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All-Integer Dual Algorithm 

We continue the discussion on the all integer primal algorithm with this example 

which we have been working out. 

(Refer Slide Time: 00:20) 

 

Two-variable problem with both constraints less than or equal to type, maximization 

with non-negative coefficients. We added slack variables X3 and X4 and started with 

X3 and X4 as the basic variables. We introduced many primal cuts and at some point, 

we had reached this iteration where the present solution is represented by X1 equal to 

1, Z equal to 1. 
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When we look at this iteration, we realise that here the dual is infeasible indicated by 

a negative sign. We enter this and then we have to find out the row from which the cut 

will be generated. In this entering column, there is only one element with a positive 

sign, rest of them are all negative. Therefore, this is the only row with which we can 

make a primal cut. This will become a temporary pivot. Dividing by 18 and 

introducing an S6, we would have 19 by 18 with a lower integer value of 1, minus 21 

by 18 will have a lower integer value of minus 2 and 18 by 18 will give 1. This will 

be the pivot element and this is the leaving variable.  

(Refer Slide Time: 1:40) 
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We go back and continue the next table, we have a minus S5 and a minus S4 with X0, 

X3, X4, X1, X2, S1, S2 and S3. S4 has entered so we will have an S4 and S6 leaves, so S6 

will be here. The pivot element will remain as a pivot element with a 1. Rest of the 

elements in the pivot row are divided by the pivot. You get 1 and a minus 2. As far as 

this column is concerned, it is divided by the negative of the pivot; so you get a 3, 3, 

minus 18, 1, 2, 1, 2, and 3. This will become 1 minus minus 3  into 1 which is 4, 0 

plus 3 is 3, 19 minus 18 is 1, 1 plus 1 is 2, 0 plus 2 is 2, 0 plus 1 is 1, 0 plus 2 is 2, 0 

plus 3 is 3. We need to still evaluate this here. This will become 5 minus minus 3 into 

minus 2 is 5 minus 6, which is a minus 1. We get a minus 1 here, so 1 plus 6 is 7, 

minus 21 plus 36 is 15, 2 minus 2 is 0, 3 plus 4 is 7, 1 minus 2 is minus 1. 1 minus 4 

is minus 3, 1 minus 6 is minus 5. 1 minus 6 is minus 5 and so on. X2 is 3 minus 4 

which is minus 1. We still have not reached the optimal because we find that this can 

enter. This enters and then we find that this (Refer Slide Time: 04:43) is the only one 

that can be a candidate. This will be a temporary pivot; this element will be a 

temporary pivot. We will introduce an S7 here. There will be a 0, there is a 1 and there 

is a minus 2 that comes in. This is the actual entering variable and this will be the 

leaving variable, with this as the actual pivot.  

We do one more iteration here. 

(Refer Slide Time: 05:15) 

 

We get minus S7, minus S6, X0, X3, X4, X1, X2, S1, S2, S3, S4 and S5. Pivot element 

remains as a pivot element, rest of them are divided by the pivot. So, we get 0 and a 
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minus 2 here. This is divided by negative of the pivot, so 1, 5, minus 15, 0, 1, 1, 3, 5, 

and 2. Because of this 0, the same column will repeat here to get 4, 3, 1, 2, 2, 1, 2, 3, 

1, and this will become 3, 3 minus minus 1 into minus 2, 3 minus minus 1 into minus 

2 is plus 1. Therefore, we can stop here, because we have got the primal is feasible 

dual is also feasible. For the sake of completion, we would do 3 minus 10 is minus 7, 

minus 18 plus 30 is 12, 1, 2 minus 2 is 0, 1 minus 2 is minus 1, 2 minus 6 is minus 4, 

3 minus 10 is minus 7 and 1 minus 4 is minus 3. Therefore, this is optimal; both 

primal and dual are feasible. Solution is X1 equal to 2, X2 equal to 2, and Z equal to 4, 

we are trying to maximise X1 plus X2. This is how the all integer primal algorithm 

works.  

