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Lecture - 20 

 

In the last class, we saw what is called as directional derivative. 
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We also called this as Gateaux derivative and we said that directional derivative gives us 

how a particular function varies along a particular direction and that function can be 

anything - it can be scalar value function or vector value functions and so on and say for 

example, if you take a function f, then the directional derivative is the change of f along 

u. We said that this is very useful for us to progress with linearization and that we saw for 

example, directional derivative of E, DE dot u along the direction of u is nothing but an 

increase and that we called as delta E and so on. Please note that we had also defined Lie 

derivative or Lie time derivative and we said that Lie time derivative is obtained by a 

series of three operations; hope all of you remember what these operations are? Pull back 

operation, determine the material derivative and then, push forward operation.  
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One of the things which we stated is that the material time derivative is nothing but the 

derivative along the velocity vector and this is what we said. Though it is not very 

difficult to prove this, this proof becomes slightly more technical and so, I am not going 

just to prove this and I would ask you to take this. People who are interested in further 

proofs can refer to book by Wood on Non-linear Elasticity, if I remember right. So, I am 

not going to derive that further, but I just want to state that Lie derivative or Lie time 

derivative is nothing but the derivative taken along a particular velocity. So, when I do a 

pull back, do this and push forward operation, Lie derivative can be, can be understood or 

physically can be understood to be the derivative, when you as an observer travel along 

with the velocity vector. 

 

That is going to play a role later. Though I am not going to talk much about Lie 

derivative further, but I will resort to some other technique to derive certain things. 

Instead of going to Lie derivative, I just want to, at certain point of time when I point out, 

it would be easier for you to understand what we mean by this. It is extensively used 

especially in plastic deformations, large plastic deformations and so on. Now what, what 

else, where else do we use directional derivative? Directional derivative is extremely 

useful for us to determine or for us to look at the minimisation problems.  
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For example, all of you know that we had a potential, you call this as a functional and so 

on. This potential, which say for example, you can write it as a pi u, consists of two 

terms. The first term is the strain energy term and the strain energy term is say, written in 

terms of, the large deformation case in terms of, E. When I write that in the terms of E, 

obviously I have capital V to it and that is the first term in the expression; you know it 

from your earlier studies and I have two more terms that come into picture. One is the, 

this is the potential loss due to the external loads. One of them is say, the body forces that 

act, so, that will be say, depending upon how you define the body forces, whether you 

can put rho b or b, whether it is per unit volume or density; but, many times it is defined 

in terms of unit volume, because density also may undergo a change, so, minus integral S 

t dot u dV. Note that many times you define this as omega or omega0 and this as dow 

omega so on. These are the symbols that are usually used in many text books. 

 

Now, what is our idea here? I have to find out the minimum; minimisation problem is one 

which looks at you or which stares at you, when you look at this kind of a functional. 

Now, what is this minimisation problem? How can you define this problem? What do 

you mean by minimum?  
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What it means is that whatever be the direction I take from say, the minimum u, if you 

want to call it, you can call it as u naught; whatever be the direction, the ensuing 

difference D, D of, let me call this as D of pi u dot eta is equal to zero. This is because 

you cannot, u is not one variable, so, I cannot write it as just dow pi by dow u; I cannot 

write it like that and that is equal to zero. What we actually mean is that whatever be the 

direction or in other words, I have to take the directional derivative, directional derivative 

of pi, which means that I have to write this as d by d epsilon pi of say, u plus epsilon eta 

at epsilon is equal to zero. This is the directional derivative or Gateaux derivative that is, 

that has to be equal to zero. So, that is equal to zero. How do you write this? Usually this 

function is written as, please note that this is not, before I proceed, this is not Newton-

Raphson method. The next step is the Newton-Raphson method. Usually this function is 

written as, in most of the text books as, g. In other words, this g, which is now say, a 

function of u comma eta that is equal to zero. When I linearize this g, then only do I get 

the Newton-Raphson scheme. Is that clear? Then only, you will get Newton-Raphson 

scheme. 

