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Let us continue our discussion on transmission photoelasticity. We have looked at from 

crystal optics point of view, we need to find out how photoelasticity as a technique 

developed. And we looked at that the model is temporarily birefringent when the loads 

are applied. So, you were able to relate aspects of crystal optics, and we combined stress 

and optics, and understood what stress optic law is. The stress optic law famously gives 

sigma 1 minus sigma 2, and if we want to find out that, I need to find out the fringe order 

and the materials stress fringe value f sigma. So, we have looked at in the last class, 

sigma 1 minus sigma 2 is N f sigma by h and I said, you need to find out N, for finding 

out N, you need to go for optical arrangement, and then you will also have to find out for 

the given model material what is the material stress fringe value. If I know N and if I 

know f sigma and if I know the thickness of the plane model, it is possible for me to find 

out using mechanics of solids, inplane shear stress as well as normal stress difference, if I 

also know the principle stress directions at the point of interest. So, this we had seen. 
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Now, the next aspect was that we need to go and find out the fringe order and we need to 

have an optical arrangement. We started with a plane polariscope. In a plane polariscope, 

what is that we saw? We had a light source, then we put a plane polarizer, then you had a 

model which is loaded, and you analysis whatever the light that comes out of the model 

by an element similar to polarizer, but the axis is different. Because you do the analysis 

of exist light ellipse, you call this as analyzer. 

And what we saw? In general in a plane polariscope, you would see two fringe contours. 

One fringe contours moves as the polarizer and analyzer crossed positions are moved, 

and you have another contour which is stationary. And we have also looked at, suppose I 

increase the load, the contours that are stationary will move, because they are effect of 

the load applied. And we have also looked at, from principles of solid mechanics in 

linear elasticity, the principle stress direction do not change, only the magnitudes, you 

have tan 2 theta equal to 2 tau x divided by sigma x minus sigma y, when the loads are 

increased, the individual magnitudes of shear stress and normal stress vary, but theta as 

such will remain constant. And this, we also understood this could be used 

advantageously even in a plane polarizer scope with monochromatic light source. How to 

distinguish a contour being isochromatic or isoclinic. You can rotate the polarizer 

analyzer crossed and if the contour moves, then you call it as isoclinic. Suppose I 

increase the load, if the contours move, then I find those are isochromatics. 



Subtle difference comes when you are dealing with zeroth fringe order. And what we did 

in the last class? We had analyzed what the light as it passes through the model, how it 

comes out after the analyzer. And we said intuitively, because I see two fringe contours, 

the intense equation should be a function of two parameters, one is the relative 

retardation delta, another is principles stress orientation theta. And what we did was, we 

did a simple trigonometric analysis. And what is it that we did? We had this polarizer, 

and after the polarizer you get plane polarized light which hits on the model, when it hits 

the model we look at these entry plane and exist plane. On the exit plane, the model 

introduces a retardation which is indicative of the stresses developed at the point of 

interest, then whatever the light that comes out you analyze it using the analyzer. And we 

found out what is the light transmitted by the analyzer, which was a function of delta as 

well as theta. 

And in this case, you had only simple optical element, a polarizer, model and an 

analyzer. So, trigonometric resolution was sufficient and convenient for you do it. And 

we also saw that we are going to look at circular polariscope. In a circular polariscope, I 

need to have two more optical elements. I need to have a polarizer, a quarter wave plate, 

model, another quarter wave plate and another analyzer. So, I have more number of 

optical elements. When I have more number of optical elements, employing 

trigonometric resolution could be cumbersome. You will still get the result, that is not an 

issue, you can always get the result by trigonometric resolution, but it is better to develop 

an appropriate mathematics, which helps you to analysis when I have more optical 

elements in my experimental setup. And this is known as Jones calculus. 
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And what is Jones calculus? We will have to understand first of all that an optical 

element in a polariscope in general introduces a rotation and a retardation. And our 

interest is, you want to have this as matrix operators, with that the analysis becomes lot 

more simpler. 
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So, this is what we want to look at. The basic operations are represented as matrices. And 

