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Lecture – 3 

 

In last class, we had a glimpse of a technique that is very useful for solving non-linear 

problems and you remember we called this as an incremental-iterative approach. 

 

(Refer Slide Time: 1:08) 

 

 

We said that Newton-Raphson scheme, which we ultimately derived an equation also, 

was one of the techniques for implementing this incremental iterative scheme. Let us do a 

small problem to understand what this scheme looks like. But, even before we do it, let us 

understand the whole technique through a graphical presentation. 
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In other words, if you look at, say for example load deflection curve, non-linear load 

deflection curve, say deflection in the x-axis and essentially  is a non-linear curve; so, let 

us say it goes on like this. Our whole idea in one dimensional problem, though strictly for 

one dimensional problem, it becomes slightly more complex when we go to multi 

dimensional problem, is to actually trace this curve closely. In other words, the whole 

idea here is given a P, how do I find out a displacement corresponding to this P, so that 

the load deflection curve automatically says that whatever is the internal forces, stresses 

which generate internal force equilibrates this P. Is that right? 

 

What is that we essentially do? If this is the total P that I apply, Ptotal that I apply, I divide 

this into smaller incremental loads say, P1, P2 and so on, until I reach the total load to be 

Ptotal. Now, let us understand how this process of Newton-Raphson scheme is applied to a 

particular nth step, as we move from nth step to say n plus 1th step. So, let us say that that 

is the nth step, so, I have load of Pn and I have to get to equilibrium step to Pn+1.Do not 

tell me that I can just get this point and do it, because I do not know this curve I am trying 

to get this curve, I am trying to trace this curve. It is not that Pn+1 I know it, just go there; 

that is not the issue. I am at Pn. I know everything about point Pn. I do not know Pn+1. It is 

only an illustration that I have put this.  
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Let me draw that in a more, I would say a detailed fashion; zoom into this portion and see 

what I do here. 

 

(Refer Slide Time: 4:02) 

 

 

I am there like that and that is Pn; I have to go to Pn+1 or rather just a second, let me put it 

as fn. I think last time I used so that there is no confusion. Let me put it as fn+1. Though 

usually P is used for load, let us, let me say fn and fn+1, so that will be clearer, because I 

think that is what we used last time. Now, so I know fn and what are the other things I 

know? I know how to  calculate the tangent stiffness KT at this point; I know how to 

calculate the tangent stiffness KT at this point. Tangent stiffness is nothing but, what is it? 

Dow p by dow u, in which case, in this case it happens to be nothing but the slope of this 

curve. So, the initial slope of the curve at the start of my iterations or at the beginning of 

my journey towards n plus 1 is very well known. So that is the slope of the curve. Let me 

call me this as say KT and usually iterations are given here, the first iteration level; I 

know that.  

 

Now, when I start this iteration what is the error? The error is, that is my error, because 

my internal forces have now equilibrated up to fn. My internal forces if you remember, 
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we had called this as Pn. Now, at that point of time when I start my journey towards n 

plus 1, what I know is sigman and that sigman gives rise to Pn.  

 

(Refer Slide Time: 6:20) 

 

 

So, if I now calculate the internal forces at that point of time, what I will get is Pn and my 

error if I remember and if you remember that it was the difference between the load that 

is applied and what you have got internally, so fn+1 minus Pn. So, that is the error. So that 

would form the right hand side of my expression KT into delta u is equal to psi; right 

hand side of my expression for my first iteration. Is that clear? That means that I will 

solve this equation KT into delta u is equal to or du is equal to psi. So, I will get to a new 

d or  new u. Let me call that as du, du at the end of my first, at the end of my first 

iteration. That means I am here. I calculate now epsilon with this. We will see the details 

in a minute. I calculate epsilon and from epsilon, I calculate sigma. ET into epsilon is 

equal to sigma. How I do that?  

