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The next part of continuum mechanics which we are going to study is the constitutive 

equations. 

  

(Refer Slide Time: 1:01) 

 

 

We have studied all the background that is required for understanding the constitutive 

equations. We have talked about the thermodynamic principles that should be 

satisfied by the constitutive equations. We have talked about the objectivity and we 

have not talked at length about other principles like determinism and the effect of the 

neighbourhoods and so on. Though we are not going to go into the details of the 

theory of constitutive equations per say, we are in a good position to understand the 

available constitutive equations. Now, let us look at as a first part, what we call as the 

elastic materials. Though you would have studied the elastic materials to be a, I would 

say a, material where when you remove the loads, then suppose I have a say, material 

like this and then when I remove the load, it regains its original position. This is what 

you would have studied as probably, as the elastic material. You will find that the way 



2 

we are going to define elastic materials especially under this kind of large 

deformations, finite deformations are going to be very different. 

 

(Refer Slide Time: 2:51) 

 

 

Now, let us see how we are going to define. We are going to say that the elastic 

materials can be represented, note this carefully, can be represented by means of two 

different formulations or two different schools of thoughts. One is called as 

hypoelastic or hyperelastic. So, the first thing you have to notice is that hypoelastic 

materials are not something, separate elastic materials. It is not like hypoelastic 

materials are rubber, hyperelastic materials are say, steel or something like that; no. 

Hypoelastic and hyperelastic materials are a way of representing elastic materials; 

they are two schools of thought. 

 

Hypoelastic materials are also called as Cauchy materials and hyperelastic materials 

are also called as green elastic materials. So, this is school of thought, which was put 

forward probably by Cauchy; we do not have historic background for it and then 

carried over and the other one is by Green, Hay Green and so, they are called as 

hyperelastic materials. Hyperelastic materials are ones which respect thermodynamic 

principles or in other words, which follows thermodynamic principles. The 

hypoelastic materials start at a different level where it just puts down the relationship 

between stress and strain. Many times you would find that hypoelastic approach, if I 

can call that as an approach, or a hyperelastic approach you will find that both of them 



3 

take you to the same result for many of the materials. But, since the approach of 

hypoelasticity is not that very sound, in fact, purists do not agree with hypoelastic 

material, most of us look at only hyperelastic materials for further analysis. So, we 

will abandon the hypoelastic theory for the time being. I should not say that everyone 

has abandoned it; there are situations where people use hypoelastic theory. 

  

But, let us now proceed in this course with hyperelastic theory or hyperelasticity. 

Note that hyperelasticity is just a name that is given for elastic materials and usually 

we refer to them when they undergo large deformations. It is not that elasticity is 

different hyperelasticity is different and so on. When an elastic material undergoes 

large deformations, then we classify or we call them as hyperelastic materials, 

because these materials have to undergo certain rules and regulations which we are 

going to see now. One of the easiest, even more than that, nice way of representing or 

calling an elastic material, a material to be elastic, is to say that a material does not 

dissipate energy or in other words, if you had noticed or if you go back to our 

thermodynamic class, you would find that we had written, we had written the 

dissipation to be consisting of two terms. 

  

(Refer Slide Time: 6:06) 

 

 

One is P colon F dot where, of course you know that, P is the first Piola-Kirchhoff 

stress and F dot minus psi dot. What is this psi which we had introduced? Helmholtz 

free energy, but usually this free energy is called as strain energy - the terminology 
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that is, most of the time you use that as strain energy itself. Strictly speaking what we 

had introduced is a free energy at that place and if I remove all the thermal terms from 

it, then you would see that this term should be greater than or equal to zero. 

 

Now, if this term happens to be equal to zero, if this term happens to be zero, then 

there is no dissipation of energy which means that the process is completely 

reversible, is completely reversible. Now, through the other two, I would say the 

principles, you can write actually psi to be a function of deformation which is 

represented as F here, so that this equation now can be written as P colon F dot. I hope 

you know this is a contraction product, this is a contraction and P colon F dot is 

nothing but P i j F i j, P i j F i j and you can in fact write it in a matrix form also as 

trace of P transpose F dot and so on. So, minus psi dot, psi dot can be written as dow 

psi by, chain rule, dow F colon F dot is equal to zero. In other words, P minus is equal 

to zero and which leads us to an important relationship which can be written like this. 
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First P-K stress is a gradient of or is the dow by dow F of the strain energy. So, that is 

a very important, probably the most important step in the whole development of 

constitutive equations. Now, how do we define different materials? We said that an 

hyperelastic material ultimately is one which follows or which respects the 

thermodynamic principles, which means that a hyperelastic material is one which 

follows all these steps and which of course means that a hyperelastic material is one 
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which has the relationship written here. Is that clear? So, that is the hyperelastic 

material. 