Now, couple of issues; on one hand it is a very easy algorithm to implement, primal 

cut is also very easy to understand. The biggest hurdle in this algorithm is that, we can 

very quickly get into degeneracy which we have seen. For example, we have had 

some four iterations where the objective function did not move from 1 and after fourth 

or fifth iteration, from here it moved to four but then, again there is a degeneracy 

coming in. Every time a primal cut results in a 0 here, it will be degenerate and this 

will very quickly get into a degeneracy situation. You will realise that you are making 

too many unnecessary iterations before it converges to the optimum. This is the 

biggest drawback as far as this algorithm is concerned. You will end up having more 

iterations to perform. Nevertheless, if you want to work with an all integer algorithm 

or an all-integer cut, this algorithm is easy. Generating the all integer cut is also not 

very difficult; it is very intuitive and it is not very difficult. This is how the all integer 

algorithm works. The last part of the module on integer programming is to understand 

the all integer dual algorithm, which again we will explain using an example. 
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We have an all integer dual algorithm and we explain it with a minimization problem. 

We minimize 8X1 plus 4X2 plus 6X3, subject to 4X1 plus 5X2 plus 6X3 greater than or 

equal to 18, 2X1 plus 3X2 plus 5X3 greater than or equal to 15, 4X1 plus 6X2 plus 3X3 

greater than or equal to 20, Xj greater than or equal to 0 and integer. This is exactly 

the opposite problem. It is a minimization problem with all constraints greater than or 

equal to type. Typically, if it were a linear programming problem, we would have 

used a dual simplex to begin with. We develop what is called an all integer dual 

algorithm, which has more or less the same properties as dual simplex. It will start 

with a primal infeasible and dual feasible solution and proceed till you reach the 

optimum. We first create the table for this. 
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We would start with X4, X5 and X6 as basic variables. We will have an X0 here, X4, 

X5 and X6 as basic variables. Remember we would have minus X1 here, minus X2 and 

minus X3. When we write this as a maximization problem, you will have, maximize 

minus 8X1 minus 4X2 minus 6X3, would give us 8, 4, and 6 here. Remember it is a 

dual algorithm, so dual will be feasible, which is what you have got here. This will 

become minus 18, minus 4, minus 5, minus 6, minus 15, minus 2, minus 3, minus 5, 

and minus 20, minus 4, minus 6, and minus 3. When we write this in the standard 

form this is what we get for the given problem. The given problem is a minimization 

problem, with all constraints greater than or equal to type and the right hand side 

values are non-negative. This is what we have here. This will be at 0. The dual is 

feasible and the primal is infeasible. We have to generate a cut based on a dual 

simplex mode. 
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We take that row which has the most negative element here as the row from which we 

generate the cut. You can either put an arrow here or just put a dash indicating that 

this row is the row from which the cut is going to be generated. The dual cut is 

slightly different from the primal cut. The all integer dual algorithm will have a pivot 

of minus 1. We have already seen that all integer algorithms will maintain the integer 

property by having a pivot as either plus 1 or a minus 1. Otherwise when you divide it 

with other numbers you will get fractions. So, initial table will be integer. In the all 

integer primal algorithm, the pivot element will be a plus 1, and in an all integer dual 

algorithm the pivot will be a minus 1. Pivot will be a minus 1 because in the next 

iteration, you will divide by the pivot. Some negative will become positive here and 

when you divide it by the negative of the pivot, the positive here will be retained. We 

need to maintain the feasibility of the dual. At the same time make one negative 

element positive in the next iteration.  

What we do here is, the moment we decide this is the row based on which we are 

going to have a cut we look at all the negative elements in this row. In a subsequent 

iteration, you may have 0 or non-negative elements also; but we look at only the 

negative elements in this row. You have a 4, 6, and 3 with negative values coming in 

here. For all these negative values here, whatever be the negative value, go back and 

look at these. Now, you will look at all these three 8, 4, and 6, because the 

corresponding elements are all negative. Among these the smallest is 4. Remember 
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these will all be always positive or non-negative (Refer Slide Time: 14:54). The 

smallest is 4; divide everyone of this element by the smallest to get for example 2, 1, 

and 1, lower integer values.  