 

Note that d sigma by d epsilon is written as ET and I know how to calculate d sigma by d 

epsilon that is given. We will see an example in a minute. So, I know it, so I can calculate 

d sigma or in other words, I can calculate sigma. Knowing displacement, I can calculate 

sigma, knowing sigma I can calculate the internal forces or in other words, I will go to, 
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this is the point that is given for this displacement; the force, the internal force is given by 

the point lying on the load deflection curve. So if this were to be the deflection, this will 

be the load. That is what it means. So, this will be my new internal forces.  

 

Yes; so we had, in other words the question is what is the error now? Yes, correct; so, the 

last time we said that the error is to be calculated at the end of first iteration. I have not 

yet calculated the error now; I have not yet calculated. That is my next step. I used this 

error, first step error, because I am at fn, what is the error, that I used. We can call this as 

zeroth error at the start; zeroth error at the start of the increment or sorry, iteration. Is that 

clear? So, use this. This is the error when I increase now my step. Is that clear?  

 

(Refer Slide Time: 9:44) 

 

 

That is the, in other words, this error if you want you can call this as psi n plus 1 zero. 

That is the start which is equal to the error which I have to compensate. I have not yet 

calculated the error now. I have only calculated the internal force which is given by that 

point which, let me call this as say Pn+1; Pn+1 at the end of 1th iteration or Pn+1 if you want 

you can write it outside also. What is the error now? Error is between fn+1 and Pn+1, that 

difference. So, the error has now reduced to this. That is my error at end of my first 
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iteration, which I am going to use for second iteration as the input. So, that is my error. 

At the end of first iteration psi 1 say n plus 1. You can call this also as psi 2 n plus 1, I 

mean anyway but as long you understand it is fine. But, there may be a small confusion 

so that is why I am writing it as psi 1 n plus 1 meaning that that is the error at the end of 

first iteration.  What do I do? I look at the error and see how large it is, how large it is  I 

am still not happy with it. You know it looks like the error is quite large now. So, what do 

I do? I have to do one more iteration. What do I do? I find out again my good old friend 

the tangent stiffness matrix dow P by dow u at this point where I am standing now; that is 

at this point. So, what is that? That is nothing but the slope of this curve again.  

 

(Refer Slide Time: 11:41) 

 

 

So, I calculate the slope there. Yes, exactly. The point  it is calculated at different 

displacement point and hence the slope now will be different. That is called full Newton-

Raphson method. So, for every iteration, you calculate the stiffness, what we call as 

tangent stiffness again. So, I come to that point, I calculate. That is what I made a 

comment if you remember in the last class itself, look at the enormity of the problem. KT 

in a large problem is like forming stiffness matrix. Again you form the stiffness matrix. 

That is again and again you are going to solve the same problem, it looks like that and so 

the time required for a non-linear problem is very high. 
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Your observation is very correct that we need to calculate the stiffness matrix again. So, 

with this error and this being the slope at that point, I again calculate my better 

approximation for the displacement. So, what do I do? That is my better approximation. 

Obviously this is the slope if this is the height and that is the width. So, I will get this, is 

the du 2. So, the sum of these two are, that is delta u at the end of the second increment. 

Is that clear? Now at that point, again I calculate what sigma is and then what are the 

internal forces? I hit the graph now at this point. Look, I have you know ……. the P, 

moving closer. 

 

Again, I am here. So, that will be my internal forces at the end of the second iteration. 

That will be called as P n plus 1 2; very good, so 2. What is my error? Obviously, this is 

the error. See, the error has dropped. Initially it was so much, now this much and this 

much, still I am not satisfied. What do I do? I compare this with an allowable error which 

I say should be allowed say, 10 to the power of minus 6 into epsilon 1. We will discuss 

more about that later, but right now an allowable error which is say 10 to the power of 

minus 3 times, minus 4 times or minus 6 times, which is usually used of the original 

error, first error. The error cannot be an absolute quantity. The error that is allowed 

cannot be an absolute quantity, because it depends upon the units in which you are 

working. It is very important that it is a relative quantity, relative to this. I see it and I am 

not still happy with it. I go to one more iteration and I get that point.  
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This is my better approximation of my displacement.Very good question. So, what would 

happen if I apply the full load? Only one stiffness, so what would, let us come back to 

this. What would happen if I apply the full load?  

