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The main focus of discussion in the last class was, when the relative retardation is 

changed, you are able to get light of different ellipticities, azimuth and also handedness. 

So, that gives you a hope by measuring the characteristics of the light, it is possible to 

find out what is delta. And in fact, there is a whole body of optics literature what you call 

as ellipsometry, which tries to find out the azimuth, which finds out the handedness and 

also the ellipticity. Fortunate in photoelasticity, particularly two-dimensional 

photoelasticity, we do not have to go to that much detail, we can simply use a plane 

polariscope or a circular polariscope and analysis the light, exit light characteristics. So, 

it is lot more simpler, only when we go in for a three dimensional photo elastic analysis, 

we invoke certain aspects of ellipsometry in more detail. 

And what we looked at next was, for all our photo elastic analysis, it is desirable that we 

understand what is a light impinges on the model. And we said that, the simplest light 

that you can impinge on the model is plane polarized light. And for getting a plane 

polarized light, what we did, we said that we are using a sheet polarizer. And a sheet 

polarizer is like this, that is what we saw in the last few classes earlier. You have a sheet 

polarizer, which is very convenient for you to rotate, and it is also easy to have a larger 

field, and it is desirable how this acts like a filter, because I said when you have a natural 

light, this acts like a filter and you get only plane polarized light that comes after this. 
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And for you to understand this, you should know some aspects of crystal optics, only 

then you will be able to appreciate even the physics behind a sheet polarizer. And that is 

what we have looked at in the last class, polarizers in sheet form. And what we learnt 

was, within the polarizers sheet, the horizontal component is absorbed by the polarizer. 

And for illustration, this is shown, which a large thickness, in reality it is very thin, and 

this phenomena is called dichroism. So, a dichroic material is one which absorbs light 

polarized in one direction more strongly than light polarized at right angles to that 

direction. 

So, what you find is, from the natural light, it allows a vertical component, vertical 

vibration are only partially absorbs, and you have this horizontal component is fully 

absorbed. So, you have the net result is, for the natural light source, you get only a plane 

polarized light. 
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So, a linear polarized light is transmitted by a dichroic crystal. And if you look at the 

nature, you also have certain materials which are dichroic. So, what you find is, you have 

a tourmaline is one example of a crystal being dichroic in it’s natural state. Like we have 

seen natural crystals which is birefringent, and you also have tourmaline, which is one 

example of a crystal being dichroic in it’s natural state. And what we have seen while 

making the polarized sheet was, you had polyvinyl alcohol stretched. So, the other 

possibility is the most common dichroic polarizers are made of stretched polyvinyl 

alcohol. In general, they are stretched polyvinyl alcohol sheets treated with absorbing 

dyes or polymeric iodine. So, what you have is, various materials are dichroic either in 

their natural state or in a stretched condition. Tourmaline is one example of a crystal 

being dichroic in it’s natural state, and when I come to the common polarizers sheets, 

they are made of stretched polyvinyl alcohol sheets treated with absorbing dyes or 

polymeric iodine. 

And let us look at what each of these steps really influence. So, what you find is, 

stretching of the sheet, orients the molecules parallel to the direction of strains and 

renders the material doubly refracting. So, the first step is you stretch it and because of 

the stretching process, the sheet becomes doubly refracting. So, it behaves like a crystal. 

You have two refractive indices, you have ordinary and extraordinary travel through it. 

And what happens is, when I, the material becomes dichroic when stained with iodine. 



So, dichroic means it absorbs one component of light vector, it allows the other 

component. So, essentially you get plane polarized light. 
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And you should also make a distinction, and this is very important. The dichroic 

materials are to be distinguished from birefringent materials. Birefringent materials have 

similar absorption coefficient for ordinary and extraordinary rays. See, for you to do 

photo elasticity, you need birefringent materials, and birefringent material the absorption 

coefficient is same for ordinary and extraordinary ray. But for polarized sheet, you have 

dichroic material, it absorbs one of the rays completely and it allows the other ray 

unhindered, and you are able to see. And you should also see a very subtle point here, 

see I said engineering is approximation, and when you are looking at polarization optics, 

I said after the polarizer and till the analyzer, we do not assume any absorption of light 

intensity. So, in reality there may be a small absorption of ordinary and extraordinary 

rays, which could be neglected. So, we made that kind of an approximation from 

practical stand point. 