 

Let us see now, how this directional derivative gives rise to, what is that we will get? 

Gives rise to, no, from here we go to virtual work principle. The next step here is the 

virtual work principle. So, let us see how we get to the virtual work principle. It is very 

simple, let us take the first term. Now, I am going to call this by different name towards 

the end of the class. Let us now, right now call this as strain energy or strain energy 

density function. 
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That first term can be written as dow psi by dow E into the directional derivative of E 

along eta, because that is what I am going to try this or that is what am going to do it 

here. So, the directional derivative of E along eta which can be written as DE dot eta dV 

that is the first term, first term there; just chain rule apply, you will see that that is what 

dow psi by dow E and directional derivative along eta. The second term obviously 

becomes minus integral rho b dot eta dV minus rho t dot eta dV. You can verify that by 

the simple Gateaux derivative.  

 

If I write this as delta E, note that DE dot u is what we defined as delta E in the last class, 

so, this delta E is the E along any direction eta, then we get the virtual work principle and 

you see that this is the virtual strain and the first term gives rise to stress. We will see 

more about this in later classes. In fact, this would give rise to what is called as the 

second Piola-Kirchhoff stress and so, the first term is the internal virtual work and the 

second terms, of course, this is equal to zero; second term gives rise to, second and the 

third term together they give rise to the external virtual work. 

 

In other words, this virtual work principle is the result of minimisation or in other words, 

the result of the application of Gateaux derivative or directional derivative to this 
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functional phi. Is that clear? So, that is the, that is one of the major applications of this 

directional derivative, of course, we start our Newton-Raphson scheme at this place.  
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So, if I now write g of u comma eta is equal to zero that is the second or the virtual work 

principle to be written like that, then I develop a Newton-Raphson scheme from here and 

write that as g of say, u bar comma eta plus D g of u bar comma eta dot delta u is equal to 

zero. This is what it will be Newton-Raphson scheme. The directional derivative now, of 

g along delta u is what one requires in order to perform a Newton-Raphson scheme and 

this is one which would result in what is called as the tangent stiffness matrix. We will go 

into the details later, but I just wanted to point out how we can develop the Newton-

Raphson scheme as well with the directional derivatives. We will come back to this after 

about four classes, four to five classes we will come back to this and develop the 

Newton-Raphson procedure for this kind of large deformation problems. That is in other 

words, without any frills attached to it, just the displacement based finite element analysis 

not mixed formulation or anything like that can be developed straight away from here. Of 

course, if you want to develop mixed formulation, then the functional that you take, of 

course you know, is going to be different. 
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We will just shift gears and now that we have studied stress and strain, we have to now 

look at a new thing. What is the relationship between stress and strain? That is the next 

thing, so, we have to shift gears and move away from directional derivatives. But before 

we do that, we have to see some very interesting things which probably you would not 

have realised in your earlier classes. These interesting things come from the fact that 

many of these phenomena that you see in solid mechanics are controlled by the laws of 

thermodynamics.  
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I have to develop certain very interesting or important principles from the laws of 

thermodynamics in order to explain certain physical behaviour of bodies of interest to us 

and I want to emphasise the fact that thermodynamics is a very general principle. The 

problem with most undergraduate courses is that thermodynamics you start separately 

and most of the things that are taught are associated with certain thermal cycles and 

hence thermodynamics is looked at as if it is a part of thermal engineering. I think that is 

not the correct approach. In fact, I want to clarify two things. I am going to do that may 

be in next two three classes, but right now I want to emphasise this fact, students would 

not have realised it, one is that the difference between a solid and a fluid now diminishes, 

when I look at it from a continuum mechanics perspective; so that is number one. In other 
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words, continuum mechanics encompasses both solid mechanics and fluid mechanics. In 

fact, people who have studied courses in fluid mechanics would have realised that many 

of the things that we are developing now, for example, rate of deformation tensor, these 

things are useful in solid mechanics; maybe we have used that already as well, that is 

number one. 

