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In the last class we had seen, looked at the mixed formulation. 
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We will just quickly summarise what all we did in the last class, so that we can follow 

the derivations further. We started with the series of definitions and for example we 

started with what is M, then what is Id and then we said that epsilon can be split into 

two parts - the volumetric part and the deviatoric part; same way sigma can also be 

split. But, one of the things which we emphasized is the fact that we are now going to 

look at not the irreducible form; that means displacement alone, but we said we will 

look at both - displacement, pressure and epsilonv as three of the variables that we 

will be interested in and hence we are stating sigma, I mean this is the common thing 

what you know. The only thing is that we defined delta sigma with that inverted hat to 

be one, which you will get from delta epsilon through the constitutive equation. So, 

this is the deviatoric part that is the pressure part, so that that together will define us 

the sigma. 
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In other words, this is the fundamental definitions which all of you know and then we 

wrote down the variational form. 
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The variational form is very straight forward and the first variational form is exactly 

the same as that of the virtual work form which you had encountered in the previous 

course. There is no difference between them, between this and what you had done 

before and the only thing is that, to that we add two more. If you really look at it 

closely what essentially we are doing is that what happens or what should be zero, we 

are multiplying it by weight function delta epsilonv and delta p. These three are quite 

easy to understand and then we combine these three things. In other words, we have 

three equations; note that we have now three equations. 

 

 

 

 

 

 

 

 

 

2 

 



(Refer Slide Time: 3:02) 

 
 

We can combine them together to write Hu-Washizu principle. In fact, you can come 

the other way as well. You can define the Hu-Washizu function and from here, 

recognising that we have displacement, p and sigma or rather sigma and epsilonv, you 

can rewrite that in terms of p and epsilonv as well and then come down from Hu- 

Washizu principle in the same fashion, as you do for the irreducible form, for 

displacement form. Of course, this is written in terms of u, sigma and epsilon. You 

can re write this in terms of p and epsilonv as well and so from here you can come to 

this place or from here you can go to the other side, in a very similar fashion as we 

had done before.  

 

We will not worry about the Hu-Washizu principle right now, but what we are 

interested in is, here it is much easier to understand from the formulation, from this 

place. So we will start from here, we will come to Hu-Washizu principle more in an 

elaborate fashion, when we talk about the large deformation case.  
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In order to convert this into a finite element formulation, what we need is things 

which are again familiar to us and these are the things that we need and in other 

words, what we have done is to now define the continuum displacement in terms of 

the displacements of the nodes and look at these two quantities. Now, we have 

pressures as well defined in a very analogous fashion to that of displacement and then 

we have what are called as the shape functions for the pressure and the volumetric 

term as well; that is Np and Nv. Both of them defined these pressures, which we have 

substituted or which can be useful for us to substitute it back into the variational form.  

 

Having said that, having written these things I can, do write epsilon and delta epsilon 

and sigma in terms which are familiar to us, now in terms of shape functions and the 

variations, now variations defined with respect to the discretized form and our job is 

quite simple. Look at the logic. It is very, very simple. Having defined this, we will go 

and plug these equations back into my variational forms and then write down a series 

or set of equations which I will use in order to solve for u, p and epsilonv. It may not 

be necessary for us to solve all these things together and it may be at most instances 

possible to eliminate say, p and epsilonv at an element level. We will see whether it is 

possible to do that. 
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So, as the first step, what I do is to substitute all the discretized form, written in terms 

of shape functions, into this mixed form and write down the corresponding equations 

and let us see how they look like. I think we stopped at that point in the class and if 

there are no questions, we will progress further. Let us see what happens to the first 

equation. I told you that you can yourself substitute it; you can see what happens. 
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First equation can be written say, in terms of M; M u double dot is equal to f. Look at 

that equation and look at this. It is very obvious that the first term which is the inertia 

term goes as the M term. It is again a very familiar matrix, M matrix, which is the 

mass matrix that you would have called in your earlier classes. So, the mass matrix 

you substitute that. You can see that delta u transpose you can substitute in terms of 

N. So, this is again N, so N transpose, row N transpose N is what the mass matrix is; 

so you can define that N d omega. 

