
1 
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Lecture - 16 

 

Before we start that derivative, which I said we will do in this class, I just want to 

make a comment on what are called as projection tensors, which are very useful in 

many applications.  

 

(Refer Slide Time: 1:05) 

 

 

So, let us see what this projection tensor is. Let us say that I have a vector u. Now, I 

want to resolve this vector say, in the direction of e and in a direction perpendicular to 

e; u parallel to e and perpendicular to e. So, what I do is very simple. If I want to have 

u say, parallel to e, then this is nothing but u dot e e. If you look at that in indicial 

notation, then it becomes, this becomes ui ei ej, which can be written as e dyadic e u. 

Note that, e dyadic u is a second order tensor where, you take a vector, another vector 

and do this operation, so that say for example, if you have a dyadic b, suppose I get 

say, capital C, then the component Cij is equal to ai bj.  
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This is an operation which is opposite to what we do by contraction. So, we see that u 

parallel to e can be determined by this expression.  

 

(Refer Slide Time: 2:43) 

 

 

This is called as the projection tensor parallel to u or sorry e. Now, if I want u which 

is perpendicular to e, then this is nothing but from simple vector algebra we know that 

this is equal to u minus u parallel which means this is equal to I minus e dyadic e u.  
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The projection tensor in the perpendicular direction is given by I minus, I of course is 

a unit tensor and that when operated or u will give me what is perpendicular or u 

perpendicular. This is important in many respects say for example, if you want to look 

at the stresses that are acting say, normal, if this is the stress that is acting and I want 

to resolve this into a normal stress and a shear stress, then you can use the projection 

tensors in order to do that; you can use that in, also in Eigen value problem, then this 

projection tensor; so, it has quite a few things lined up for it later; we will do that 

when we come to that place. 

    

Now, we will proceed with what we called as the rate quantities. 
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We said that you can distinguish derivatives into two categories - one is what is called 

as the spatial derivatives and another is called as the material spatial derivatives and 

what we defined as material derivatives. What is a material or material derivatives in 

a sense, material time derivatives and spatial time derivatives? Now, the material time 

derivatives are the derivatives of a quantity, keeping, keeping capital X a constant; 

keeping capital X a constant. For example, if I have a quantity say, f of x comma t, if f 

of x comma t, I want to find out the material derivative of this, that means that I can 

write this down as f of say chi of X comma t, then the material time derivative is 

obtained by keeping X a constant at a particular X. We will look at this physically in a 

minute after we derive what this means. 

  

As I told you in the last class we usually write that as D by dt; D, capital D by Dt. So, 

D of f by Dt, which is the material derivative of f by chain rule is written as dow f by 

dow t plus dow f by dow x  dow x  by sorry dow x  into dow x by dow t. Yes? 

 

Student: we are not considering the range of materials that will …... 

 

Let me answer that question, what do we mean by this? Just wait a minute; let us 

understand this and then I will explain to you what this means, which means that the 

material time derivative has two components, two components and let us try to 

understand what these two components are. But, before we do that, let us write this 
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down more neatly in another fashion. This can be written as dow f by dow t plus, 

what is dow f by dow x? Grad F; grad F dot v. Note that now this is a vector, grad F 

dot v. Now, let us understand what these two means, these two terms mean. 

 

(Refer Slide Time: 7:53) 

 

 

Now, in order to understand that let us look at a physical picture from fluid 

mechanics; can be extended to solid mechanics for example, an extrusion problem 

and so on. Now, let us see how we are going to study say, fluid flow through a 

channel like this. Let us now concentrate in this region generally and more 

specifically, let us look at what happens to that point here, to this point. Let us now 

follow the velocity of the material at that point. 

 

Now, there are two things that can happen or that can be envisaged. One is, you focus 

at that point, see whether that point in space has any change in velocity; that is one 

perspective. If you really look at it what happens to material point, a material point 

may start here, may flow through this channel, may come here, may come here, may 

come here like that; this point may come here like this and come to this point. So, at 

that point it might have the velocity at a particular instant what you have noted. 