 

Number two is that all the major principles balance …… , as you call it many of them 

which we derived in the last course itself and some of the modifications I am going to 

make it now, today or may be in the next class are valid of obviously whether it is a fluid 

or it is a solid. Actually, what distinguishes the solid and the fluid is the type of 

constitutive relationship. All other things what we have developed now are valid, are 

valid for solids as well as for fluids. Many of the tensors we have talked about are valid 

for both solids and fluids. But, the only difference I want to point out is that, because of 

the fact that it is easier to analyse a fluid using an Eulerian co-ordinate system, the 

quantities of interest in fluid mechanics are ones which are restricted to spatial co-

ordinates and the spatial derivatives; these are the things which we would be using. 

 

On the other hand, it is just because it is easy to deal with things in a Lagrangian 

framework or material co-ordinate system that we deal for solid mechanics in terms of 

material coordinates derivatives and so on. Is that clear? These are for the ease of 

operations. It does mean not that in a solid mechanics you should not use Eulerian 

coordinates and for a fluid mechanics you should not use Lagrangian coordinates. But, it 

becomes very cumbersome, you cannot do it. But, in fact, today in solid mechanics, we 

use what is called as an arbitrary Lagrangian Eulerian procedure, A L E as it is called, 

where a part of the mesh is a Lagrangian mesh and a part of the mesh remains to be an 

Eulerian mesh. So it is very well within the frame work of solid mechanics to use 

Eulerian meshes as well. 

  

What distinguishes actually the solid and the fluid is the principles of constitutive 

equations and before we go further into the constitutive equations, we should look at 
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what these laws of thermodynamics are and why that is going to be useful to us. Is that 

clear?  
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Now, what essentially we are going to use are the two laws of thermodynamics - the first 

and the second law of thermodynamics. These are the two things that we are going to use. 

People who already know, of course all of you know thermodynamics, would realise that 

the first law actually talks about, what? It is a balance law, it is actually the balance law 

and that the second law talks about the direction of these balances. First law does not tell 

you whether something is possible or not possible. That is given by the second law of 

thermodynamics and basically the first law is the one which talks about the balance of 

different types of energy.  

 

One of the misnomers that usually we have is that again heat transfer and solid mechanics 

are quite well separated. It is very unfortunate again. What I want to say actually is that in 

a large frame work of continuum mechanics, continuum mechanics, all these guys 

coexist; the fluid mechanics, solid mechanics or heat transfer, temperature, all these 

things, they coexist. In other words, it is because you cannot analyse certain things 

together that you make a very strict, I will say, demarcation and start operating them as 
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separate regimes. In actuality it is not so and that is one of the reasons why we look at 

this whole system in totality using the most fundamental of all the laws, which is the laws 

of thermodynamics. Is that clear? So, they are all together, they cannot be studied 

separately.  

 

Let me invoke some of the things that you already know in thermodynamics. I am sure 

certain terms ring a bell to you like state variables, thermodynamic process - these are 

things which I hope you remember. State variables are ones which depend upon the 

particular state of the body, now that state variables are going to be defined at every point 

and that the only difference is that you can look at, as I said deformation and temperature 

together and the state variables are more than what you had studied. In fact, you can take 

a, typically in a thermo mechanical process or thermo elasticity, you can say that there 

can be seven state variables which six of them can be related to strain and one is 

temperature. 

  

You are going to see how we define temperature itself in thermodynamics, they are going 

to be different from what probably you would have studied before and before we go 

further, let us now first consolidate our first law of thermodynamics, move to what is 

called as an entropy inequality principle and explain how that is going to be useful for us 

in solid mechanics. Actually, in fact constitutive equations, though we call as relationship 

between stress and strain, strictly speaking you should say that constitutive equation is a 

relationship between thermodynamic variables. In fact, you can look at thermodynamic 

variables or in other words, you can look at even our heat conduction equations to be 

some sort of a constitutive equation. So, the relationships between these thermodynamics 

variables are the ones which are useful to us in defining or in modelling many of the 

processes. 