(Refer Slide Time: 15:02) 

 

So 8 by 4 has a lower integer value of 2, 4 by 4 will have a lower integer value of 1, 6 

by 4 will also have a lower integer value of 1. This becomes 2 by 4 which is half; 

leave out the negative sign 1 by 6 and 1 by 3. I repeat, having got this 2, 1, 1, now go 

back. Leave out the negatives. Take only those elements that have negative sign here 

and do this part so 2 by 4 is half, 1 by 6, and 1 by 3; the smallest is 1 by 6. If you take 

the smallest 1 by 6, now create a cut by multiplying this entire thing by the smallest 

number that you get, which is 1 by 6. In the subsequent iterations you will also 

understand it better. This will be an S1 that comes in. 

Minus 20 divided by 6 will be minus 4, minus 3 point something, which will give you 

a minus 4; minus 4 into 1 by 6 is minus 1, lower integer value again. This is a minus 

1, this will be minus 1 again. You will have all minus 1 coming in. Remember this 2, 

1, 1 was written based on the minimum here and in this process we will ensure that 

the pivot element is minus 1, corresponding to the minimum. It is that minimum that 

will be the entering one and this is the actual pivot that we have. 



9 
 

(Refer Slide Time: 17:05) 

 

Continuing the iterations, we will have here minus X1, minus S1, minus X3. You have 

an X0 here; you have an X4, X5, X6 and X2. Pivot element becomes 1 by pivot, so it 

becomes minus 1 again. Rest of the elements in the pivot row is divided by the pivot 

to get plus 4, plus 1, plus 1. Here, divide by the negative of the pivot. Basically, you 

retain the same numbers 4, minus 5, minus 3, and minus 6. What we have done in the 

process is that, this minus 4 has become plus because the pivot is minus 1. You will 

see later that, the dual feasibility is maintained the way we carried out. The way we 

got these numbers 1 by 2, 1 by 6, and 1 by 3 dual feasibility will be maintained which 

we will see now. Now this will become… (18:18) 0 minus 4 into 4 will give you 

minus 16, minus 18 plus 20 is 2, minus 15 plus 12 is minus 3, minus 20 plus 24 is 4. 

You go back and check; X1 equal to 2 or X2 equal to 4 would give us Z equal to 16. 

So we are doing all right. Now, this one will be 8 minus 4 into 1 is 4, minus 4 plus 5 

is 1, minus 2 plus 3 is 1, minus 4 plus 6 is 2, the dual feasibility is maintained. 

Similarly, 6 minus 4 is 2, minus 6 plus 5 is minus 1, minus 5 plus 3 is minus 2, minus 

3 plus 6 is plus 3. This is still primal infeasible because of this minus 3. This is the 

only row which has a negative and this is the only one which we will use to generate a 

cut. In this case, we had 3 negatives. The maximum negative element was used as the 

row from which the cut was written. Here, there is only one element and so we will 

use this row and generate a cut.  
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This has only two negatives which are minus 3 and minus 2. Corresponding elements 

are 4 and 2 here; divide by the smallest to get 2 and 1. Now, this becomes 2 by 3 and 

this becomes 1 by 2. 1 by 2 is smaller so 1 by 2 will be the one, which we will use. 

Now, multiply to create an S2; minus 3 by 2 is minus 2, 1 into 1 by 2 is 1 by 2, which 

will become 0, minus 3 by 2 will become minus 2, minus 2 by 2 will become minus 2. 

I repeat again, this is the row with which we would generate a cut. There are two 

negatives, minus 3 and minus 2, corresponding to them, you have 4 and 2 here, which 

I have written down here; smaller one is 2. Divide these by the smaller to get 2 and 1. 

Go back to the corresponding negatives; you get 2 by 3 and 1 by 2. 1 by 2 is the 

smaller one, so multiply with 1 by 2; minus 3 into 1 by 2 is minus 3 by 2, lower 

integer value has minus 2. 1 into 1 by 2 is half, which will have a lower integer value 

of 0, minus 3 into 1 by 2 is minus 3 by 2 which becomes minus 2, and minus 2 into 1 

by 2 will give us a minus 1. Pivot is minus 1, smallest will enter. This X3 will enter 

and S2 will leave. We will have another row that is created.  
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X0, X4, X5, X6, X2, and X3. I will have minus X1 minus S1 and minus S2. Pivot 

element will remain as pivot element minus 1. Pivot always becomes 1 by pivot, so 

minus 1 becomes minus 1. This is divided by the pivot, so I get 2, 0, and 2. This is 

divided by the negative of the pivot, so the same numbers come in 2, minus 1, minus 