I said in one of the earlier classes when we introduced this, we are going to see this 

animation again and again in the course, and we had actually analyzed a crystal plate, 



and what we want to look at is, when light impinges on this, what happens within the 

crystal, we have schematically shown with a larger sketch, what happens on the plane on 

which the light hits the front surface of the crystal plate, and what happens within the 

crystal is shown here. And if you look at what happens on the front surface, I have the 

reference axis as x and y, and the crystal we have reference axis as slow and fast, which 

is rotated at an angle theta. 

So, what you have is, whatever the light that is represented with respect to xy axis, they 

have to be represented with respect to the slow and fast axis of the crystal plate. When 

you are looking at the model, it is the slow and fast axis at the point of interest which 

coincides with the principle stress direction, and whatever the retardation introduce 

within the model is shown here schematically. And this retardation is a function of the 

stresses developed in an actual model. In a retardation plate, it will be a function of the 

thickness of the plate and also the refractive indices of the ordinary and extraordinary 

rays, that is what we had seen. 

So, what we need to do is, if I want to represent this crystal plate or the model which is 

loaded behaves like a crystal, we want to replace this by one matrix, which represents a 

rotation; another matrix, which represents the retardation introduced. So, if I understand 

these two in matrix notation, it is possible for me to give a mathematical representation 

of how the retarder can be represented. So, the moment I do this, if I have several optical 

elements, it just to put those matrices in the order in which they are arranged, multiply 

them and you will be able to comment on what is the intensity of light transmitted. 

So, what we are looking now is, we have to look at what the retarder has done the 

function. See, we have looked at by impinge a plane polarized light, that is a very 

specific situation. In a generic scenario, what you are going to look at is, you are going to 

have light vector represented with respect to x and y axis, and the model as such has 

reference axis as slow and fast, which is oriented in general at an angle theta. So, I do a 

rotation when it enters the model, within the model it acquires a retardation. So, these 

two operations I would like to first get the matrix representation. If I do that, it will make 

my life a lot more simpler. So, that is the goal, we will look at. 
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So, what I have is the rotation matrix, and rotation matrix you would have done in many 

of your other engineering courses. Whenever you come across transformation, one of the 

simplest transformation is rotation. To find the components of a vector, if the reference 

axis are rotated by an angle theta. And this is fairly simple and straight forward, it is only 

remembering what you have done in some of your earlier courses. So, what I have here 

is, I have the reference axis x and y, I have a point labeled as u comma v. So, I can find 

out u, I can find out v. And what I want is, I have another coordinate system at angle 

theta, I have this as x prime axis and I have the y prime axis just perpendicular to this. 

So, the transformation is simply obtained by finding out the expression for u prime and v 

prime from simple geometry. That is all you need. This you would have done in your 

earlier course, it is not something new, I think you can brush up your old memories and 

write on your own, whether you can write the rotation matrix, or in other words find out 

what is u prime, what is v prime in terms of u, v and theta. And you need to simply apply 

geometry here and then get the relevant components. It is not difficult. If you start 

writing all these in the class, then revising your notes become lot more simpler. It is only 

remembering what is it that you have done in your earlier courses and it is fairly straight 

forward. So, I am going to have u prime as u cos theta plus v sin theta and I have v prime 

as minus u sin theta plus v cos theta. And this you would have done in your earlier 

courses, it is only recalling what you have learnt. And this could be represented as a 

matrix operator, what we are going to do is, I know u comma v, I want to find out u 



prime v prime, and this can be obtained by pre multiplying u v by a matrix cos theta sin 

theta minus sin theta cos theta. So, I have this rotation matrix. 