  

You can, if you want for further analysis you can, either remove it or you can keep it 

as it is. If you are going to do a static problem, then you can remove that particular 

term. If you are going to do a dynamic problem, then you can keep that straight away 

there. So, next term is the P term, which is the internal force term. Remember that the 

internal force term comes from here, the second term here. Remember that S u is 

replaced in terms of b u, so you will, b u hat; you will get actually delta u transpose 
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hat B transpose sigma. So, B transpose sigma is what was coming into the picture as 

the internal forces. Remember that that is what we used. So, that is the second term 

that I have. So p is equal to integral B transpose sigma d omega. So, that talks about 

our first equation. 

  

Now, let us look at the second equation. Let me write this down, the second equation.  
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What is the second equation? How do I get it? I substitute the discretized form into 

my second equation. Look at these two terms; they are very, very easy to understand 

again. So, you substitute for delta epsilonv and p from the previous case and let me 

write this down as Pp minus C say, p hat is equal to zero. Can we repeat M? Yes; M is 

what? M, I had already defined 1 1 1 0 0 0. I mean just I had, why I had M? M I had 

put here, basically because it is easy to write it down.  

 

Yeah, mass; this capital M, what is capital M? Capital M is nothing but the mass 

matrix. If I write it down as it is, it is consistent mass matrix, very familiar term in the 

structural dynamics. If you are, as I told you if you are, not interested you can remove 

that and you will get back your original equation. So, let us see what or how you get 

term? term comes from this first term and what is that term will be? So, delta 
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epsilonv, you are going to substitute from there; obviously, from this term here and so 

substitute that and see how we can write down that term. 
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Let us see, what you get? , substitute it here; so, let us see what you get? Simple; 

integral omega delta epsilonv.  If I want to write, this is a number; but, if you want to 

write it in a matrix notation, you can write it as transpose into this in a matrix 

notation, because it is easier to follow matrix notation. So, you can convert this and 

write it, write this down in matrix notation. You can write it down as delta epsilonv 

transpose, the other terms there. So, you can say that 1 by 3, I will keep that out; this 1 

by 3 here I will keep that out. So, delta epsilonv I am going to substitute in terms of 

Nv. So, Nv transpose is my first term there. Then of course, I have my M transpose 

term; M transpose term, then sigma term there, d omega is my first term. 
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Then, my second term comes from this term here, again delta epsilonv transpose. My 

second term is what I call as C. So, it is obvious that now, it is very simple; now I 

substitute this in terms of Np p hat and this again, the same way delta epsilonv hat Nv 

transpose. So, together I get Nv transpose Np d omega, p being taken outside.  
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So, C is equal to omega into Nv transpose Np d omega. I mean this is what we did 

also in last class. I hope things are clear. 
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One of points I want to state is that once you, it is so simple; finite element 

formulation is extremely simple. Once you have this kind of formulation, look at what 

we are doing? Very, very mechanical; I defined discretized form. Till now, till this 

point, it is not finite element per say. Hu-Washizu principle comes into variational 

forms; you know, they are not finite element. I enter finite element once I write these 

things. So, once I know the physics, once I know the formulation, I just, what I have 

to do is only take that out, substitute it into my variational form. In fact, if you want 

you can branch off from here, you can do some other technique; you can solve using 

some other technique as well. But we are, once we are into finite element we just 

substitute it into that expression. Is that clear? So, we go to, yes, any question?      

 

Delta epsilonv transpose, yes. Yes, let me write that down clearly. If you have any 

doubts we will, so, you write this down. So, this is the procedure. The doubt is how 

do I get this? Still not very clear; it is very simple.  
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You see that I can write this down into delta v transpose Nv transpose into one third 

of m sigma minus p, instead of p I am substituting it Np p hat, d omega is equal to 

zero. Delta epsilonv transpose is that which belongs to the nodes, because actually I 

should put B …., what we got from discretization. So, this is similar to delta u hat 

transpose that you would have had when we defined B transpose db as K. Take that 
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out; take that out, so, I can write this down as delta epsilonv transpose omega, 

integrating throughout omega, Nv transpose, so, one third m Nv transpose, sorry, Nv 

transpose m, Nv transpose m sigma d omega. That is the, that is my first term, because 

this delta v hat is the same for both the terms, minus the second term Nv transpose Np 

into p hat. So, the first term is what I go or I call this as because, this being common, 

this has to be satisfied at every point; so, this being common, we can take that out. So, 

minus Cp hat and C is what is the second term Nv transpose Np p hat. So, that is what 

you get here in this term.  
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This is, as I said, I deliberately did that because that is the standard way of writing 

that equation. Now, let us come back to the third equation.  
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Third equation is delta p; I think I will just remove that and write that out again; 

integral delta p, into what is that we wrote? m transpose S u; m transpose S u minus 

epsilonv. Strictly speaking, they should be the same and they should go to zero. So, 

you can view it, in a slightly crude fashion we can say that this is zero; zero multiplied 

by some quantity is equal to zero. Now, you can look at it, in order to understand it, 

you can look at it in that fashion as well. 