2, plus 3, plus 1. This becomes minus 16 minus 2 into 2 minus 4 is minus 20, 2 plus 2 

is 4, minus 3 plus 4 is 1, 4 minus 6 is minus 2, 4 minus 2 is plus 2. I repeat; minus 16 

minus 2 into 2 is minus 20, 2 minus 1 into 2 which is 2 plus 2 is 4, minus 3 plus 4 is 1, 

4 minus 6 is minus 2, 4 minus 2 is 2. Because of this 0 the same column will repeat; 4, 

1, 1, 2, 1.  

This one will be 4 minus 2 into 2 is 0, minus 5 plus 2 is minus 3, minus 3 plus 4 is 1, 

minus 6 minus 6 is minus 12, minus 1 minus 2 is minus 3. This is what we get here. 

We have still not reached the optimum, because we have a negative element here. 

There is only one negative, therefore this is the row from which we will generate the 

all integer dual cut. This has only one element which is a minus 12, corresponding to 

that is actually 0. There is only one element corresponding to that is 0. The other thing 

that we need to do is, when we were here, for example, when we tried to generate the 

dual cut from this, we said there are 2 negatives; the corresponding were 4 and 2 and 

we divided with the smaller one so that we get a 1. If the smaller one turns out to be 0 

then, you do not divide it by 0. Instead you keep it as 1 always. What we will 

effectively have in this case is the fraction that will be 1 by 12 and when we multiply, 

we will get a minus 1 that is coming in here. That is what will happen in this case.  
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When the smaller one becomes 0, actually you do not have anything. Whenever you 

have a situation, where the smaller one, or the smallest one happens to be a 0 that will 

become 1. That will be the basis on which we will generate the cut. What we will 

have here is a 1 by 12 that comes in, so we will have an S3, which is actually coming 

in.  

(Refer Slide Time: 26:29) 

 

1 by 12; so minus 2 into 1 by 12, have a lower integer value of minus 1, 2 and 1 by 12 

will give us a 0. 12 and 1 by 12 will give a minus 1, 3 by 12 will also be 0. Then we 

continue.  
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We get a minus X1. This will be entering, this will be the pivot finally, this leaves; we 

get 20. We have X0, X4, X5, X6, X2, X3 and S1 enters. I have S3 and S2. Pivot becomes 

1 by pivot, so I have a minus 1 here. Dividing by minus 1, I get 1, 0, and 0. Divide by 

negative of the pivot, I will get a 0 here, minus 3, 1, minus 12, minus 3, 2. Now, I 

write this 20 minus 0 into 1 is 20, 4 plus 3 is 7, 1 minus 1 is 0, minus 20, minus 2 plus 

12, is 10. 2 plus 3 is 5, 2 minus 2 is 0. We can stop right here and say that we have 

reached the optimum, the reason being, we are performing a dual simplex iteration. 

Therefore, this will not violate the dual feasibility condition. 

Nevertheless, we go back and check that, we have the same thing repeating. Because 

of this 0 and this 0, the same 2 columns will repeat. You will have a 4, 1, 1, 2, 1, 0, 

and a 2, minus 1, minus 2, 3, 1, minus 1 that comes in. Now, we have reached the 

optimum here. This is how the all integer dual algorithm works. This is how all 

integer dual algorithm works. The all integer dual algorithm has the same advantages 

and disadvantages as the all integer primal algorithm. In a way, the dual cut is little 

more involved than a primal cut. In the dual cut, we have to ensure that the pivot 

element is minus 1. We need to go back and do a couple of additional computations 

before we generate the dual cut. Primal cut was little more obvious than the dual cut. 
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All these things that we did, we need to remember again that, this particular thing, that 

when the smallest element happens to be 0, we will have to keep it as 1 and it will 

automatically qualify to make the cut. When the smallest element is a non-zero 

element, then you divide so that you get a 1 and then you proceed. In every stage, you 

will only have to take the negative element and then generate the cut. The fraction that 

is obtained here is based on the negative elements that are there. Very intuitively you 

will understand that, the whole thing is centered around ensuring that the smallest 

among the negatives is the entering column. The pivot turns out to be minus 1 and the 

dual feasibility is maintained.  

