is, if we apply the label

correcting algorithm and then we realize that these labels are becoming smaller and smaller, we

fix a particular value like say, if w4 happens to be less than equal to some minus big M or minus

1000 or some large value. Look at some arbitrarily defined large value and when one of the dual

20

variables becomes less than such a value, then the algorithm will terminate saying that there is a

negative length cycle.

The label correcting algorithm does two things. One is, if there are arbitrary costs and there are

no negative length cycles, then the algorithm will terminate by giving the optimum value. If

there are negative length cycles, then the algorithm will terminate by saying that there is a

negative length cycle. This is because somewhere, as we move along in this, we would started

with 0, 20 so we would start with 20. After one cycle, we will get minus 5 because the length of

this cycle is minus 25. After another cycle, we get minus 30 minus 55 and so on. Somewhere, the

value keeps reducing and it will go to less than this 1000 and therefore the algorithm will

terminate at that point saying there is a negative length cycle.

The algorithm will not find the shortest path from 1 to M. What we have effectively done is, we

have now shown, first of all, the primary dual relationship that is associated with the Dijkstra’s

algorithm. We formulated the problem as a linear programming problem. We wrote the dual of

that problem. Then, we derived the optimal solution to this problem using some ideas from

duality. We first created a dual feasible solution here, based on an idea that we kept this as small

as possible, so that we finally got to this 50. Then, we showed that applying the complementary

slotness conditions to this dual feasible solution, we were able to get a primary feasible solution

which was optimal. We also showed that there is relationship between both of them, while this

represented the forward pass that represented backward pass.

We also said the underlying idea is to keep wj minus wj less than or equal to Cij and then try to

keep it as small as possible; small as possible comes by labeling here. The moment we know this

as 15, we labeled it as the smallest possible value of 15. We labeled this or the smallest possible

value of 25 such that wj minus wj is less than or equal to Cij. We also showed why this is true by

redefining the dual this way, so that we actually end up minimizing this, satisfying this condition.

Then, we extended this idea to look at shortest path problems with arbitrary cost, some places

where you have some negative values. Then, we modified that algorithm based on this duality

procedure. We also had showed a way by which, if we have negative length cycle the algorithm

will terminate without giving the optimal solution.

We will continue in a subsequent class on order called successive shortest path problem.