 

There are, we are going to get three equations I know the first equation; that is the 

first equation and I know the second equation and let us now develop the third 

equation. What is the third equation? Again, the procedure is exactly the same. 

Substitute for these quantities from the discretized quantity and what do you get? Let 

us see what you will get as the first term.  
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Delta p, again same way delta p transpose I have to put, so, let me call this as, you 

will see that I will get C transpose out of it; C transpose or minus in fact, epsilon, for 

the second term epsilon hat v minus E u hat is equal to zero. This is the second term 

that you will get here from this term; it is very simple. Delta p, now, I am going to 

replace it with delta p hat. This will be replaced by transpose, so delta p hat transpose 

Np transpose. If you look at the second term, let us look at the second term first. I will 

get Np transpose Nv Nv into epsilonv hat. So, Np transpose Nv d omega is nothing but 

C transpose and so I get the first term to be minus C transpose epsilonv hat.  

 

Look at the second term; the second term is here. Substitute in terms of S u, in terms 

of B, so that E will be, have a look at this term now; have a look at this term here. 

Then, you can write down E to be Np transpose, that is the first term that comes here, 

Np transpose. That Np transpose comes here; then m transpose that is the m transpose 

comes here. Then, B; S u is written in terms of B u hat.  So, B d omega is what you 

will get as the three things. So, you get that. That is the third equation and that is the 

definition of E. Let me complete the picture by writing the second equation as well 

here which we just removed. We will write the second equation minus C p hat is 

equal to zero. So, that is the first equation, the second equation, this is the third 

equation. Remember what we wrote for C? C is N transpose, Nv transpose Np d 
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omega is what we wrote. These are the three equations that we have and we have to 

solve these three equations. 

 

Now, look at them; let us see how we can solve them, solve these three equations, 

because it is, by the way, what is f? How do I get f? External forces and that comes 

from this, obviously. I mean, though it is standard, we know that delta u transpose I 

substitute; so, N transpose B, then N transpose t d omega. Now, you can solve these 

equations straight away. For example, look at that equation. It is so nice; it is very 

simple to solve them. 

 

I can write p hat, p hat to be, I can bring this guy to the other side. So, I can write p 

hat in terms of C inverse; I can write p hat and so, the first thing I can do is to solve 

for, straight away from these two equations without using the other guy can solve for 

this equation. Let us see how I am going to do that? 
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So, p hat, what is p hat from here? So, C inverse Pp. I mean of course, they are matrix; 

just for clarity, I have written them and epsilonv hat can be obtained from the second 

equation; from the second equation. Let us see, but there is going to be a small issue 

there; that is equal to C inverse E u hat; C inverse E, so, C inverse transpose E u hat 

which can be slightly re written as say W u hat, where W is C inverse transpose E. Of 
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course, when Nv is equal to Np, which is the case most of the times we take, then C 

becomes C transpose. So, this C inverse transpose can be written as C inverse. Is that 

clear? Yeah; no, there is a minus here. No, this should be plus here, first term; 

because, the first term was a plus, so we get, that i a plus there; where W is that 

quantity. Is it clear? 

 

So, now substituting for epsilon, let us now do a small jugglery; substituting for 

epsilon, I can write epsilon to be Id from the, look at this expression here. I can write 

epsilon to be Id into B u hat. Look at what I am going to do. It is very interesting, so, 

plus one third m Nv epsilonv hat. Now, for epsilonv hat, I am going to substitute in 

terms of u hat, W u hat. So, I can write this down as W into, sorry, u hat. Look at this 

expression now. Does it strike anything, does it? 

 

Look at that expression; this expression. What we have done is epsilonv we have 

written in terms of u hat, then re substituted back into epsilon. Look at this expression 

here. Absolutely; so, there is a relationship. Looks like this relationship is very similar 

to my old relationship of B. The B is now, looks as if the B is now modified. The B 

looks like, B has two terms in it; B has two terms in it - one term, which is the 

dilatational term and the other is the deviatoric term. B has split this; I mean it looks 

as if now B is split. 
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Let me define Nv W as say, Bv, Bv and write that down in a matrix form, so that 

epsilon is now written as Id one third m B and Bv. Yes, B Bv; yes of course, u hat is 

common to this. So, I can write u hat ultimately. You can immediately foresee what I 

am going to get. Note that this is very similar to my splitting B into B deviatoric B 

dilatational in our B bar method, but we came through an entirely different route, a 

variational route; much more meaningful mathematically, but still arrive at the same 

result.  