 

 

 

This curve is a nice curve, what I have drawn. So, you will start at this point and apply 

the whole load here. That means that you will find out the stiffness here, you will come 

back; stiffness here come back, stiffness here come back, stiffness here and so on. This 
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may converge, but may be it may take more number of steps than that, but it may 

converge, there is a good chance. But, sometimes what happens is that if the curve is not 

so very nice, the curve  say, is something like that then you will not get convergence; you 

will not get convergence. You have to necessarily follow this curve by an incremental 

force approach. Is that clear? In other words, to answer your question, whatever be it, you 

know you can put the whole load here, do the problem, the procedure is the same. If you 

get convergence, you are lucky. If you do not get convergence, you have to come back 

and cut the steps and so on.  

 

This is what most softwares . They put an increment, check whether there is convergence; 

if there is no convergence cut down the step, give smaller loads, see whether there is 

convergence and then if still there is no convergence they will cut down. So, usually 

many of the softwares also ask for a minimum time, what they call time step. I already 

said that time steps are pseudo times to carry the loads. What they mean by that statement 

that we want minimum time step, what they mean is what the minimum load is that we 

have to give. That is what they mean. Both of them are the same. You keep on cutting 

down the load and then you would see that things would follow the load deflection curve. 

Is it clear, any question? 

 

Yeah, I am coming to that. What is the difference between, is there any other method for 

Newton-Raphson? There is, since I made a statement full Newton-Raphson method, there 

is also a method called modified Newton-Raphson method.  
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There is a method called modified Newton-Raphson method. What is modified Newton- 

Raphson method? Here you do not calculate the stiffness for every iteration; you do not 

calculate it for every iteration. You calculate only once, may be at the start here and then 

use this itself in order to calculate further the error. This is an approximation.  

 

(Refer Slide Time: 18:45) 

 

 

In other words instead of using this slope at each of those steps which I have merged to 

get to this point, I use only the first or the initial slope. Yes; this will be parallel lines. 

See, here the slope will be, you know, like this. This slope here will not be parallel to 
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this, because that slope will be different. Now, if I use a modified Newton-Raphson 

method, then the slope will be parallel to that. The slope here, I should not say slope, but 

my tangent stiffness at that point would be parallel to it. Then, tangent stiffness here also 

would be parallel to it. Now, as it is you can see right now, when I use the tangent 

stiffness at that point to be parallel to this, that is, this and this are parallel, obviously, the 

next point I am going to hit is this point, instead of this point. In other words my claim or 

my climb towards the correct solution is going to be slightly less or may be more number 

of, correct, more number of iterations it may take. But now what is the advantage? 

 

Yes, yes; you need not calculate the tangent stiffness again and again. So, once you 

calculate it, you can, if you want to do, whatever decomposition you want to do you do 

that to solve the equations, keep it ready. So, you need to keep substituting. You have to 

calculate KT only once and then decomposition you need to do only once and so you can 

solve much more faster or quickly when compared to the previous case. But the 

compromise is that you may have to go through, to a number of iterations. Is that clear? 

But, one bit of warning. It is not necessary that this method would give rise to 

convergence solution. It might also diverge; for this step, it might also diverge. T is, in 

other words, modified Newton-Raphson method is an excellent technique to reduce time 

under many circumstances, but has to also be used with a bit of a caution that your time 

step size also may be very small, because when you use Newton-Raphson and this 

depends upon the type of non-linearity that you are dealing with. 

 

There are very many number of schemes; modified Newton-Raphson, Newton-Raphson 

is one of the methods. There are many number of schemes that are used, especially when 

the curves are crazy, you know; they are not as good curves like this. When the curves 

become or the non-linearies become quite complex, then I cannot use such schemes, I 

have to go for special techniques. Let us not worry about that right now, but I mean a 

small variant may be there. You yourself can think and say why not I calculate the 

tangents every two iterations? Yeah, you can do that. Instead of taking the tangent only at 

the beginning, I can take the tangent right at the beginning and then after third iteration, 

fifth and so on. That is also possible. These are gimmicks; no mathematical, 
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mathematically rigorous, rigorous proofs are there. They are gimmicks to reduce the time 

and if you are, as long as you are able to reduce the time, well and good. With that 

background let us, yeah?  