Further down it may go, there may be a change in shape, change in velocities and all 

these things. So, the first point or the first way, first perspective where you look at a 

point and watch what happens to that point is an Eulerian perspective. 
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The other prospective where you sit on the material and as it goes you capture its 

velocity is a Lagrangian perspective, Lagrangian perspective. Of course, whether it is 

an Eulerian prospective or Lagrangian perspective, for a material point, at that place 

the velocity is the same. I am sitting there say, let us say I am travelling in a boat, I 

am coming here; you are watching this point and my boat comes to that point, you 

capture a velocity, I capture a velocity locally with some device; we will have the 

same velocities. Now, look at it from another point of view. For you as you travel, this 

is no more a steady state; this is no more a steady state. So, you are the material 

derivative. As you travel, your velocities may change or does change, so, your 

velocities change with time. But, at this point of time, here, for you watching only that 

point your velocity may or may not change with time. So, from one perspective the 

velocity changes with time; from another perspective, the velocity need not or may 

not change with time. That is the difference between a spatial and the material 

derivatives. 

 

You have a point here and the derivative at that point is given by this term. If this 

points velocity changes with time, dow f by dow t changes. Suppose it remains 

constant as well, then there is a convective term, the second term, which carries that 

velocity or change in this thing and so, in the second term, it is a convective term and 

is due to that velocity there. That is the difference, physical meaning of the difference, 

between a material time derivative and a spatial time derivative. Spatial time 

derivative, just to summarise, we are looking at small x; material time derivative you 

are looking at capital X and it is very important to realise that as far as the velocity is 

concerned. 

 

Yeah, dow f by dow x dot dow x by dow t; it is just chain rule. So, that becomes grad 

f dot v. 

 

This is what, so, if the velocity here is what we call as dow f by dow t, suppose there 

is with respect to time, that point the velocity changes, that will also be reflected in 

the material derivative. It is a very straight forward definition. Now, what happens if I 

have, this is okay for a field f. What happens if it is a vector field? Note that grad f 

makes this tensor to jump one order.  
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What happens if this happens to be or this f happens to be say, some function of say, a 

vector function of x comma t, then what happens? You would see that Da by Dt term 

here is equal to dow a by dow t plus dow a by dow x dot dow x by dow t. What is dow 

a by dow x? This is a second order tensor. 

  

(Refer Slide Time: 13:47) 

 

 

In other words, dow a by dow x, if I want to write it in component terms say, it 

becomes dow ai by dow xj, please note that. There is or in other words, this can be 

written as again grad a, pushing the order of the tensor. Is it clear? Now, let me define 
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a spatial velocity gradient l; spatial velocity gradient or spatial velocity gradient 

tensor, however you want to call it, l to be dow v by dow x. Note that it is dow v by 

dow x, v and x being vectors, so, obviously, l is a second order tensor. l say, let us say 

that lij is equal to dow vi by dow xj. Note that this is different from material velocity 

gradient which is written as dow V by dow X. 

 

What is this material velocity gradient, let us see that. Let us see what this material 

velocity gradient is. Write that down; let us see what that is. Please try this, what this 

is, which is of course you can write that as grad, this is nothing but say, capital grad 

V; you can write that down as capital grad V. What is the relationship between say, F 

dot and this? You can check, just check that that is what I wanted. Check what the 

relationship is between F dot and that. Very simple, there is nothing there. That is 

equal to dow by dow X of, what is V? dow small x by dow t, which can be written as 

dow chi by dow t. Since X is independent, I can switch these differentials, so that I 

can get that as dow by dow t of dow chi by dow X. So, what is this? F dot. 

  

What is F? This is F; dow by dow t of that. So, that is F dot. Now, what is the 

relationship between l and F dot? Very straight forward, it is nothing difficult, just try 

that. What is the relationship between l and F dot? Just do a chain ruling and then, yes 

please. 

 

(Refer Slide Time: 18:06) 
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Note that, l is equal to dow v by dow x and from here do that, then see what that is. I 

am deliberately giving you, because I want you to remember what all we did. Please 

look at that. If you want, I can help you in one more thing, dow chi dot say, that is 

what we wrote there, by dow X dow X by dow small x. F, is it, just have a look at 

that; dow chi dot, this is what? We just now saw it, F dot and what is this? F inverse 

that is all. It is very simple, you know. That is why I wanted you to do it. So, F dot is 

equal to l F. It is a very important relationship, F dot is equal to l F. Is that clear?  

 

Now, this l or velocity gradient tensor is a very important quantity and in fact, this is 

very similar to your u i comma j, which you would have seen in your earlier classes. 