All these three things are done by the set of rules that we have used. We have not 

proved those rules but those will be the guiding rules based on which, we will 

generate a dual cut. In the next iteration we will realise that at least one negative 

element, because you are dividing with a minus 1, at least 1 negative element will 

become non-negative or positive. The dual feasibility will be maintained and there 

will be an increase or reduction, in this case, of the objective function. The all integer 

dual algorithm also suffers from the same problems of degeneracy that the all integer 

primal algorithm suffers. For example, we did have a degenerate iteration that comes 

in when this entering one has a 0, then you get into a degenerate situation.  

The value of the objective function is not changed but this is non-optimal or infeasible 

to the primal, this is feasible to the primal. This is another example of degeneracy, but 
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degeneracy in a dual simplex algorithm. The primal degeneracy is slightly different 

from here. You have to remember that, it is again a case of degeneracy; degeneracy 

can happen. With some amount of experience or if you work out more problems, you 

will realize that, the all integer primal algorithm is more prone to degenerate iterations 

than the all integer dual algorithm, as a very general rule. 

(Refer Slide Time: 34:04) 

 

However, the moment you get an entering column with a 0, automatically you will get 

a degenerate iteration. Both these primal and dual algorithms have difficulties of 

quickly getting into degenerate solutions. Other than that, they provide a means by 

which you have all integer algorithms. You do not get into any fractions at any point 

in time. You carefully prepare or make the cuts, such that, the pivot element is a plus 

1 for the primal algorithm and the pivot element is minus 1 for dual algorithm. The 

all-integer dual algorithm is ideally suited for a problem which has a minimization, 

which has all greater than or equal to constraints, non-negative right hand sides and 

minimization problem with non-negative coefficients in the objective function. 

Whereas, an all integer primal algorithm is suited to solve the dual of this problem, 

which is a maximisation problem with all constraints less than or equal to and a non-

negative right hand side and all objective function coefficients non-negative.  

What will happen if we have a mixed problem? Say we either have a maximization or 

a minimization; some of them turn out to be negative here, some of them turn out to 

be greater than equal to and some of them turn out to be less than or equal to. Can we 
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do or have an all integer algorithm which can handle that? We will just take an 

example; we will not go through the entire solution. We will just take an example and 

see how it looks like and then leave it at some point to solve. We will take an example 

here. 

(Refer Slide Time: 36:00) 

 

Suppose we have minimize 2X1 plus 3X2 plus 4X3; X1 plus X2 plus X3 less than or 

equal to 9. 2X1 plus X2 plus 3X3 greater than or equal to 7. 4X1 plus 6X2 plus 5X3 

greater than or equal to 16. Xj greater than or equal to 0 and integer. Suppose we take 

a problem like this, we will define an X4, X5 and X6, which will act as basic variables.  

(Refer Slide Time: 37:00) 

 



17 
 

You will have an X4, X5 and X6. It is a minimization. You will straight away have X1, 

X2, X3 written here and you will have 2, 3, 4 and 0. Minimization implies dual 

feasible. You may have a negative also here, then this will become a minus 3. This 

will become, it is a less than or equal to constraint, so 9, 1, 1, 1. This is a greater than 

or equal to constraint minus 7, minus 2, minus 1, minus 3. It will become minus 16, 

minus 4, minus 6, minus 5. You can straight away proceed with an all integer dual 

algorithm. There are two negatives take them off negative and proceed. This would 

give us, all three are negative here, so, 2 3 and 4; this will become 1, 1, and 2, this will 

become 1 by 4, 1 by 6, 2 by 5. 1 by 6 will be the minimum and you can generate an 

all integer dual cut and you can proceed. If you get into a situation where some of 

these are negative, then you will have to redefine the whole thing carefully by 

checking out. For example, this being the smallest, among these things you will take 

only those which have positive and then you will proceed. You have to modify that 

rule suitably. It depends on whether you want to generate a dual cut or a primal cut. In 

this case the primal cut is not possible. Primal cut would mean that, you take an  

element whose dual is infeasible. Only the negatives will enter. A primal cut will first 

have an entering variable and then a leaving variable. A dual cut will first have a 

leaving variable and then an entering variable. In this case a primal cut is not possible 

because the dual is already feasible. In this case, only a dual cut is possible. If you had 

a minus 3 here, then a primal cut would have been possible.  