So, what I have is, when the light enters the retarder, I would put this rotation matrix to 

find out the components of light that passes through the slow and fast axis. So, I will 

have a rotation matrix. And you have to be very careful about what is the notation that 

you are using, theta, how it is defined. See, in our development we define theta as the 

orientation of the slow axis with respect to the horizontal. One can also develop with 

respect to fast axis, one can also develop with respect to slow axis. We will consistently 

find out theta as the orientation of the slow axis with the horizontal. We need to have a 

sort of a convention, we use this type of convention for all our mathematical 

development. 
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So, now you have the rotation matrix. We will also try to find out how to represent the 

retardation introduced within the model by a retardation matrix. And what we want to 

do? We will consider a retarder that introduces a phase difference delta between the 

ordinary and extraordinary rays. And how we introduce this delta? This can be written 

down in many different ways, and I said that retardation could be considered as minus 

delta by 2 along the slow axis and plus delta by 2 along the fast axis. 

So the idea here is, we would like to have a nice matrix representation and we will 

follow some convention to facilitate how we analysis different optical arrangement. If we 



develop some equations to start with, the same set of equations could be used if we 

follow the same convention, that is the idea behind it. And we would like to have slow 

axis as orientated at angle theta. And what we will do is, we will use complex number 

notation and we will represent the emerging light, this makes our life lot more simpler 

and that is what we will do. And when I do this, I can represent the retardation 

introduced within the model comfortably as like this. 
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So, what I have here is, I have u prime v prime which is equal to, we take the real part of 

e power minus i delta by 2 0 0 and e power i delta by 2. And why I have e power minus i 

delta by 2 here? Because I understand that this is the slow axis and this is the fast axis. 

So, because I write by retardation matrix with the first element as e power minus i delta 

by 2, I should always represent theta referring to slow axis with respect to the horizontal. 

And this is the general light that is impinging on the retarder, this what happens inside 

the retarder. Within the model or within the crystal plate, you have ordinary and 

extraordinary beams, acquire a phase difference of delta, which is represented as one half 

split to the slow axis, another half split to the fast axis. And what we do in all our 

mathematical development is, we will remove this R, we will not write that explicitly for 

convenience. We understand that we deal only with the real part and we will simply have 

the retardation matrix written as such. 



So, what we have now seen is, we understood a retarder in general introduces a rotation 

and a retardation. And rotation matrix, you have seen in many of your earlier courses, it 

is nothing new. When you are having a vector, if you want to represent the vector with 

respect to another axis which is rotated, you use the rotation matrix, the same rotation 

matrix comes here also. And within the retarder, because of the, if it is a model, it is 

because of the loads that is applied, the waves acquire a retardation, and if it is a crystal 

plate, you may have a quarter wave plate, you may have a half wave plate or you may 

have a full wave plate to fill in your optical arrangement. So, it will give a particular 

value of retardation for a given wave length. You understand that we do all this 

development for monochromatic light source. We have already seen retardation is a 

function of wave length. And our mathematics will become simpler if I confine my 

attention first to monochromatic light source, later on you can develop, if time permits 

we will also develop, see what happens when I have a multiple wave length. 
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Now, what we will look at is, these two are elements only, now we will have to 

understand what happens in a retarder, how do I mathematically represent a retarder, that 

is what we will see now. So, what we are going to do is, we are going to have 

representation of a retarder. And here I have given for clarity, when I take a retarder, I 

will recognize a retarder having two axis, I will label one of them as slow and one of 

them as fast. And I will find out the angle theta of the slow axis with respect to the 

horizontal, my reference axis is horizontal x and y. And I will always represent the 

retarder by two parameters, what is the retardation introduced and theta. 

So, delta is the retardation introduced by the retarder and theta is the orientation of the 

slow axis with respect to the horizontal, this you should never forget. Because when we 

develop mathematics, we need to follow some convention, we are only representing a 

convention here and this convention we will consistently follow for all our analysis of 

other optical arrangements as well. And what you will have to know? I have this as a 

reference axis, the model has slow and fast as the reference axis, but I would finally like 

to have reference axis as only x and y, and within the model I have a retardation 

introduced, but this retardation also I will introduce only along the slow and fast axis. 