 

Let us now proceed and see what would be my tangent stiffness matrix. You can 

foresee what we are going to get, the procedure is again standard; there is no 

difference in the procedure. Let us see what we are going to do. What we are going to 

do is to take my first equation. As I said, let me remove this from further 

considerations, we have already considered these two guys here. If you want to add, 

of course, the second term that is m u double dot term, you can keep adding it; it is 

not going to change any of the things that I am going to do, you can keep adding it. 

But, only thing I am going to do is to now take this B transpose sigma term and then 

see what we can do about it. That is equal to, remember what we wrote for sigma, Id 

sigma hat; look at this term here. 
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I am just keeping that there; please look at the term there and then, substitute that term 

here instead of this sigma, so that I will get B transpose, can you read that out?  
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Id sigma plus m Np into p hat. But what is p hat? We just now derived what is p hat. C 

inverse ,so, I can write that down as C inverse .I hope it is clear that the two terms Id 

sigma this inverted hat m Np C inverse  d omega is what is my term. Now, what I am 

going to do is to take this and then do a small jugglery; nothing else. If you want to do 

it, you can do it or else you can do it in any other fashion you want. But just to make 

things easier to implement, we are going to go through this step. 

  

I hope you are not lost out in what we are doing. The two equations we have taken. 

Essentially I am able to, from the second equation I am able to get p. Third equation, I 

am able to eliminate epsilonv in favour of u hat; re substitute it back. So, all my 

equations, ultimately when I solve it, all my equations are in terms of nodal 

displacement only. But, only thing is that the KT matrix what I am going to get is not 

my original B transpose dt B, but that is going to change. That is all, nothing else. So, 

the second term, the two terms to this, let me write that down. 
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Omega B transpose Id sigma hat plus B transpose m Np C inverse d omega; so that 

would be the two terms. Now this term, the second term I am going to re write it a bit 

differently, because my, remember what my is; has an integral term in it. So, I am 

going to write this down in a slightly different fashion and I am going to write that as 

Np d omega C inverse  and then substitute for W from my previous expression and 

then write this down as B transpose Id. We will verify that what I am writing, straight 

forward substitution. I do not have all the equations here, but you can verify that what 

you have; plus, yeah, integral I think one third will come into picture because of 

definition of W and so on. 

  

So, W transpose Nv transpose m transpose N, yeah, N transpose, not P, but sigma hat 

d omega. I am substituting back all the equations which I know, which I d and so, I 

am going to write that down something like that.  
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Now, again I am doing some juggleries here. Re substituting it, all  expressions, so 

that I will write this down as B transpose Id plus one third Bv transpose m sigma hat 

or m transpose rather m transpose sigma hat d omega is what I will have. So, this is 

what we actually arrived at as B transpose; so, let me call this as my new B and so 

that, I will call this as say B bar, a new B which is B bar.  

 

Now the next step; this is p. The next step is my calculation of KT; my calculation of 

KT would lead to my introducing DT here; omega B bar transpose, that is, this is 

rather B bar transpose, not B bar. So, d sigma hat by d epsilon into d epsilon by du hat 

which from here would again give rise to another B or B bar, so that I can write this 

down as B bar transpose, sorry, DT; DT is T sigma hat by d epsilon which is or delta 

epsilon delta sigma hat by delta epsilon, that is what we introduced right in the 

beginning, into B bar into d omega. 

  

So, this is, the step is standard. Again, p is what? We remember that this is what we 

did for the Newton-Raphson scheme. If you remember, we had B transpose sigma 

instead of this and we defined this as B transpose d sigma by d epsilon into d epsilon 

by d u. Remember that we had this as DT and remember that we had here B. So, B 

transpose DT B is what we defined. In this case, it so happens that that B is not there, 

we have B bar. B bar is the very thing that we had looked at; modified B in our earlier 

18 

 



approach. So, that is the KT now you are going to use to solve the equations, the 

Newton-Raphson scheme. 