  

The question that may come to your mind is I know of elastic materials say for 

example, elastomers or rubber that is an elastic material. We know most of the 

biological tissues say, skin or your heart muscle, calf muscle, all these things are 

again elastic materials and again you know that see, even some of the cell structures, 

they are all elastic materials. You know a number of practical, if I may call practical 

within quotes, materials which are elastic. Hence, according to our definitions should 

also be classified as hyperelastic, because they undergo large deformations and of 

course, a set of metals in the elastic region which are again are elastic materials, again 

elastic materials, if that is the case do they all undergo or do they all respect this law? 

  

Yes, they all respect this law. But, then what is the difference between them, what is 

the difference between them? On one hand, I have this equation; on the other hand I 

have practical materials, which satisfies this equation. Of course, I know that the 

deformations induce different types of stresses in different materials. So, where do I 

actually draw the line and say that look, the elastic behaviour of rubber is like this, the 

elastic behaviour of steel is like this, the elastic material of biological tissue is like this 

and so on.  
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Where do I draw a line, where or in other words, to put it in a more simple fashion, I 

know that from a very, very early class that sigma is equal to E into epsilon and that 

this kind of simple elastic, linear elastic rule is valid for all metals whether it is in the 

elastic region, of course, whether it is steel or whether it is copper, whether it is 

aluminium and so on and I also know that the value of E changes from one material to 

the other; value of mu is also different when I say for example, titanium and steel and 

so on. 

  

So, what is the analogy now between this and this? Now, the analogy is not very 

straight forward, it is a two step process.  

 

(Refer Slide Time: 12:29) 

 

 

In other words, we have on one hand hyperelastic material satisfying this equation; on 

the other hand, we have a number of types of what we call as strain energy functions. 

This is the function; psi function of F, strain energy functions. These strain energy 

functions may be say, Ogden, Mooney-Rivlin, Neo-Hookean, Yeoh and so on. So, 

these are the strain energy functions that are available. This may vary and let me write 

down one function.  
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Say for example, if you look at a Mooney-Rivlin function or say, Ogden function, 

then I can write down the strain energy function actually in terms of stretch, usually 

you write this in terms of stretch say, lambda1, lambda2 and lambda3 and then this is, 

though I am pre-empting some things, you may not understand it completely; just I 

want to put down this because why did I get stretch here, we will see that later, but all 

of you know intuitively that stretch means deformation. So, I can express it in terms 

of lambda1, lambda2 and lambda3. So, this will be defined as say muP, sigma muP by 

alphaP into lambda1 alpha P plus lambda2 alpha P plus lambda3 alpha P minus 3; 

something like this, where alphaP and muP where P varies from 1 to N. N can be 2, 3, 

5 and so on. These kind of equations are the ones which define what we call as the 

strain energy function. 

  

If you look at another, say for example, Mooney-Rivlin, then Mooney-Rivlin, psi can 

be written as a C1 I1 minus 3, where I1 is the first invariance and if you, sorry, this is 

for a Neo-Hookean; if you look at Yoeh’s model, then Yoeh’s model has the strain 

energy function to be written as C1 into I1 minus 3 plus C2 into say I1 minus 3 whole 

squared plus C3 into I1 minus 3 whole cube and so on. You can write down a set of 

equations like this for different size, put forward by different people looking at the 

physical behaviour at the same time saying that certain other conditions are satisfied. 

Please note that most of these theories, which we are dealing with, are macroscopic 

theories. 
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There is no attempt right now, in this course of course, to link this macroscopic theory 

with the microscopic theory of what happens inside. For example, it is very clear that 

C1 is some constant, alphaP is some constant, C2 is some constant and so on. How do 

you get these constants, what are they? They are obtained more from a 

phenomenological approach and right now, we do not link this up with the 

microscopic aspect, we will come to that later. So, the approach, which we are dealing 

with are what are called as the macroscopic or phenomenological approach. So, these 

are the materials that are available. Note the word, common word, hyperelastic 

material, Ogden material, Mooney-Rivlin material and so on. It does not mean Ogden 

material means physically there is a material. All materials which can be expressed in 

terms of Ogden strain energy function is called as the Ogden material. All materials 

which can be satisfied or which can be written in terms of Yoeh strain energy function 

is called as Yoeh material and so on. Is that clear? All of them can be written in 

different types of things. 