These are all subtle points, see if you understand this now, when we go and develop 

compensation techniques, why we do the steps involved in a compensation technique, 

you will immediately understand, carefully listen to what I say. When you take a 

retarder, I have a reference axis, slow and fast, we introduced minus delta by 2 along the 



slow axis, plus delta by 2 along the fast axis and it comes out as a light ellipse. When it 

comes out as a light ellipse, I will still want to have this represented with respect to the x 

and y direction. So, retardation within the model is introduced only along the slow and 

fast axis, only then I can do that, that is what the retardation matrix explicitly gives you. 

So, whatever the matrix operation I do, I must rotate it back to reference axis. So, if I 

want to mathematically represent a retarder, I need to have three matrices to represent a 

retarder with x y as the reference. Is the idea clear? I will repeat again and you will also 

do the mathematics behind it, then it will become crystal clear that this is what will fully 

represent the action of a retarder if you have x y axis as the reference. I do not want to 

keep changing my reference axis from one element to another element. Element has a 

reference axis, that reference axis we said, one you can label it as slow axis, one you can 

label it as fast axis. Though you do it arbitrarily, when you are actually making a 

polariscope, you can match your mathematical development with the polariscope that 

you have. That is called calibration, that is required in digital photoelasticity, that may 

not be required in conventional photoelasticity because fast and slow axis do not play a 

major role in conventional photoelasticity. But when you learn the photoelasticity subject 

in 2010, you will have to know aspects of digital photoelasticity as well. So, it is better 

that you learn the knowledge which will fit into the digital photoelasticity comfortably. 
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So, what we are now looking at is, I have a retarder, I have a reference axis x comma y, 

the moment light hits the retarder I will have a rotation matrix, then I will have a 

retardation matrix, then a reverse rotation matrix so that whatever the exit light ellipse is 

referred back to x and y reference. So, this is what I am going to do. So, what I am going 

to have is, I am going to have a rotation matrix. So, we will right one after the other, also 

look at the animation, you will have this appearing in a particular sequence, that is how 

light gets modified in a retarder. When it hits the model, you have this rotation matrix 

cos theta sin theta minus sin theta cos theta, then within the model it acquires a 

retardation, and this retardation matrix and rotation matrix are interrelated. Because I say 

theta refers to slow axis, because it refers to slow axis, I put retardation matrix in this 

fashion, I put e power minus i delta by 2. If I had referred theta with respect to fast axis, 

this would change to what? This would become e power i delta by 2. Because I refer 

theta with respect to slow axis, I put this as e power minus i delta by 2, then fast axis will 

give e power i delta by 2, and this would be referred with respect to what, I have already 

rotated with respect to the reference axis of the retarder, I introduced retardation only 

along those reference axis, so this definition will have only the crystal plate or model 

reference axis.  

But we want to have, if I have multiple optical elements, it is better each optical element 

output is referred back to the x y axis, then I can repeat the same thing for every optical 

element, then you have a simple matrix manipulation that will tell you what is the exit 

light. In trigonometric resolution, you have to find out it enters the model, it introduces a 

retardation within the model, and then rotate back, all those steps you have do it 

individually, now you do not have do that. If I have once, I multiply all these matrices 

and keep it as a ready reckoner, you just plug in the value of delta and theta into this, 

provided you define delta and theta correctly, theta refers to slow axis with respect to the 

horizontal is the convention we follow, you can follow any convention, but the 

convention we follow is that. 