(Refer Slide Time: 39:20) 
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If you had a minus 3 here, then you can go back and do a primal cut. With this 

entering, there is only one candidate, so this will be the pivot and you will proceed; 

you can do that. You can also have a dual cut with this as the candidate, all 3 

negative, but you will take only these two; 2 by 4, 2 by 5. 2 by 5 being smaller, you 

will generate a dual cut and you can proceed. Very similar to a linear programming 

problem with mixed type, you could have a situation where both primal and dual 

could be infeasible and so on, very similar to that situation, you may start with a 

primal cut or you may start with a dual cut. 

If the problem has an optimum then, you will realize that, at least one of the cuts will 

be possible. If both cuts are possible, as in this example, with a minus, then you could 

choose any one of them and proceed. But if you have a situation here (Refer Slide 

Time: 40:15) where a primal cut is not possible and only a dual cut is possible, you 

will have to proceed with the dual cut. If the problem has an optimum then, it will 

somehow take you to the optimum through a series of primal and dual cuts. As I said 

where both are possible, you can choose any one of them and proceed. The only thing 

that is not guaranteed is the number of iterations. It will eventually converge but, it 

might take longer or more number of iterations, depending on the problem situation.  

The integers will at some point show infeasibility to the corresponding. After all in 

every stage you are only solving a linear programming; you are doing a simplex 

iteration. Therefore, as you as you add these cuts you will finally get into situation 

where, you do not seem to have a feasible point to the LP. May be a cut would make 

the whole thing infeasible and at that point infeasibility will be shown. Infeasibility 

will be shown again depending on what kind of a problem you are in. If you go back 

to infeasibility criterion of linear programming problems, there are two things: one is 

artificial variable is in the basis with a positive sign and we cannot have that 

happening here because, we are not dealing with the artificial variables at all. The 

only thing that would happen is, in both these, we are dealing with situations where 

you are introducing some cuts. In the dual simplex, infeasibility is always indicated 

by identifying a leaving variable and not identifying an entering variable; opposite of 

unboundedness, so something like that will happen here. 

You will want to do a dual cut, you know that there is a variable here with a negative 

sign, but you are not able to get a corresponding variable to enter. That would mean 



19 
 

infeasibility and we have to think carefully about unboundedness. Unboundedness is 

the other way. You will be able to do a primal cut, but you enter something and you 

will not be able to find a leaving variable. That is how unboundedness and 

infeasibility will be detected in all these problems, whether it is an IP or whether it is 

an LP. The cut will take care in case of an IP. In case of a LP you do not introduce 

cuts, somewhere during the iteration, it will be taken care of. This is how the entire set 

of algorithms work. To quickly summarize what we have learnt in integer 

programming, we started with, reason to treat integer programming as a separate 

topic.  

 (Refer Slide Time: 42:55) 

 

We said that, integer programming problems are those where the variables are 

restricted to be integers. We also saw the classification as all integer algorithms, 

mixed integer algorithms or mixed integer problems and 0, 1 problems. Then, we saw 

how, if you take integer programming as such as a problem and try to solve it by 

simplex or any LP algorithm, you will lose the convexity property of the feasible 

region. You will only solve those using tools of linear programming but then, do 

something in such a way that an LP optimum becomes integer optimum. When LP 

optimum becomes integer feasible it becomes integer optimum. That is a phenomenon 

that you observed in all of the Gomory cutting plane, as well as the all integer primal 

and all integer dual. You only introduced linear programming kind of constraints that 

involved continuous variables. At least when you introduced them into the simplex 
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table and proceeded, you always treated them as continuous; the way the thetas were 

defined, they were treated as continuous. We were going through a set of linear 

programming iterations but then when an LP optimum becomes integer feasible, it 

becomes integer optimum. So all those things we saw.  

Then, we looked at some formulations and advantages of using integer programming 

as a way to model a set of situations. We saw examples where 0 1 was very powerful. 