 

Yes, so that is why I said these are nice curves. What if the curve has an inflection point? 

What if the curve is something, we will get back to this curve. 

 

(Refer Slide Time: 22:50) 

 

 

They are not nice curves like this. Say, the curve actually goes like this comes in and 

goes like that and what if the curve is like this and so on. Yes, these techniques, these 

require special techniques many times. Newton-Raphson may not work for many of these 

techniques and we will see that. If time permits, in this course we will cover it or at least 

we will see some references where these things are done. But, these are very special 

circumstances where there is a snap through and so on that would have happen where 

solution may jump or bifurcations and so on and solutions may jump from one point to 

the other and that gives rise to lot of troubles and that is why I made a statement that 

there are special techniques when things are not as nice as what we are seeing. These are 

within quotes “nice non-linearities”. Non-linearity itself is not very nice, but at least they 

are not that bad, they are nice non-linearities. 
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Before we go further, let us do a problem and before even that, let us look at this, our 

internal forces more carefully.  

 

 

 

Remember that I said the internal force is written as B transpose sigma say d omega or dv 

and this would be call, though I am not going to give a very rigorous definition, I am not 

going to do virtual work, I just want to indicate a small thing before I go further and 

consolidate my whole, the whole procedure by doing a numerical problem. Look at that B 

transpose sigma. This is what is called as P. What we are interested in is what? Dow P by 

dow u; of course, these are vectors P and u. This results in a matrix Pi uj. k i j if I call this 

as k t i j, the resulting differentiation I call this as k t i j, then dow Pi dow uj would define 

my k t i j and so on.  
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511  

 

We will see more details again later. Let us see what we have to do? Note that both of 

them are not scalars and that right now B matrix is our strain displacement matrix. Let us 

say it is a constant, strain displacement matrix and we do not have any other things inside 

it or in other words, we are looking at small deformations where my strain definition, 

which I  had used in my earlier classes are valid. 

 

In other words, I am right now putting a rider. Understand that rider that it is not that I 

can use that B which I had defined in my earlier classes that strain displacement matrix 

all the time. These are linear strain displacement. People call this as BL. This B itself may 

undergo changes and B has to be written in terms of BL plus BNL. People sometimes write 

this as BL plus BNL. That is basically because the strain terms what you look at and strain 

displacement terms what you have are ones where only linear terms are considered, non-

linear terms are not considered. So, we stick to this or in other words, for small 

deformation, not moving into  finite deformations, for small deformation this BL is 

enough to define, though we may move into the non-linear regime of stress-strain curve. 

 

Let us now look at, in a very simple fashion, small deformation. How this can be 

modified? It is very simple to modify a tangent stiffness. So, this would be dow by dow u 

integral B transpose sigma d omega. So, how would I write that? 
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I would write this to be, so, dow P by dow u to be, B being, I said independent; it is B 

transpose, so what would be the next term? What  be the next term? Dow sigma by dow 

u, but sigma is actually a function of epsilon, epsilon is a function of u. So, you can write 

this as dow sigma by dow epsilon into, I am just using e chain rule d omega. So, d sigma 

by d epsilon is nothing but the slope of the stress strain curve, d sigma by d epsilon. 

People call this with different names. Suppose you are working with Abacus, sometimes 

this is called as Jacobian and so on. So this would be or a small modification of this may 

be called as Jacobian. Most important, this d sigma by d epsilon is the most important 

quantity that is useful in non-linear finite elements. Note that in a linear finite element, 

this guy straight away reduces to your well known stress strain relationship, I mean 

Hooke’s law and it can be expressed in terms of e and u and so on; isotropic elasticity. 