So, now I will also have a reverse rotation matrix. So, I have a rotation matrix as light 

hits the retarder, within the retarder it introduces a retardation, and whatever the 

modification that has been done by the model I want to refer it back to the original 

reference axis as x comma y. So, I put a reverse rotation matrix. But what I want is, I 

want you to do the matrix multiplication right in the class, and when you do this, you 



expand this e power minus i delta by 2 as cos delta by 2 minus i sin delta by 2 and do the 

simplification. So, that is what I have been saying, in photoelasticity you need to have 

matrix manipulation, you also need to know trigonometric identities. If you know these 

two, development of mathematical aspect of photoelasticity is lot more simpler. And 

once you do this matrix multiplication and have this result as aready reckoner, then 

finding out what happens in a quarter wave plate or what happens in a half wave plate or 

what happens in an actual model, it becomes very simple for you to write. 
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In fact, I want you to develop it right in the class, so that the understanding becomes 

complete, and when you refer back to the notes, you do not have to feel that this is 

something different, you have already derived it in the class and it is fairly simple and 

straight forward. All of you know how to do matrix multiplication and how to simplify 

complex quantities, take a little bit of your time and then do this. 

I think some of you are half way through. And in matrix multiplication even the 

sequence matters, if I have put the matrices in a particular order, multiply them in the 

same fashion. And when I do the final simplification, the final matrix takes a form like 

this, and if some of you can verify. So, I have this as cos delta by 2 minus i sin delta by 2 

cos 2 theta, and I have this as cos delta by 2 plus i sin delta by 2 cos 2 theta, and if you 

look at closely there is only one small sin change between the diagonally elements, and I 

have this as minus i sin delta by 2 sin 2 theta and this is minus i sin delta by 2 sin 2 theta. 



So, this represents completely what the retarder influences the light that impinges on it. It 

accommodates what is the orientation theta, it also accommodates what is the retardation 

introduced by the retarder. 

So, the representation of a retarder clearly shows that I can represent it as a matrix like 

this. If I know this matrix and it is also very easy to remember, they are not very 

complicated terms, I have cos delta by 2 cos delta by 2 here, and there is only a sign 

change, i sin delta by 2 cos 2 theta instead of cos 2 theta, I have this has i sin delta by 2 

sin 2 theta. So, it is also very easy to remember, and even if you forget, you can always 

go back and write this basic multiplication sequence and get the result even at the 

examination, that is not difficult. But what you will have to keep in mind here is, we 

have taken theta as the slow axis with respect to the horizontal. 

So, now what we will do is, we will look at what are all the optical elements that we may 

think of in a polariscope, we may have a polarizer, we will have a quarter wave plate. So, 

I need to know, how do I represent the polarizer, how do I represent a quarter wave plate. 

And a model will be represented as a retarder, because model I do not know what is the 

delta it introduces and what is the theta it introduces, we do not know, we want to find 

out as part of the experiment the value of theta as well as value of delta. Delta, you 

indirectly find out by finding out the fringe order. And theta, you find out from the 

isoclinic angle. 

So, model can always be represented by a complex matrix like this, and this is for a 

retarder. When I say a retarder, you have to keep in mind, I have this axis in an actual 

model corresponds to principle stress direction, and I implicitly look at only a single 

plane. In practice, you have a finite thickness because there is two- dimensional model, 

surface free, you also make an assumption that principle stress direction does not change 

within the model thickness. Suppose, I take a three- dimensional model and take a slice 

out of it, in general the principle stress direction will change from plane to plane, you 

should never forget that. So, that is why two- dimensional photoelasticity is fairly 

simple, I could correlate whatever the result I get from optics to physical parameters 

comfortably. The moment I go to three- dimensional photoelasticity, what do I do, 

mathematics becomes very complex. In order to simplify the mathematics, I said there is 

a stress freezing and slicing process, I have a three- dimensional model, I lock in all the 

stresses, I take out the slice. When I take out the slice, I will say that, I will use a very 



thin slice, bring in engineering approximation, principle stress direction remains 

constant. So, this is how the approximations come. 