 

(Refer Slide Time: 16:57) 

 

 

See, on the other hand, the third column is the actual material. This can be rubber, a 

carbon filled rubber used in tyres; a rubber for say, tyres. It has a special chemical 

composition and compound. Then you have say for example, biological materials, 

say, heart muscle and so on; list of actual materials. The big picture is, all of them are 

of course, hyperelastic materials. The second picture is that each one of these 

materials can be represented as one or more of the middle column of materials. 
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Rubber can be represented as Ogden material, not very, so very accurately, using a 

Neo-Hookean material. Some of them, for example, rubber for tyres can be 

represented exceedingly well with Yoeh as a Yoeh material, not so very accurately as 

Mooney-Rivlin material or Ogden material and so on. In fact, when you come to heart 

muscle, the type of strain energy function is totally going to be different. 

 

As a next step, what you do is you now build connection between the actual material 

and the mathematical representation of its behaviour put forward by Ogden, Mooney-

Rivlin and so on.  

 

(Refer Slide Time: 18:44) 

 

 

Now, let us say that I can represent it using Ogden material say, rubber. Even heart 

muscle, there has been a paper 1983-84, where or why 84, even in recent times where 

the Ogden material is used to represent the heart muscle. Then, how do I distinguish 

these two materials? Come back to this place. Yes, that is true, so, both of them have 

the same relationship. But, these constants differ from one material to the other. So, I 

hope the whole complex structure of hyperelasticity is clear now. If there is any 

question, I will answer that. 

  

Student: How can I represent it, how can I know that it can be represented by Ogden 

model or Mooney-Rivlin model? 
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Yeah, see, when you have a material you should know certain of its behaviour 

definitely, before you can attempt to represent it using one of these materials. Now, 

there are reasons why for example rubber for tyre is exceedingly well represented by 

Yoeh’s model, because the shear modulus with deformation it varies and is supposed 

to have a double peak. So, that kind of mechanical behaviour can be represented in a 

much better fashion using Yoeh’s model. For example, if you take a heart muscle, 

there is a, there is a strain energy function by Hunter. He has looked at the mechanical 

behaviour of the heart muscle and said that, look if this is the behaviour, then this is 

the type of strain energy function which represents, which is closest to the behaviour 

or in other words, all classes of heart muscles can be represented now using this type 

of behaviour or this type of strain energy function. So, there have been people who 

have been working on this for a very, very long time, the constitutive equations, how 

to put forward strain energy functions. 

  

When you take a material and when you want to analyse it using non-linear finite 

elements, the first thing you should do is how do I represent this material? Suppose 

you go back and look at packages like say, Abacus, you will see that they have 

different materials that are there. I mean, they have different materials to represent the 

actual physical materials or material models to represent actual physical models or 

physical materials. They call this as material model. For example, if you take Abacus, 

you will have Ogden material, you will have Yoeh material, you have Mooney-Rivlin 

material and so on, material models. So, when I, when you want to take say, want to 

go and analyse tyre, the first thing to do is now what is the appropriate representation, 

model for this tyre; rubber which goes into the tyre? You have to really understand 

how it behaves. May be go back and look at literature; you will find that people have 

put down Yoeh’s model specifically with the purpose in mind. Yoeh had put this 

down, may be in the, if I remember right, it is in early 90’s. So, then you go and apply 

Yoeh’s model. 

  

In order to apply that, one of the very, very important things in non-linear finite 

element is that you need constants. This testing of many of these materials are quite, I 

would not say difficult, but time consuming and in fact, it requires a lot of effort. 

Now, there are actually routines that are available. If you take Abacus, routines that 

are available even to fit these constants. How do you get these constants? You do a 
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series of tests. What are these tests? Uniaxial tests; if you do uniaxial tests, you can fit 

certain of these constants. May be, you have to do a biaxial test; you can improve 

some of them. Then, you may have to do a shear test. Then you will improve, you will 

get a much better understanding and so on. 