In fact, you look at that, what it is? v i comma j; so, lij is v i comma j. So, it is very 

similar to u i comma j. If you remember, in earlier classes you had split u i comma j 

into an epsilon and an omega part, symmetric and a skew symmetric part. You can do 

exactly the same thing with respect to l. So, let me remove this; let us see how we do 

that.  

 

(Refer Slide Time: 20:23) 

 

 

L, as I told you, is v i comma j. Let us say that the symmetric part is given by d and d 

is equal to half of say v i comma j plus v j comma i and the skew symmetric part is 

given as half v i comma j minus v j comma i, so that when you add this up, so, l is 

equal to d plus W. d, this d is an important quantity and is called as rate of 

deformation tensor; is called as rate of deformation tensor, rate of deformation tensor 
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and this omega is called as spin tensor. Note that both d has dij. In fact, you can write 

that as dij, written in that fashion, omegaij written in that fashion; so, rate of 

deformation tensor and spin tensor. 

 

Now is rate of deformation tensor the same as that of the strain rate say, E dot or what 

is the relationship between them? That is a very important thing again for us to 

remember. As it is, you see that this guy is more closer or why more closer? It is a 

spatial quantity. Now, what is its relationship with E dot, the rate of our Green strain? 

Is there any relationship between them? Of course, there is going to be a relationship 

and what it is? Yes; you do that. It is very simple, let us see. Some of the small 

derivations I would like you to attempt, because that makes you familiar with what all 

we have done so far; application becomes very simple, they are all very easy.  

  

(Refer Slide Time: 22:56) 

 

 

Yeah, I am leaving out these squiggles. I think you are, I am sure by now you know 

which are squiggled and which are not. Calculate E dot. Now, substitute in terms of 

the relationship F dot is equal to l F; substitute that and check what is that you get. 

Very simple, is equal to half of F transpose l F plus F transpose l sorry l transpose F 

transpose l transpose l F. Yeah, that is dot of F transpose. This is differentiated with 

respect to time, dot quantity that is all. Now, look at that quantity. This can be written 

as E dot is equal to half F transpose l transpose plus l F. What is this? F transpose, you 

can bring the half that side here, l transpose plus l divided by 2 F that is equal to F 
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transpose d F. E dot is equal to F transpose d F; so, E dot is equal to F transpose d F. 

Is that clear? 

  

Now, I have another important thing to derive. I will give you two minutes, you just 

try it out; it is very simple again. What is the relationship between this spin tensor and 

rotation R or is it that W dot is equal to R dot. See, if you remember, we had seen 

yesterday or may be in the last class or before that, we had looked at F very closely. In 

the last class, we said that we can split this polar decomposition and we have F, we 

have that split up into R and U and we said that R is a rotation and U is a stretch and 

so on. Now, that is one rotation. So, rate of rotation if I ask, you may say that it is R 

dot. Is R dot the same as W, which is a spin, which I called a spin tensor or in another 

fashion or in another way we can say that F, I had very neatly decomposed into a 

rotation tensor and a stretch tensor.  

 

Is it that this l had been additively decomposed in a very nice fashion like that and is it 

that we have in d, a quantity which represents purely stretching and do we have that 

quantity W to represent only the rotation? That is a very important thing to 

understand. Does that, does these two, do these two types of deformations or splitting 

of the deformations, does it lead to the same result? Let us see that. Let us see what is 

the relationship between R dot and W? So, I have, I will give you two clues, let us 

see; you start that. 

 

(Refer Slide Time: 27:20) 
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R R transpose is equal to I and that F is equal to R U. That is the first step. Then, 

substitute in l and the next relationship, l is equal to what? No, no; we just now 

derived in terms of F dot, F dot F inverse. Now, we have three, these three equations. 

Let us see how you can calculate that, these three expressions. This is a problem 

which I am giving you. Let us see how you do that. In other words, if you want I will, 

F dot is equal to R dot U plus R U dot. That also I am writing, substitute it back into l. 

l is equal to R dot U F inverse. So, l is equal to R dot U F inverse plus R U dot F 

inverse. 

  

What is U F inverse? What is U F inverse? We had F is equal to R U, so, U F inverse. 