See, you should know the procedure, you should also know what are the approximations 

involved. You should not conclude, you have taken a model of 6 millimeter thickness 

and put a diametral disk compression, you have analyzed it. You have analyzed it 

because it is a two- dimensional model and thickness is also sufficiently small, and 

because of the way I apply the stresses, principle stress direction remain constant is a 

reasonable approximation over the thickness, only then interpretation is possible. 

Because what is the interpretation that we finally come to? We essentially find out what 

is the slow and fast axis and these axes should remain constant over the thickness of the 

specimen. So, thinner the model it is better. But if you have a thin model, when I apply 

compression it will buckle. So, you need to have thickness, so that buckling is avoided. 

So, these are all practical considerations. So, you have to understand the practical 

consideration and also appreciate the approximations involved.  

And what we have seen in a retarder is, retarder introduces a rotation, and within the 

retarder you are adding or subtracting retardation only along the fast and slow axis, that 

is only along the principle stress direction, remember this, then we do a reverse rotation. 
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First, we will take a very simple optical element like a polarizer wherein there is no great 

mathematics involved, it is only a representation for convenience. And what I have here 

is, I have a simple polarizer, I can say that theta equal to 90 degrees and delta equal to 0. 

I do not even have to go for a matrix representation, I can simply represent this as a 

vector. I send only a component of light along the y axis is what my vector should say, 

and that is easily represented by 0 comma 1. A simple vector like this is sufficient to 

represent polarizer, nothing more is required. Only when I come to a quarter wave plate, 

I need to have a look at how it is orientated and it is a retarder, but the retardation is 

known, a quarter wave plate gives a retardation of pi by 2 radians. So, that is what we 

will have a look at it, and then we have this as quarter wave plate, and quarter wave plate 

used in a circular polariscope are retarders giving a retardation of pi by 2 radians. So, we 

know the retardation. And we keep the quarter wave plate at appropriate angles, one such 

angle is 135 degrees, the other angle is you can also keep it at 45 degrees, and look at 

how the retarder is represented. So, what I have here is, I have the reference axis as x and 

y, I have a quarter wave plate with slow axis, and when I show theta I show the reference 

from the horizontal to the slow axis, theta is the angle of the slow axis, and fast axis is 

represented here. 

So, when I have a quarter wave plate orientated at 135 degrees, I write delta equal to pi 

by 2, theta equal to 135 degrees. On the other hand, if I put theta equal to 45, I would get 

a different answer. Unless I keep the quarter wave plate slow axis at 45 degrees, I cannot 



put theta equal to 45. So, you have to represent theta very carefully. Theta is always, in 

our representation, orientation of the slow axis with respect to the horizontal. Once I 

know delta and theta, it is child’s play. You have an expression what a retarder does, 

plug in the values of theta and delta, and because these values are very nice, even your 

sin cosine terms reduce to known simple quantities, it is very simple, make an attempt 

and try to find out what the values are. 

The retarder is cos delta by 2 minus i sin delta by 2 cos 2 theta, then I have minus i sin 

delta by 2 sin 2 theta minus i sin delta by 2 sin 2 theta, similar terms here, this is 

symmetric actually. Cos delta by 2 plus i sin delta by 2 cos 2 theta, this is the 

representation of a retarder. Now, you want to find out for a quarter wave plate which is 

orientated at 135 degrees, the angle is also given. Why do we have it as 135 degrees? We 

want to have a circularly polarized light. Because we want to have a circularly polarized 

light, we keep it at 135 and 45 in conventional photoelasticity. In conventional 

photoelasticity, these are the two orientation of the quarter wave plate popularly used. 