 

Look at that. This becomes very simple B transpose, of course, all of them are matrices, 

B transpose; let me call this d sigma by d epsilon say as ET or DT, however you call it; if 

you had called previously E, you call it as E, previously D, you call it as D or DT. I am 

going to interchangeably use, because people are familiar with either E or D matrix or E 

matrix, so, DT. Then, d epsilon by du, what is this? Strain displacement matrix, so B. I 
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have left out one of the things into, you remember in the previous case, into P is 

multiplied, dow P by dow u is multiplied by delta u. I have just left out that term. 

Remember what we had for our Newton-Raphson scheme? P plus dow P by dow u into 

delta u, yes and this is what we called as, if you remember what is that we called this as? 

A tangent stiffness matrix; so, this is what we called as KT or tangent stiffness matrix. 

 

What is most important in this case is that we have to have this dow sigma by dow 

epsilon and this DT definition is what is important. In fact for any material, suppose you 

have new material and if you are able to define this dow sigma by dow epsilon and d 

sigma by d epsilon. Why I had put dow sigma by dow epsilon is basically because sigma 

can also be a function of say damage parameters and so on and so forth, in which case I 

cannot write it so very nicely. It is always important that you realize what you are writing 

and what are the assumptions that are involved? Sometimes this sigma may be a function 

of say epsilon and say a damage parameter d. Then, I have to extend these terms. Right 

now, I am not assuming all that. I am just saying that sigma is function of epsilon; most 

of the cases this is fine, sigma is a function of epsilon. 

 

That is what is written as DT B d. Remember this KT into delta u was what we called as 

my error terms. That is what KT does. Is this clear? Maybe a few of these things we saw it 

in the first course itself, but it is always good to look at it more carefully and write down 

all the things before we start and move to further advanced material. Having said this, we 

will look at a small example or a small derivation rather, before we move to an example. 

Let us look at an elastoplastic system, just a one dimensional case to understand how 

things are before we move to a very concrete numerical example. I would like that you 

bring your calculator for the next class, so that this example can be worked out by you as 

we do it in the class.  

Now, let us now look at these things for an elastoplastic system. Now, I am sure all of 

you know the stress strain curve quite thoroughly. 

 

(Refer Slide Time: 32:23) 
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Few points which I am sure all of you remember that the stress strain part or the elastic 

part, I mean it is an exaggeration actually, it will not be so very away from the axis; 

usually these will be so very large that it will be very, very close to the axis, just for 

clarity, I am drawing it like that. So, this would be the stress-strain curve. Most of the 

times, why most of the times is basically because it is easier to understand it. This would 

also be treated as a bilinear system or in others words, the elastic part suppose that is the 

sigma y, the elastic part here may also be treated as a linear part; it is a linear part, I mean 

it is possible that you treat it like this. Anyway, does not matter whether you treat it as a 

bilinear system or you treat it as a pure linear followed by non-linear system.  

 

There are few points in order if you look at the stress strain curve just to recapitulate that 

note that, when I unload from any point on the stress strain curve, from any point on the 

stress strain curve, I have an elastic part and a plastic part. If this is the strain from which 

I am unloading, f this is the strain from which I am unloading, then I have a recovered 

strain which I call this as epsilone and a permanent strain which  call as epsilonp; so, 

epsilone plus epsilonp. I think some of this we have done in previous course; it does not 

matter, for continuity, let us go ahead and do it. 
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The first thing that I want you to understand is that these strains consist of elastic and 

plastic and that the unloading is an elastic unloading and when I reload it, obviously you 

know that when I reload it from here, it goes and it catches the curve there and so, the 

yield point is now moved away from this position which I have called as the initial yield 

point to the current yield point which is at this point.  