 

(Refer Slide Time: 29:23) 

 

 

So, this can be replaced by R transpose R U dot F inverse. From the first expression 

here you have R dot R transpose plus R R dot transpose is equal to zero. Substitute it, 

let us see. I will just stop here for a minute, continue and let me know. Now, what I 

want you to do is very simple. Now that I have written l, now that you have an 

expression here, write down the expression for d and this omega or w, small w. Write 

down an expression for these two and tell me what the expression is. That is all. If 

you want, you can replace this by U inverse R transpose, because R inverse is equal to 

R transpose is what we are using there. If you want, next step also I will give you a 

clue. 
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What is d? Yes; half of l plus l transpose is what it is. Calculate l transpose and then 

use the first equation R dot R transpose plus R R dot transpose is equal to zero. This 

one obviously, because R R transpose is equal to I. Differentiating with respect to 

time and being I, obviously it is very straight forward. This is what I defined. l 

transpose plus l or l plus l transpose, whatever it is, it is all the same.  

 

(Refer Slide Time: 31:34) 

 

 

This is R dot R transpose, this will be minus R R dot transpose. Write down say for 

example, d. What would be the values or what would be the ….. half R U dot U 
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inverse, yes, plus U inverse, because it is symmetric; U inverse U dot R transpose. 

Right? Very good, fantastic. What is w? Write down w; same way you write down w. 

That is all, nothing. First term, if you want I will write down; R dot R transpose plus 

that is the first term which you will get. That term went off because of this when I 

took this symmetric and anti symmetric case. R dot R transpose plus half of R, yes, U 

dot U inverse minus U inverse, U inverse U dot, very good, R transpose. That is all 

very simple substitution.  

 

Now, what I want to do is to focus on say, this term. Look at this term. This term here 

involves not only R, but also U. If I had stopped it with this term, first term, then w 

depends only on rotation. So, w is not a pure rotation, but it involves stretch. So, d is 

not pure stretch, but also involves R and R transpose. So, both of them are not pure 

stretch. It is not stretch rate, it is not U dot. What I want to bring out by this is clearly 

that d is not just U dot, w is not R dot. This is a very important thing to remember that 

the spin tensor is not only dependent upon R.  

 

Student: what is that spin tensor actually means in the physical context? 

  

This spin tensor is not, is not the same as that of just stretching and rotation. It has 

rotation plus stretching - terms which are involved like this and then a rotation. So, it 

is a combination. You cannot give a simple physical explanation. It is a mathematical 

thing, you cannot give simple physical explanation like what we did yesterday, but it 

has a rotation part and a stretching followed by a rotation part. So, both of them are 

involved. That is what this means.  

 

Before we go further, I just want to define one more small thing with respect with F, 

because we have to go and define stress tensor. I want to define one more term called 

F bar. You have lot of terms, I understand that. One more term, which we will define, 

what is called as F bar. 
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F bar, you will see what it is in a minute, has a very important connotation in 

incompressibility conditions. If you really look at determinant of F bar, this is 

determinant of F and determinant of J minus 1 by 3 F now becomes, this become, this 

being 3 by 3 will become J inverse F; so, J inverse determinant of F. Now, 

determinant of F being equal to J, determinant of F bar is equal to 1. From simple 

theory of determinant we get that determinant of J power minus 1 by 3 F, because this 

is being 3 by 3, you will multiply every term by J, so, J inverse determinant of F, so 

that equals 1. 

  

What does it mean? It means that F bar is the one which is responsible for dilatation 

and when there is incompressibility, when determinant of F is equal to 1 which means 

or J, I mean this in other words, this is the one which talks about or we can, let me put 

it like this; we can split F into two parts - one is the dilatational part and the deviatoric 

part and when determinant of F bar is equal to 1, we say that this is the deviatoric part 

of F and the other part J power minus 2 by 3 is the one which gives you the 

dilatational part of F. In other words, F can be split into two parts like what we do for 

stress - dilatational and the deviatoric part. So, this can also be split into two parts - 

the dilatational and the deviatoric part. So, its pure isochoric deformations are defined 

by F bar. 

 

With that background, let us now look at what are called as stress tensors. 
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We have seen that there are number of or various strain measures that we have used; 

number of strain measures. In fact, we generalised the whole thing. We said that half 

U power n minus 1, where n takes different values can be used as a strain measure. In 

fact, when n is equal to zero, people define the strain measure to be ln of U and so on. 

In fact, why all that? Stretch also, we saw can be very useful to us to define 

deformation. Like that, there are a number of stress measures that are now going to be 

defined.  