So, when I substitute delta equal to pi by 2, theta equal to 135, you will get a very simple 

expression, and it really makes your life simple, when you have to go and analysis a 

circular polariscope. And I want to right now plug in the values of theta and delta and 

simplify, and it will definitely make your life simple when you want to analyze circular 

polariscope. In fact, I would recommend all of you to try out trigonometric resolution for 

a circular polariscope, then analyze the same problem by Jones calculus, then you will 

find out how Jones calculus is very simple. Until then you will not find out because you 

have to do matrix multiplication, you may find, I have to do matrix multiplication which 

have studied long time back, I am not able to do comfortably now. But if you do that, it 

becomes lot more simpler to analyze any type of optical elements kept in a polariscope, 

at any orientation you could comfortably analysis. And in fact, Jones calculus paved way 

for the developments in digital photoelasticity also, you could analysis any given optical 

arrangement very quickly by employing Jones calculus. I think now you must have done 

the simplification, please verify the result, it is simply 1 by root 2 1 i i and 1, and if I 

change to theta equal to 45, you will have a very small change in this representation, as 

simple as that. 
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So now what we will do is, we will go an analysis what happens in a plane polariscope. 

So, what we are going to do is, we have looked at a plane polariscope, where I have a 

polarizer, I have a model and I have an analyzer. So, what I need to do? I need to put 

polarizer in it’s mathematical representation, then just replace only the model by the 

matrix that you have solved, that is all you have to do, I do not even have to worry about 

the analyzer. If I look at only the horizontal component of that, I know what is the light 

transmitted by analyzer, it is as simple as that, it is too simple. For a plane polariscope, 

trigonometric resolution is also needed because that gives you understanding what 

happens in each optical element, that is needed. We did a logical explanation, we did a 

trigonometric resolution, we will also analyze the plane polariscope by Jones calculus. 

The reason is, you understand all the three methodologies. A logical explanation may not 

be possible when I have many optical elements, many optical elements will complicate 

your logical explanation. 
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So, we will see what happens in a plane polariscope. So, we are going to say analysis of 

plane polariscope by Jones calculus and I will repeat the animation, you will see here my 

interest is to find out the light vector E x and E y. And I would also write this starting 

from the right, first I will say this is the light impinging on the model. So, I will put k e 

power i omega t first, then I will look at what is the first optical element, represent the 

optical element. First optical element here is polarizer and you have already seen how to 

put polarizer, I will simply put 0 and 1. And what is the next element? You have only the 

model and you have already written down how to represent a retarder. In fact, you can 

put the rotation matrix, retardation matrix and reverse rotation matrix, and then finally 

arrive at this. But instead if you directly write, it saves your time and very simple to 

remember, it is not difficult, which you will be in a position to do. 

And this would give me what is the component of light along the x axis y axis. And what 

I need to find out? I need to find out the amplitude, because I said all the sensing 

elements only record amplitudes. So, that is what we will see now. So, what I have here 

is, k e power i omega t is the incident light vector, E x and E y are the components of 

light vector along the analyzer axis and perpendicular to the analyzer axis respectively. 

And intensity of light transmitted is simply E x into E x star, where E x star is the 

complex conjugate. And once I know E x, I can easily find out E x star, and this matrix 

multiplication is very simple, and I get the expression for light simply as I a sin square 

delta by 2 sin square 2 theta, which is same as what you have got by trigonometric 



resolution, absolutely no change. Only the mathematical procedure is different and here 

both trigonometric resolution and Jones calculus require the similar effect, there is no 

change in the effect involved, effect is almost similar. You really do not see the 

advantage of using Jones calculus for a plane polariscope, but definitely improves your 

understanding how to apply Jones calculus in analyzing optical elements of polariscope. 
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Now, what we will do is, we will look at what is a circular polariscope. I have the optical 

diagram here and let us see what are all the elements that you have. I have the light 

source, after the light source I put a polarizer, then I put a quarter wave plate which is 

orientated at 135 degrees, then I put a model which is loaded, after the model I put a 

second quarter wave plate and this quarter wave plate is kept at 45 degrees, then I put an 

analyzer. 