  

In fact, though we may not have, we need not go into certain details, in fact, we would 

see that what goes into defining the variables, state variables, what can be there and what 

cannot be there again can be controlled by certain of these or many of these 

thermodynamic principles. Now before we go further, as I told you, we will look at the 
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first law of thermodynamics carefully. In that process, we define certain, I would say 

definitions.  
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Let me define what is called as the thermal power and call this as say Q of t, Q of t. Note 

that it varies with time. So, we can call this as the rate of thermal work as well. The 

thermal power has two terms in it or the rate of thermal work has two terms in it - one is 

term which involves the flux which crosses the boundary, which can be, I have reasons 

for doing this; I will explain that in a minute, which for example can be given as qds dow 

s or dow omega plus an internal generation term, which can be defined as rdv. Actually 

we define this as qn, to denote that qnds.  
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In other words, if I take a body, let us look at these terms carefully again; if I take a body 

and take a point here, let n be the normal and actually the q is the flux, then we define, 

this is the heat flux; then, we define qn to be, qn to be, minus of q dot n, obviously and 

many times we use this minus term to indicate that the heat is going out. So, that is the 

reason why we use this and note that this q can be function of small x and t.  
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This same thing can also be written in terms of the reference co-ordinate system and in 

which case, you can write that down as with respect to omega0. So, that can be written as 

dow omega0, the flux written as capital Q and the normal written as N dS and the second 

term written as RdV with the original volume omega0. Of course, QN is equal to minus Q 

flux dot N; sorry, Q dot N and that is what goes into the first term here. Now, the heat 

flux, of course, has to be the same. What crosses the boundary is going to be the same. 

Note the difference between what you have studied before and now. You would have 

studied a body which does not have any deformation and you would have said that this is 

equal to, the heat power is equal to what or the content, heat content or the rate of change 

if you want to call it, if there is a flux here and rate of generation of heat is just, you 

would not have bothered about the difference between this and this; you would have just 

said that it is the volume throughout. But, now this body, which was like this, is now 

deforming like that.  
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So, there is a deformation as well as there is a heat transfer and hence there is a difference 

between these quantities which are taken in the current configuration - spatial 

configuration and the material configuration and so, there is a difference between small q 

and capital Q. You cannot just like that write, though you would say that the flux, this is 
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at a particular point of time, note that as well, though you can say that the flux can be 

calculated with respect to the original or the current configuration.  
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In fact, the relationship between them is very straight forward and what we mean to say is 

that q dot n d small s which is taken at the current configuration is equal to what is taken 

at the reference configuration and that is given as the Q dot N dS, both of them indicating 

that the flux comes out from the surface of the body and at a particular point of time, they 

are the same. I understand, I mean there are always confusions; I understand these 

confusions. Please note that the flux, which we are talking about by these two equations, 

are at a time. They are not a flux which happens when the body was in the reference 

configuration and when the body has moved after deformation to current configuration; 

we are not equating those two. At a particular point of time, what is the reference is what 

we are concerned about. At a particular point of time the reference if it happens to be the 

current configuration, then this is what we are dealing with, sorry, this is what we are 

dealing with and at a particular point of time, when I want to refer all my quantities to the 

reference configuration then this is the quantity. So, do not, please do not get confused 

between the two; how can the flux be the same. At a time, it is the same. Hence, I can 

equate these two.  
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Now, what I am going to do is very straight forward. I want to develop a relationship 

between small q and capital Q. Can you do that? What do you do, what is that you apply? 

Fantastic; Nanson’s formula, so, apply Nanson’s formula here.  
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J F inverse NdS, so, this can be replaced by q dot J F inverse NdS or F inverse transpose 

NdS. I have to now use the definition of transpose, so that ultimately I can define Q to be 

J F inverse q. This is the definition of u dot a v is equal to v dot a transpose u. That is 

what I use it, so, this transpose of this, it becomes just minus 1.  