 

(Refer Slide Time: 34:39) 

 

 

So, the most important point is that yield point is not a constant or yield strength is not a 

constant when we do an elastoplastic analysis. What is usually stated as yield strength of 

a material is I would say  yield; in fact, the stress strain curve is a locus of yield points; it 

is a locus of yield points. Every point here, after I move from the initial yield strength of 

the material are all yield points. Is that clear? So, I can, suppose I had unloaded it here, 

then that would be my yield point. So, it is a locus of yield point that we get and so, it 

defines the flow of the material, so called as flow curve as well. What are the other 

important points which I want you to remember is that this kind of nice splitting, epsilon 

is equal to epsilon e plus epsilon p (is it epsilon? it looks like E) is not valid, when the 

deformations are large. 
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Suppose I call the strains in finite deformations; these are infinitesimal deformations, 

smaller, when I use small e or epsilon, then we are talking about infinitesimal 

deformations. When I talk about finite deformations, I will use capital E and I cannot use 

a statement or put down a statement which says this statement is not right. So, though 

here I put this as an approximation, you will be surprised to know that in finite 

deformations I cannot put epsilon is equal to epsilon e plus epsilon p. To an 

approximation, I can say delta epsilon is equal to delta epsilon e plus delta epsilon p, but 

more correctly I would use some other notations for s. But, we are not into finite 

deformation, we are still trying to understand small deformations, keep that in mind, 

when we come to that state. Right now, let us see that I write now delta epsilon, let me 

write this as delta epsilon e plus delta epsilon p. 

 

We call this yeah, yeah; delta epsilon is what I am going to use corresponding to delta u. 

So, it is the strain increment, delta epsilon is the strain increment. Why I have gone from 

epsilon to delta epsilon, because I am going to use an incremental iterative approach. 

Hence, I should know how to deal with delta epsilon. That is what I will get. So, delta 

epsilon is an increment in strain and that increment in strain can be classified into delta 

epsilon or can be additively decomposed. This is what the term additively decomposed 

into, that means that note this, that means that there is another way of decomposing. We 

will see that there is a multiplicative decomposition later in the course, towards the end of 

the course, but right now, I am using very specific word additively decomposed, delta 

epsilon is delta epsilon e plus delta epsilon p. 

 

My whole idea if I have to form a  tangent stiffness matrix, which is my ultimate goal, 

my whole idea is to do this and get what is called as the DT or T which we did or in other 

words d sigma by d epsilon. Is that clear? So, d sigma by d epsilon. Now, let me remove 

this. I hope you have understood these parts. 
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Now, let me divide this delta epsilon by d sigma or delta sigma so that write this as delta 

epsilon by delta sigma is equal to delta epsilon e by delta sigma plus delta epsilon P by 

delta sigma. Delta epsilon e by delta sigma is what? No; what is delta epsilon e by delta 

sigma or delta sigma by delta epsilon e, b? No; that is not at yield strength. What is delta? 

So, delta sigma by delta epsilon e, as you mean, right that is the 1 by E value. Yes, so this 

is the 1 by E value. The first thing that you have to notice is that E values are still valid. 

Obviously, from this graph you will see this is epsilon e. So, delta epsilon e, you can 

consider this as delta epsilon e. So, delta epsilon e because of the fact that I am going to 

unload through the elastic path, obviously the relationship between sigma and epsilon e 

even in the plastic region is through E, capital E and so what is this E? 

 

Please note again the difference. This is my Young’s modulus, this is not my strain. 

There is going to be a slight confusions on this, but the the context will tell you what we 

mean. This is not my finite strain; this is my Young’s modulus. Please note that the slope 

of the unloading curve which is E for most circumstances are the same.  
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So this, if I unload it from here, I would be unloading it in a region or in a path which is 

parallel to the first one. When I  it from here, it would be again parallel. When would it 

change? When I have a damage parameter that is acting. These are again you know, look 

at the assumptions behind it. That is why non-linearity is very complex. A puritan may 

question; he may say that what are you doing? There may be damage, there may be void 

formation; there may be other micro cracks that are formed, so in which case e or E may 

change. You go into an entirely different regime, but for most of the applications again 

we abstract. So, we look at the assumption; that is where our engineering, you know, 

judgment is there. We look at the significance of the problem, of this assumption for that 

problem and say that okay fine; for this I am okay, if I neglect the damage and e or E is 

parallel. So, most of the times e or E is such that or e or E remains a constant or in other 

words the unloading curves are parallel. Is that clear?  
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So, delta epsilon e by delta sigma is 1 by E plus this term. What is this term? These terms 

are called, this term is called by different names by different people. Interestingly, 

metallurgists are very interested in that kind of terms delta sigma by delta epsilon P; 

slope of the stress plastic strain curve. They would call this as plastic modulus. Many of 

them call this as plastic modulus and use the letter H to denote delta sigma by delta 

epsilon p. They would either put this as 1 by H or some people put this H prime as well. 