 

Sometimes what people do is to combine these terms here into DT and define a new 

DT hat. There is nothing very different from what we are doing; just DT is slightly 

rearranged. So, here you have, in this formulation, please note that there was a 

question on cross terms. In this formulation, you have all the cross terms intact. It is a 

very rigorous formulation. In this formulation, you will have all the cross terms intact. 

This whole thing is here and then this would be written like this. So, you will actually 

have four terms, all the cross terms, which will go into the implementation of the 

finite element analysis.  

 

Now, coming back to where we started from, we started with elastoplastic analysis. 

What we have essentially done is to write down a small strain formulation for an 

incompressible or merely incompressible material. That is, we have diversified or we 

digressed from our elastoplastic analysis. We wrote down a small strain formulation, a 

mixed formulation for the analysis of nearly incompressible material and what I want 

to state is that, now if you go and substitute at this DT your elastoplastic DT, then this 

formulation can be directly used for an elastoplastic analysis. If you are not interested 

in elastoplastic, but if you are interested in any other material, still in the realm of 

small deformation and if you are interested that means that mu is equal to say 0.49, 

495 and so on, but the deformations are not very large, then you can use the same 

formulation; no difference, same formulation, but a corresponding DT can be used. 

  

This is what I wanted to tell you that most of these algorithms are plug and play 

algorithms. It is not that I will repeat this, if I have to do non-linear elasticity; the 

procedure is the same. So, for solving a small deformation problem, this is the 

procedure. That is all, but I will add one more to this; one more to this. What is it that 

I will add? I will add stress update algorithm, if I have to solve plasticity problem. 

Now, the comment about these elements is that we should understand that most of the 

non-linear analysis is done with, not with higher order elements. It is not, it is not 

usually recommended to do due to various reasons, theoretical reasons. Right now, we 
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are not in a position to see that, but usually most often we use only lower order 

elements.  
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Say, for example one of the elements which you may use here is a say, quadrilateral 

element in which case you will define N in the same fashion as you had done for your 

earlier classes, but you would define Np, since Np ….. the dow Np. Look at this B. 

What enters here is only the gradient that is dow Nu or the first differential of N is 

what appears there, but the first differential of p what we had defined, there is no 

corresponding p for Np; there is no Bp term. That  o enter that place, so, we do not 

have problem of defining p in the same fashion as that of N. So, usual method, usually 

what is done is that you will use the ….. and also note what is Bv term? Bv term is 

what we define here. This is the Bv term. It does not come from mv term, it comes 

from this Bv term. 

  

So, it is usual practice to define the u in this kind of element to be that at the nodes 

and define p and epsilonv to be a constant inside an element. In other words, it is 

usual practice to distinguish between the degrees of freedom u and the other two 

degrees of freedom and you please note that it is not all the time that you treat u, p and 

epsilonv to be as if they are degrees of freedom at the node. There are certain places 

where you will put degree of freedom at the node as well, p as a degree of freedom, 
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but it is not the usual practice to define at the node, degree of freedom u, p epsilonv. It 

is a very important point, because that is where there is usually confusion. It is not 

that here I have u, p and epsilonv; no, that is not what we are talking about. p and 

epsilon v are defined such that say, for example for this element, Np and Nv are 

constants or unity. That is as if it is defined for this element, so, it is discontinuous 

across the next element and so on. Same way, you can extend this concept to a solid 

element as well. Is that clear?  

 

We will may be later in the course, we will define or rederive equations for 

tetrahedron elements. But, what I want to again point out is that, this is a general 

formulation and can be say, can be used or information can be extracted from this to 

derive formulations or derive KT for plane stress or plane strain or axisymmetric and 

so on; 3D solid and so on. So, the corresponding terms are now replaced when we go 

to say, plane strain and axisymmetric. Of course plane stress, there are certain issues; 

I may not have time to cover every element formulation; every element how it looks 

like it may not possible for us to cover in this course. The whole idea is to give you a 

background. If I recommend Zinkevichs volume II, if you look at say, Zinkevichs 

volume II, you will see how this particular element or this procedure is now used for 

deriving plane stress element. There are some changes; there are going to be some 

changes, because of the way in which we operate for plane stress, but the procedure is 

the same; the concept behind it is the same. We are not going to specialise everything, 

because we have lot more to cover; so that we are not going to do. But as an exercise, 

I would like you to have a look at the plane stress formulation in Zinkevichs book.  

 

Having done that, we will get back to our elastoplastic analysis and close that part. 