 

No, no, that does not matter, because ultimately when I substitute this, this will become q 

dot NdS, so, both of them are the same. By Nanson’s formula, what I am essentially 

doing is to convert this also. It is like converting the reference configuration to the, sorry, 

current configuration to the reference configuration. So, I am, I am converting d small s 

to d capital S by Nanson’s formula and the ensuing relationship is what you get. Do you 

remember what the corresponding quantities in, remember what you had before? You did 

a very similar thing, for example, when you looked at the force terms; the force that is 

acting at the current configuration and the force, the same force acting in the reference 

configuration and the result was a, what was the result? What did you get? From 
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Cauchy’s stress, you had Cauchy’s stress sigma dot N d small s, you got P dot N; P dot 

capital N dS. What was that? It is the first Piola-Kirchhoff stress. People call this also as, 

this q to be Cauchy’s heat flux and this to be Piola heat flux. 

 

Student: Still F is a deformation gradient. 

 

Yes, F is of course the deformation gradient and what I have essentially used is to relate d 

small s and d capital S and please note that the d small s and d capital S are related by the 

deformation and hence obviously deformation gradient comes into picture. So, the first 

Piola-Kirchhoff stress has an equivalent in heat transfer, which we call as the Piola flux. 

Sometimes people call this also as Piola transformation from one to the other. Of course, 

when you, when you do not have deformation, when you are treating a pure heat transfer 

problem, you do not have any of these issues, because omega0 or omega or omega naught 

or omega does not exist; they are all only one. So, obviously, we have a deformation 

gradient which comes into picture. Is that clear, no other questions? 

  

Yeah, Piola transformation, this is called as Piola heat flux and that is called as the 

Cauchy heat flux, just to pick up an analogy between what you do in the heat transfer and 

in solid mechanics. Now that we have both these things together - the deformation as well 

as the heat transfer or heat or thermal power together - we have to look at certain other 

things also more carefully; for example, the internal energy term. Now, if you look at the 

internal energy term, the internal energy term has two things in it.  
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Let me call that as P internal; P internal plus Q, if I can call it as the thermal work or 

thermal part of it. This is, the first part is due to the mechanical work, the second part is 

due to the thermal work. Both of them go to raise the internal energy of the system and 

so, we can write that as equal to D by Dt of E(t). Note that both these quantities are rate 

quantities and both these quantities, if written in the reference configuration, can result in 

the rate of change of internal energy D by Dt of e. So, both of them raise internal energy. 

Both the work, mechanical work that is done as well as the thermal work or the thermal 

power, so, both of them, they raise the internal energy.  

 

Now, let us write down the familiar first law of thermodynamics. How do you write 

down the first law of thermodynamics? You can, how do you, what you say, if you do not 

want say, kinetic energy, so, you can say that D by Dt of E(t) is equal to, this is what you 

called it as, I do not know what symbol you used; delta E, right? Delta E is equal to delta 

P plus Q. This is what probably you would have written in your first or second year 

classes or today, even in high schools. So, the first term is the external, P external, the 

work done by the external forces. If it is rate, then obviously, it is rate quantity plus the Q 

term that goes in, Q(t).  
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Of course, E, you can, you can define it through what is called as from thermodynamic 

principle, thermodynamic concept can be defined as or through what is called as specific 

internal energy e, small e, if you want E(t), then e(t) dV, depending upon whether you 

can define it with respect to per unit volume or per unit mass, there may be a rho or there 

may not be a rho in it. Is that clear? Now, what is P external? 
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P external is nothing but what has been done, external work and so, the P external term 

can be written as d omega0, now, how do you write that? Previously it was t dot u; now, 

since the rate quantities are involved here, so, it becomes t dot v, velocity, so, t dot v d 

omega0. The whole thing can also be written in terms of the spatial co-ordinates, does not 

matter, plus b dot v; plus integral omega0 b dot v d omega or dV. Omega0 I said, can also 

be replaced by v0. I am using it deliberately between these two, because it is a style to 

write omega0; it is the writing style is omega0 or v0. I just want to tell you that in many 

books one or the other is used. So, this is the external work done. This probably you 

would have written in your earlier classes as P dV and so on. That is external work and of 

course, Q is the thermal power or the thermal work which we had already put up. 