You could model an either or situation, you could model k out of n constraints and so 

on. Then, we also saw how difficult optimization problems are modeled and 

formulated as integer programming problems, with the examples of the p median 

grouping problem, the travelling salesmen problem, line balancing problem, the 

scheduling problem and so on. 

Then we moved to 0 1 problems and then we looked at the additive algorithms. It is a 

very powerful algorithm, simply because of the nature of the variables. Variables take 

only a 0 or a 1. Then we solved a standard problem, which was a minimization 

problem, with all constraints of the greater than or equal to type and all objective 

function coefficients non-negative. Then we showed that it is possible to have an 

efficient algorithm that uses only 3 or 4 vectors in terms of storage and memory. It 

was a great advantage to work. Then, we also saw how any given 0 1 problem can be 

converted to the standard form and how non-linear 0 1 problems can be converted to 

linear 0 1 problems and solved using the additive algorithm. 

Then we saw the branch and bound algorithm, which can be used to solve all integer 

problems, as well as mixed integer problems. Branch and bound algorithm, essentially 

at every stage adds two constraints to the existing problem, both constraints are 

essentially bounds. We also saw that the constraints being bound essentially take off 

areas either as horizontal strips or as vertical strips in an existing feasible region and 

then solves the remaining problem. Since both the constraints are bounds one has to 

do one more iteration or more than one iterations. But one does not have the problem 

where the constraint size increases. You can straight away do an upper bounded 

simplex iteration. We have already seen how to do simplex algorithm with bounds. So 

one could do an upper bounded simplex iteration and keep continuing. The problem 

size does not increase at every node, even though the number of nodes can go up. We 

also briefly saw some issues on branching strategy bounding strategy and node 
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selection strategy along with this. We also said that this is a very efficient one 

because, we can handle mixed integer programming in the same way as it handles all 

integer problems plus the problem size does not increase at every iteration. 

Then we looked at cutting plane algorithms. We saw the Gomory’s cutting plane 

algorithm and in the Gomory’s cutting plane algorithm, we solved the problem as the 

linear programming problem. Then if the LP optimum is infeasible to the IP, that is, if 

there are still variables which do not have integer values, we identify one of the 

variables, in general, the variables that has the largest fractional component and then 

generate a Gomory cut. A Gomory cut is different from a branch and bound cut. A 

Gomory cut is usually not a cut which is in the form of the bound. A Gomory cut is a 

typical cut which can involve more than one variable, whereas the branch and bound 

cut always involves only one variable. The Gomory cut would progressively remove 

areas from the feasible region and keep on chopping off areas from the feasible 

region, till the corresponding LP optimum is IP feasible and therefore we get to the 

optimum. The only drawback of the Gomory algorithm is, as the number of iterations 

increase, the size or the problem size at every iteration increases by one.  

After looking at the cutting plane algorithm, we looked at all integer algorithms, all 

integer primal and all integer dual algorithms. The all integer primal algorithm is 

meant to solve a maximisation problem with less than or equal to constraints. An all 

integer dual algorithm is meant to solve a minimization problem with all greater than 

or equal to constraints. It is relatively easy to do the primal algorithm and generate a 

primal cut. The dual algorithm and the dual cut involved few more computations. 

Both the all integer primal as well as all integer dual algorithms have the problems of 

getting into degeneracy and the example that we illustrated the primal algorithm with 

ran into degeneracy right through the iteration and also at the optimum. 

Similarly, the problem with which we demonstrated the dual algorithm also ran into 

degeneracy at the optimum. While these are efficient particularly for hand 

computation and particularly when we used this kind of representation of the simplex 

table where, as every time a cut is made, cut comes in the last or an additional row; 

the computations are easier. In some sense other than the advantage of hand 

computation, it is very difficult to say that, these could be better than a Gomory 

cutting plane algorithm or a branch and bound algorithm. When we do hand 
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computation to solve integer programming problems, the all integer algorithms are 

useful. When it comes to writing computer programs perhaps the Gomory's method or 

the branch and bound method would be better compared to all integer algorithms. 

With this we wind up the module on integer programming and then the next module 

that we look at are the network problems. 