Before we go to the continuum mechanics aspects, let us now look at what the things 

are. We will motivate the cases now and then write down the equations and other 

things in the next class. Is it clear, this formulation is clear? 
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Now, we will now look at the stress update algorithm. What we are going to do is to 

follow a very similar procedure as we did for one dimensional case. Stress update 

algorithms are broadly classified into what are called as explicit algorithms, people 

call this as forward Euler method; sub incrementation, explicit with sub 

incrementation, we will define what sub incrementation is as we go along and then 

implicit algorithms. All of you by now know that all explicit schemes have 

conditional stability or in other words you cannot have a large delta epsilon, then the 

algorithm is not stable. We know that intuitively, because we know explicit finite 

element that is used in structural dynamics has some conditions attached to it called 

Courant condition. So, same way here also you have some problems with explicit 

finite element or explicit rather scheme. So, you may wonder why not we go to 

implicit scheme. There are very interesting things that would happen if the type of 

constitutive equations are different from that of Mises constitutive equations. So it is 

important that we understand explicit schemes - explicit with sub integration or sub 

incrementation, rather which is used extensively and we will also look at in a broad 

sense what this implicit scheme is as well. 

  

Now, let us define what this is. I have, I have already done, lot of times I have stated 

what explicit is and what is implicit in this case.  
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As we go along we will see that as well. That is the say, a part of the yield surface; my 

whole idea is that we are say, at this point. Remember where we are. We are in the, 

that is the big loop, the incremental loop we are solving. We are inside the iteration 

loop. Now I know how to form tangent stiffness matrix; now I know how to solve for 

u, I know or I have to learn only how to do stress update. So, we are right here, stress 

update; we are going out and looking at the issues that are involved in stress update. 

So, at the end of this, you will know all aspects of small deformation elastoplastic 

analysis. 

  

We will complete the whole show there and on the way you also learn how to do 

small deformation elastic analysis also. Though it has not much meaning to it, 

puritans will not agree with you when you say I am going to do small deformation 

elastic analysis with the or in other words, if I say that I will do using Hooke’s law, I 

will make nu is equal to 0.49 and do certain analysis, people may not agree with you. 

But, for many practical problems, this will be a good approach where nu is equal to 

0.45 or 0.49 rather, you can use this formulation. 

  

So, let us quickly look at what we mean by the stress update algorithm. The issues are 

very similar to what we did in the previous class.  
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So, what I have to do is to now take this point, this point, the stress point which is say 

inside the yield curve or the yield surface, which means that we are at the elastic 

region, to the plastic region. So, I may have to go from this point to this point and as I 

move from these two points, what I also have to do is to update the yield surface. So, 

two things I am doing; one is to update my stress as well as update the yield surface. 

So, what is the issue? As I update the stress and as I update the yield surface, it should 

be in such a fashion that ultimately I will lie on the updated yield surface; that is the 

issue. That is the only thing that poses a lot of problems. 

  

I will state in a nut shell what we are going to do and then expand this in the next 

class. I am going to follow our elastic predictor plastic corrector approach. So, from 

here I am going to predict in an elastic fashion. I am going to go out of the yield 

surface and reach a point which I will call as sigma elastic. 

 

Obviously, you are going to pounce on me ….you are going to say that it is not going 

to lie outside it; yes, I know that. Then, I will correct it, I will come back and lie on, I 

will come back to a point which is corrected point, which I will call as sigma T. As I 

correct it and come back, I will also update the yield surface by calculating epsilonp 

or delta epsilonp. From here my yield surface will go out. So, that will be my new 

yield surface. When I do that explicitly, I will find that obviously, I may not lie on the 
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yield surface. Then, I will correct this trial sigma by pulling it back in a simple 

fashion to the yield surface, the updated yield surface and I will get what is called as 

the sigma corrected. 

 

Now in order to do this, I realize that I need one important factor. What is it? That R, 

which I did in the one dimensional case; how did I calculate R? I know where I the 

yield point. In the same fashion, I have to now find out as I move from this point to 

this point where I will contact the yield surface. That point I need to know. So, that 

point is called as the sigma say, contact; that point where I contact the yield surface is 

called sigmaC. Note again the concept is very similar. So, this is what I need not 

correct and this is the part that is the part which I have to correct. How I am going to 

do that and how I am going to ultimately calculate sigma CR by means of an explicit 

scheme is what will be the focus of next lecture. So, we will stop here. Is there any 

question? We will stop here and we will continue in the next class.  
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