  

Now, where is that q? I think, yeah, yes, it is here. q dot n minus q dot n ds. Now, I can 

apply of course, let me look at this more carefully. I hope, if you have understood this, I 

will just remove it and of course, I can apply the divergence theorem to this first term and 

I can write this in a slightly different fashion as well and how do I write that?  
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First term, if I use the divergence theorem, qn replace it by this quantity. So, why do I use 

that? I want to remove this surface term and put a volume term there, so that I will get dv 

r.  
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That is correct, that is the divergence of q, minus divergence of q dv, so that it can be 

written as well. So, q term can also be written as minus Q plus R. So, together they can 

also be written as minus divergent q plus r dv is equal to Q. What is this internal term, P 

internal term? We are looking at every term. So, this comes also from here. I have this q 

term here. What is this internal term? This we had seen just couple of classes back. 
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So, this can be written as, if it is in the spatial co-ordinates, then this can be written as 

integral, correct, sigma d double dot d. Yeah, this is the rate of deformation; rate terms 

have to become, have to come in, so, that is the rate term is there dv, where it is the 

current co-ordinate that is this term. Put them together, put them together and you can 

write a beautiful expression in the current co-ordinates and you can also write down a 

similar expression in terms of the reference coordinates as well. Put them all together and 

please write down, let us see; write down one equation. Since then, substitute this, 

substitute for this and then put that in the other one. So, the equation now, the first 

equation now becomes, in fact, you can substitute from here and then write that term.  
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First let us write this down, e in terms of, so, D by Dt whatever, e, is specific, if you 

want, you can write that as t, d omega d omega; that is the first term D by Dt is equal to 

integral sigma d omega d omega term minus the second term divergent, minus divergent, 

sorry, I can do that later may be, minus divergent q plus r whole thing dv, or sorry, d 

omega; I will use the same symbol, d omega. So, the material time derivative of e is equal 

to all these things. Corresponding quantities in terms of, if I want to write it in terms of, 

the reference configuration it is much simpler. Then I say, see, material time derivative of 

e is equal to instead of sigma and d, it will be, if you remember we had done that P dot 

colon or double dot F dot minus divergence of Q plus R.  

 

If you had noticed, do not get confused with capital E dot, because I do no want to use 

that term, because then you will get confused with the, our strain term. That is why when 

I put this dot that means that it is the material derivative, material time derivative of e 

automatically. That is why I have used this term e dot. This means that the material 

derivative is equal to P colon F dot and so on. Note that the first law basically what it 

talks about is nothing but the energy principle. So, the only thing is that now the energy, 

so, P internal plus Q(t), the energy also comes from two terms - one from the external or 

the work done as well as from the heat transfer that takes place inside the system and if 
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you remove this Q, in fact, Q term it is nothing but the P internal is equal to what comes 

out of the P external terms. 

 

That is the first part of the story and what is important here is this definition. We will 

come back to this definition later and whether such an energy change, what really it talks 

about is the conversion of one form of energy to another form of energy. Whether such 

an energy change takes place is given by the second law and one of the most important 

quantities which the second law goes or throws up is what is called as the entropy. 

Entropy means that, en is a Greek word; en means in, tropy - direction. So, the word itself 

says how the direction of this kind of transformation can take place.  

 

Let us look at the second law, which gives rise to what is called as the entropy inequality 

principle and Clausius-Duhem inequality as it is called, in the next class and see how this 

can be used for defining the material behaviour. Is there any question? The only thing 

which I did not do here is to leave out the kinetic energy part of it.  
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In fact, you can add kinetic energy part of it as well and you can write that down as well, 

which I had not done. Anyway, you can add that also. We will stop here and we will 

continue with the second law of thermodynamics in the next class. 