L now just stick to 1 by H, where H is equal to delta sigma by delta epsilon p. 

 

Note that delta sigma by delta epsilon is the, what we call as tangent modulus; tangent 

modulus, which results in that DT term, DT is a matrix which has come to this place.  
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Note that this DT is a matrix. That is what we are going to derive now and that DT has d 

sigma by d epsilon and from a material point of view, though this is a matrix from a 

material point of view, what goes into DT is d sigma by d epsilon, let me call that as 

tangent modulus. This is tangent stiffness; that is tangent modulus which I call as ET. 

 

 

 

So 1 by ET is what is called tangent modulus. Yeah, DT is the matrix from ET. Actually B 

is a matrix, DT is matrix and B is a matrix. As a material Like you have E matrix; D 

matrix and you have corresponding E to it. So, E divided by 1 minus 2 nu into such and 
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such say, for example you would have written. That is what we mean by DT and the 

material property which enters into DT is what I call as ET. Note again one more 

important thing that unlike my good old friend E, ET may not be a constant. ET may not 

be a constant. That is what we are going to see now and that this also, this part also may 

not be a constant. 

 

(Refer Slide Time: 45:02) 

 

 

So, that is dictated by the curve here. If it happens to be bilinear, then I will have only 

two values. If it is not bilinear, if the curve is a non-linear curve expressed, for example, 

in terms of sigma is equal to K epsilon power n or something like that, then d sigma by d 

epsilon would not be the same. Is that clear?  would not be the same for the analysis. 
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Now let us remove this reciprocal thing, so that I can write this as 1 by ET is equal to E 

plus H divided by EH, then let me add E squared, subtract E squared to, you will 

understand why I am doing that in a minute; subtract, so E plus H plus E squared minus E 

squared, just add and subtract that so that this can be written as E into yeah, let us just do 

, one more step to it, so E H plus, so that is what is the, let us look at this carefully. So E 

H, one second before we go further E H, 1 by ET is equal to EH divided by E plus H. 

 

 

 

 

 

 

 

 

 

 

 

(Refer Slide Time: 46:45) 



26 
 

 

 

Let me write this in a slightly different fashion, so that from here we will go to ET, so that 

it will be easier. E H divided by E plus H. I am, I am going to do a small manipulation 

with some purpose. So, now let me add E squared and minus E squared. So, that is equal 

to E divided by E plus H into H, so, the first term H here plus E minus E. That is what 

you get. Now, this can be written again, in a slightly modified fashion I am going to write 

it here. This can be written as E into 1 minus E divided by E plus H. Actually, I did this 

small jugglery to show you one important factor. I mean, same thing I could have 

retained this itself, but I just want to show you a small factor here that is why I did that.  

 

Now, note this. So, as long as my E alone was there or in other words my body did not go 

to plastic strain, I did not have this term here. I had E alone. Now, when my body went 

into the plastic region, in other words, when H comes into picture, when H comes into 

picture, then you see that my body stiffness is going to drop by that term, by that term. 

My ,body stiffness is going to drop. The one thing that has happened because of plastic 

strain is that the stiffness of the body keeps dropping and that is what you see as the slope 

of this stress stain curve. 

 

We will continue with this in the next class and see how to convert the or use ET in order 

to write down KT or the stiffness matrix. You can retain E H by E plus H itself; it does 
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not matter, you can do that. Anyway, I need only the ET. In other words, the lesson is that 

ET is derived from E and H. Even if H is not given, it doe o matter in a problem; ET is just 

d sigma by d epsilon. If it is expressed as K into epsilon power n, you can write this as, d 

sigma by d epsilon to be n K epsilon power n minus 1 and so on. So, in other words, ET is 

just a function of the strain as well. We will see in the next class. 