  

In other words, the testing of these materials which means that we are interested in the 

mechanical behaviour, not in how say, the structure inside, the isomers or whatever is 

inside - how it behaves, we are not interested in that; mechanical behaviour on a gross 

scale, on a macro scale. So, you have to understand them using all these kind of test 

results and then fit these kinds of constants to a particular equation. That is why I said 

there are routines available. But, for some of them it is very simple. Neo-Hookean, it 

is very simple; it is not very difficult to fit this, you need much less tests. When you 

need much less tests that means all the different types of mechanical behaviours are 

really not covered by that material. That is what it means. Is that clear? Fine; so, that 

completes, that gives you an overall picture of where we stand with respect to the 

hyperelastic materials. 

  

With that in mind, let us look at other considerations that are, that should be there in 

order to define the strain energy function. I am not going to go into lot of details here, 

because constitutive equation itself is a big topic and you can have, offer a course on 

the constitutive equation and strain energy functions. I am not going to do that, but I 

am going to give you an overall flavour in the next two classes as to how these 

representations actually are there for different materials. If you look at the constraints 

that we may have to put, all these things are very straight forward; they are not very 

difficult to understand. Let us see what the constraints are. The constraint is that F, of 

course, F cannot be zero. If it goes to zero, what does it mean? That means you are 

trying to annihilate or shrink the material to almost or make it almost disappear; 

almost disappear, which means that the energy that you require in order to do that is 

enormously large. 
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The one thing is that when F tends to zero, then psi of F tends to infinity. We use 

infinity to mean that it is very large; we use zero to mean that they are very small. 

Same fashion, when I make F go to infinity, when I make F go to infinity, what do I 

mean? I mean to say that I am going to increase or increase the volume material 

enormously, which means that F at infinity means that psi F also has to be extremely 

large. So, either way this psi F, this strain energy function, sorry, strain energy 

function has to be large. That is one thing.  

 

The other is with respect to objectivity. Let us say that I am looking at or you are 

looking at it as a new observer. The function will not change. It is an Ogden function, 

it has to be the same. If it is to be a, if it has to have those constants, then the constants 

have to be there and so on, but your objectivity means that there is a relationship 

between the F star or your F and what I observe. We already know that both of us 

should have the same function, so that this can be written as, the function can be 

written as Q F,  Q F. So, necessarily, necessarily the function should be written in such 

a fashion that the function is not changed, when you post multiply F by an orthogonal 

tensor Q. 

  

If you choose this orthogonal tensor to be R transpose, this happens to be and from 

the relationship that F is equal to R U, R transpose F is equal to U. Of course, R R 

transpose is equal to I, which means that we get a very interesting and very important 
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result that the strain energy function is now a function of only the stretch part of F, 

stretch part of F. Remember that F had two things in it. One is the rotation part 

represented by R, the stretch part represented by U. I would have been very worried if 

I had stopped here and that since R is already present there, if I had to now have my 

function to be a function of R as well as U, I would have been a bit worried. Why 

because, then I can just rotate a piece and if this strain energy function respects it, 

then I would get a stress, after all P, the Piola-Kirchhoff stress is function of the dow 

by dow F of this function. Fortunately, it does not happen like that and so, actually 

this function is a function ultimately reduces to a function of only the stretch alone. In 

other words, function of U. Is that clear?  

 

Before we proceed, we look at one more aspect of the material behaviour and this 

objectivity, what we call as anisotropic. The question that comes to our mind after 

looking at this is that, what is the connection between anisotropy and objectivity or in 

other words, what we said here is that when there is a rotation, the rotation does not 

affect, does not affect the behaviour of the material or the response is not affected by 

the rotation. 

 

(Refer Slide Time: 30:00) 

 

 

We have not completed the story yet, but we know that there are materials which are 

anisotropic, which are anisotropic. Typically, most of the composite materials are 

anisotropic materials. What do I mean by that? I mean to say that there are fibres 
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which run in these composite materials and that the deformations are function of the 

relationship between the fibres and your loading and so on. Suppose I take this, I 

apply the load. Composite material, it behaves in one fashion, but load applied in 

another direction behaves in a different fashion and so on. That means that you have a 

vague notion that when I rotate the specimen and apply the load my deformations are 

going to be different. 