 

All of us are familiar with the Cauchy stress, sigma; we had used that in earlier 

course. We were not worried about change in the area and so on, because all of the 

deformations which we had considered till now are infinitesimal deformations. But 

now, since we are looking at finite deformations, finite deformations in a sense that, 

there is a change in area and in fact, we had a formula which connects ds and capital 

DS, capital DS being the original area, small ds being the final deformed area. We 

now know that this area difference, before and after deformation, has also to be taken 

into account. In fact, you would have done in your under graduate course say, strength 

of materials or may be in material science, you would have done defined what is 

called as the true stress and engineering stress. 

  

What did you do there? What you did was very simple. Whether you took the original 

area or the current area, you called that as engineering stress or nominal stress and if 
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you have taken the current area, you would have called that as the true stress. So, 

Cauchy stress is nothing but the true stress; Cauchy stress is nothing but the true stress 

and we have an equivalent stress measures in the multiaxial case for the nominal 

stress, for the nominal stress. Number one, we have Cauchy stress well defined. We 

have an equivalent stresses for the nominal stress that is the second definition of stress 

and I call that in the multiaxial case as the first Piola-Kirchhoff stress, first Piola-

Kirchhoff stress.  

 

(Refer Slide Time: 41:07) 

 

 

Let us say that I cut a body like what we used to do in last course on the definition of 

stress and let us take a small element. Let us define the area, same fashion as we did 

in the last class when we derived Nansen’s formula; let me call that as say d capital S. 

Let there be, of course, this is X, let there be deformation and let us say that 

deformation takes place and this point goes to small x and let the area be d small s. 

Let the infinitesimal force that is acting in that area be force vector df and we know 

how to define the stress; in earlier class, we had defined this as delta F or we had 

defined it as delta F by delta s limit s delta F, delta s rather, goes to zero. 

  

In this case we say that, let this be the normal. Of course, this also has a normal, let 

me call that normal as say N. 
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Then, df being the same, that is acting in that small area, because it is an infinitesimal 

area, you can define sigma n ds which gives me df, the deformed coordinate to be 

what? We call that as P N dS. So, sigma is a quantity which is associated with the 

current or the deformed coordinate and P, of course this is also a tensor, is one which 

is associated with the reference coordinate system. But, what is ds? We derived it in 

the last class. What is ds? J F inverse transpose, so, N dS or d capital S. I mean d 

capital S which is a vector. So, d capital S which is a vector can be, this is nothing but 

dS. This is actually d small s. Substitute that into that expression, see what you get. 

Sigma, this J can be out here, F inverse transpose N dS is equal to P N dS. Comparing 

the left hand side and the right hand side obviously, P is equal to J sigma F inverse 

transpose. So, the Piola-Kirchhoff stress can be calculated from the Cauchy stress and 

the vehicle for this calculation is nothing but the Nansen’s formula. So, P is equal to J 

sigma F inverse transpose or sigma is equal to J inverse P F transpose. 

 

 

 

 

  

 

 

 



19 

(Refer Slide Time: 45:43) 

 

 

If you want to write that this side, bring this this side, so, that becomes J inverse; 

bring it the other side, so, this becomes F transpose that is equal to sigma. The second 

stress measure now we have learnt is first Piola-Kirchhoff stress.  

 

The third stress measure which comes directly from here is called as Kirchhoff stress. 

Note the difference between first Piola-Kirchhoff stress and Kirchhoff stress. In fact, I 

am going to define in the next class what is called a second Piola-Kirchhoff stress. 

Kirchhoff stress, which is usually denoted by tau is defined as J sigma. So, tau is 

called as Kirchhoff stress. Now, we know sigma is symmetric. By this definition, you 

know Kirchhoff’s stress is also symmetric. The question is whether P, Piola-Kirchhoff 

stress is symmetric. This being symmetric has very important connotations in our 

computational techniques, because you can save lot of space and efforts and so on. 

So, let us now check whether first Piola-Kirchhoff stress, which is nothing but an 

equivalent of a nominal stress, is it symmetric. 
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In other words, since sigma transpose is symmetric, this becomes say J inverse F P 

transpose, which means that P F transpose is equal to F P transpose; not, P is not 

equal to P transpose, but P F transpose is equal to F P transpose which means that the 

first Piola-Kirchhoff stress is not symmetric. Though the definition is very straight 

forward and nice, first Piola-Kirchhoff stress is not that very useful to us in 

computation situations, but the concept is very important to understand and we will 

continue with our concepts of stress, other stress measures and so on in the next class.  