So in a circular polariscope, I have two elements before the model and two elements 

after the model. And if you watch it very carefully, I have the fast and slow axis and the 

slow and fast axis of the second quarter wave plate are crossed. What I have in first 

quarter wave plate and what I have in second quarter wave plate are aligned such slow 

axis of second quarter wave plate is perpendicular to the slow axis of the first quarter 

wave plate. And I have the polarizer and what I see here is, I keep the analyzer parallel to 

polarizer, then I have the background as bright. 



I will repeat the animation, you will see that when the analyzer is horizontal, in addition 

to quarter wave plates being crossed, polarizer and analyzer are also crossed. You will 

see the background as dark. All that we will develop equations later, first make the 

observation. And I also bring in the expression which you can derive, we will also 

derived, and what you find here is the intensity of light transmitted is a function of delta 

alone, it is no longer a function of theta. So, what I seen in the screen? I see only one set 

of fringe contours. So, first knowledge in using a circular polariscope is, instead of two 

fringe contours I see only one set of fringe contours. And I repeat the animation, you just 

have a look at it. 
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So, what I have here is, I have the polarizer, first quarter wave, plate, model second 

quarter wave plate, no change is done. Instead of analyzer vertical, I have kept analyzer 

horizontal, I see this as background as dark, and I see fringes also in a particular fashion. 

See, if you recall, in a plane polariscope, we had only the dark field, we never look at the 

bright field, bright field was not giving any information. And here I have the light 

intensity transmitted as I a sin square delta by 2. And when I keep it vertical, what I 

have? I have this as bright field and this equation also has changed. 
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Now, you know the intensity light transmitted. So what I would suggest is, do the 

analysis of light that passes through the circular polariscope purely by trigonometric 

resolution. Look at what happens in the polarizer, what happens in the first quarter wave 

plate, what happens in the model, what happens in second quarter wave plate, then how 

do you look at in the analyzer and then which component you are looking at. Both 

horizontal and vertical component give you physical information. So, take this as an 

exercise, complete this exercise and come for the next class. Do it only by trigonometric 

resolution, it will run into several pages, and we will do the same thing with Jones 

calculus, you will find how elegant and simple it is. So, from now onwards, we will use 

only Jones calculus for all our development, but please do the analysis by trigonometric 

resolution for a circular polariscope. I have a polarizer, I have the first quarter wave 

plate, I have the model, I have the second quarter wave plate and I have the analyzer. 
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And you can also have a look at this, what happens in a white light, when I put it in 

white light I see colored fringes beautifully. And this flip between a dark field and bright 

field and watch what happens. Whatever these two are complementary fringe patterns, 

look at that, whatever the gaps that you see in one field it will fill by the other field. Just 

look at the animation. If you watch from that perspective, you will find that there is a 90 

degrees shift. So, that is what we will see. 



In this class what we have looked at was, initially we looked at, what we do in a plane 

polariscope, what kind of fringe patterns you get, and we recalled that we did a 

trigonometric resolution to find out what happens to the light that passes through the 

model and how you perceive it at the analyzer, we found that it is a function of delta as 

well as theta. And I mentioned, when you have multiple optical elements doing 

trigonometric resolution is lot more cumbersome and it is better that we develop a new 

mathematics called Jones calculus, which will simplify your analysis when you have 

multiple optical elements. 

So, in Jones calculus you try to represent the modification introduced by each of the 

optical elements as a set of matrix operators. So, we found that a separate matrix for 

rotation, a separate matrix for retardation, then we represented how to mathematically 

identify the role of a retarder. We had a mathematical representation of a retarder and I 

said that, in this the angle theta refers to slow axis of the retarder, that is how the final 

matrix was obtained. And once you know the retardation matrix, any set of optical 

elements in a polariscope can be comfortably analyzed, if you know delta and theta. 

Finally, we looked at what are the elements in a circular polariscope and I suggested that 

you try to do a trigonometric resolution, and you will find that it becomes quite 

cumbersome for the number of optical elements that you have. On the other hand, when 

we do by Jones calculus, mathematics becomes lot more simpler, which we will see in 

the next class. 