  

But, how is that related to this objectivity? In other words, what we mean to say is 

that suppose I have a material or I have a component and then there is a deformation 

due to some loading and let me call this as the reference configuration with X and that 

now there is a new reference configuration say, let me call this as X0 or no, X is 

enough and so, this is X, say, X star and there is again a deformation, let us say like 

this. If it happens to be like this, then we call this material as an isotropic material, as 

isotropic material. Now, what is the condition for isotropic materials? Simple; it is not 

very quite easy to understand that. 

  

(Refer Slide Time: 32:17) 

 

 

In other words, F which is say, dow x by dow capital X should be the same whether I 

start my journey from here or here, when there is a difference in my reference frames; 

that is what I said when I rotate it and then deform. So, I am going to define first 

isotropic material and one which does not satisfy the law which I am going to put 

down are called as anisotropic materials. That is equal to say, dow x by dow X star 
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dow X star by dow X and noting that the relationship between X star and X is quite 

straight forward. Say, for example, I can write X star to be Q X, so that dow X star by 

dow X can be written as Q, so that the second equation here, second part of the  

equation here can be represented as Q, so that dow x by dow X star is F star. So, this 

becomes F star Q or in other words, F star is equal to F Q transpose.  

 

But, note the subtle difference between F star here and F star what we had for 

objectivity. So, this is the condition for isotropic material, condition for isotropic 

material. Note the difference between the two. In this case, I have F to be post 

multiplied by Q transpose, note that. So, I have F to be post multiplied by Q 

transpose.  In the previous case, I had F to be pre multiplied by Q. So, there is a 

difference between anisotropic material and sorry, isotropic, anisotropic and isotropic 

material. Is that clear? But, physically what does it mean; physically what is this post 

multiplying and pre multiplying and so on? That is very important to understand what 

it physically means. Physically it means that, what it means is that the isotropic 

materials are ones where if I take the reference configuration, rotate the reference 

configuration and apply this loading or without rotation if I apply the loading, in both 

cases, in both cases my deformation is going to be the same. That is what I mean by 

saying that this equation is satisfied.  

 

On the other hand, on the other hand, what do we mean by objectivity? What do we 

mean by objectivity? Objectivity means that, if I now load the material, come to this 

state with the deformation, with the loading in place, if I now rotate this which is 

equivalent to an observer rotating, because observer, two observers have the same 

reference configuration. When they look at the reference, they are at the same level. 

That is why, if you remember, we got F star is equal to Q F. If you go back and look 

at how we got for objectivity, you will remember that we got objectivity to be F star is 

equal to Q F, basically because we assumed that the observer looks at reference 

configuration in the same fashion; both the observers look at the reference 

configuration in the same fashion.  
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If you now take this deformed fellow here and then rotate it, which means an observer 

observing the deformed configuration separately, so, deformed configuration, the 

observer will get x star. Then, my result is objective if it follows the three conditions 

which we had put down in one of our earlier classes. So, the difference between 

anisotropy and objectivity is that, in objectivity we are looking at x and x star, in 

anisotropy we are looking at X, capital X and capital X star. Is that clear? 

  

Now, having studied this, let us get back to certain other issues which are important 

for us and see how we can represent this. Now that we know that the strain energy 

function is a function of U alone, which means that the strain energy function is a 

function of C, which means that you can also say that the strain energy function is a 

function of E, so, you can say that function of C function of E.  
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Note that usually you use the same symbol function, you know, the same symbol, 

whether it is C, E or whether it is U; we use the same symbol here. C, what is the C? 

We defined, you remember, defined F transpose F, F transpose F to be C and we had a 

relationship between E and C. What was the relationship? Half into C minus I is equal 

to E or 2 E is equal to C minus I and so on, all those things; because of these 

relationships, you can say that the function can be in terms of C or E and so on.  

 

Yeah, it is, since is a function of U, I am saying that it can be looked at as a function 

of C, it can be looked at as a function of E and so on. As we have done in our earlier 

classes, I have to … 

 

These, no, no; we are right now talking about, please note that we are talking about 

material objectivity. These results are due to material objectivity. So, if psi F is equal 

to or psi F star which is psi, I mean, let me write that.  
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If it so happens, then we say that the material is isotropic. Having done all this work, 

let us see how we develop the relationship between P and sigma and so on. See, 

because, ultimately if you look at all these codes, you would see that they express the 

results only in terms of the Cauchy’s stress, because Cauchy’s stress has the most 

meaning as far as our interpretations are concerned. So, we always talk about the 

quantities in the material frame as well as the quantities in the spatial frame; talk 

about both. Let us see how we develop the relationship between them. 

  

(Refer Slide Time: 40:22) 
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Let us now go back to psi dot and psi dot can be written as F dot which can be written 

as trace of dow psi by dow F transpose F dot in terms of the matrix notation. If I now 

express psi in terms of C, then you can write that down also as trace of dow psi by 

dow C transpose C dot. Now, what is the relationship between C dot and F dot, 

because I need this; we will come to that in a minute, but what is the relationship 

between the two? Let us see what is C dot? Can you just write down? 

  

(Refer Slide Time: 41:26)  

 

 

Since I asked a question what is C, can you write down? what is C is equal to F 

transpose F. So, C dot is what and then substitute it back here and see how we can 

represent psi dot.  
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This is equal to, so, substituting that C dot into this expression and noting that C is 

symmetric, we can write down the equation here to be equal to 2 times trace of dow 

psi by dow C transpose F transpose F dot. Since both, since transpose is the same, 

since it is symmetric, I can remove that and say that 2 times dow psi by dow C F 

transpose F dot. 

 

(Refer Slide Time: 42:39) 

 

 

Noting the relationship between P and sigma, I can write down sigma to be, let us say 

how we write down the sigma to be, in terms of P, yeah, in terms of, sigma in terms of 
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P. J inverse F P transpose. Write this, go and have a look; dow psi by that is in other 

words, dow psi by dow F transpose, which now using this relationship, you can write 

that down as, look at this here, the two relationship between them. So, you can write 

that down as dow psi by dow C F transpose, so, sigma, 2 times of course, is equal to 2 

J inverse F dow psi by dow C F transpose. J, J inverse, J inverse P F transpose. But, P 

transpose, both of them are the same. So, that is why, because sigma is equal to, note 

that sigma is equal to sigma transpose. Hence, whether you write it as P F transpose or 

the other way, it will be the same, because sigma is equal to sigma transpose. So, that 

is the relationship between sigma and and dow psi by dow C.  

 

Yeah, what I did was to replace from here. Look at this expression, this and this; 

compare this and this, so, F dot is common. So, the rest of it with 2 should be equal to 

dow psi by dow F. When I express it in terms of C, then actually it is 2 into dow psi 

by dow C F transpose and that is what I have substituted.  

 

Our next goal is to now develop what the relationship is between S, second Piola-

Kirchhoff stress. See, I have already said this that the first and the second Piola-

Kirchhoff stress are very important. Though the first Piola-Kirchhoff stress has a lot 

of physical meaning to it, we know what it is, it is a nominal stress. Unfortunately or 

fortunately, we do not use first Piola-Kirchhoff stress to that extent in computational 

engineering. Tell me, why?  

 

Very good; it is not symmetric. So, most of the situations we use only second Piola-

Kirchhoff stress and it is very important that we develop what the relationship is 

between second Piola-Kirchhoff stress and these quantities. By the way, P is of 

course, as someone said P can be now, P is equal to what is it from here? In terms of, 

if psi is expressed in terms of C, then what is P? 
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2 F dow psi by, now what is the relationship between S and P and so that you can 

express this S as, note that what the relationship between S and P is. Can you just 

write that down? Note that down, what it is. You will write this down as 2 of dow psi 

by dow C and noting the relationship between E and C, we say that this is equal to 

and that is a very, very important relationship. So, S is equal to, if I express this strain 

energy density function in terms of E, then dow psi by dow E. If you remember we 

had approximated S to be sigma and E to be epsilon and in fact, in our, in the last 

course we had just said sigma is equal to dow psi by dow epsilon, strain energy 

function, because of this small deformation case that is involved there. So, you get 

that important relationship between the strain energy density function and the second 

Piola-Kirchhoff stress. 

 

As a next step we now look at, having studied the background, so, we can be now 

fast, we can move forward. As a next step we look at now work done in a closed cycle 

and why hyperelasticity? Just with that one small goal, we can move forward and look 

at various functions, how they are written and so on. We will stop here and will 

continue with the rest of our discussions on constitutive equations in the next class.    

 

 