So, what is important is, we need to know what is the characteristic behind sheet 

polarizers, because that are really advanced photoelasticity analysis, because if we have 

to work only with Nicol prisms, then you had only very small area for you to analyze the 

amount of polarized light, availability is small, the region of interest could be small, once 



you have sheet polarizers, I can have a large sheet and large models can be looked at 

comfortably. 
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And what is fundamental to all of this photo elastic analysis is, understanding what are 

retardation plates and wave plates. And this animation you will be looking at it again and 

again in this course. This is the cuts of photo elasticity, we will again have a look at it. I 

have a natural light source, becomes polarized when it hits the front surface of the model. 

You have this split into two light components. They travel within the model, acquire a 

retardation and in general, you get an elliptically polarized light. 
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And we have seen, by changing delta, the characteristic of the ellipse can change. And 

there are few important cases, which are of relevant to photo elastic analysis. And we 

keep using a optical element called a quarter wave plates, the name signifies it introduces 

a retardation of delta equal to pi by 2. And this is essentially a crystal plate, the property 

is same at every point on this body of the crystal plate. And what we have learnt as the 

process of this animation was, you find one of the rays travels faster and you have this on 

this plane, the ray travels faster and you call that axis as f axis. And you have another 

plane which is mutually perpendicular to this, the ray trails behind it, you called this as a 

slow axis. So, once you go to a crystal plate, you will always look for a fast and slow 

axis. And what is the advantage is, when delta equal to pi by 2, we have already seen 

from various states of polarization, the major and minor axis of the ellipse coincide with 

the reference axis, here it is labeled as fast and slow axis. And essentially, the azimuth of 

the ellipse is 0, if I have this as horizontal. If I have this axis as horizontal and vertical 

axis, the azimuth will coincide with the major and minor axis of the, the major and minor 

axis of the ellipse will coincide with the reference axis, fast and slow axis. 

So, that is an advantage. So, this understanding is very much important, when we look at 

an elaborate optical setup, where how do these optical elements contribute to formation 

of different types of fringe pattern. Because we are also going to look at a plane 

polariscope, we are also going to look at circular polariscope, in conventional 

photoelasticity. If you go to digital photoelasticity, people have no restriction on what 



kind of input light you should send, people had experimented on various combinations, 

and there you will know a physical appreciation of how these element contribute to the 

complete experiment, you will be able to understand it better. 
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On one hand, we have quarter wave plate, on the other extreme, I have a full wave plate. 

What is the definition of a full wave plate? It introduces the retardation of one complete 

wave length. So, it is as good as, the crystal plate is not there, when I have a full wave 

plate, it is as good as the crystal wave plate is not there. So, this could happen at 2 pi, 4 

pi, 6 pi, the essential process is same. So, whatever the input light I send, the same light 

will come out at the exit point. And this is a very important aspect, and this is what we 

will use it for investigating what happens in a plane polariscope. Though we developed 

various states of polarization by looking at elliptically polarized light, that knowledge is 

essential for appreciation. For understanding plane polariscope, you will have to just 

analysis whether the light coming out of the model is plane polarized or not. 
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And what you find here. I have also shown semantically that the thickness of the plate is 

increased, to provide you large value of retardation. And what happens when I go to a 

half wave plate? When I go to a half wave plate, a simple argument is, I will have instead 

of a cos omega t, suppose I give only in this there is a retardation, this will become a cos 

omega t plus pi, so that is nothing but, minus a cos omega t. So, you will have a 

component here. So, you will have, the resulting will be in this direction. So, a plane 

polarized light which is instant on the model, remains plane polarized but rotated by 

angle 2 theta. It is very interesting. 

So, what you find here is, when you go to three dimensional photoelasticity, we also 

learnt what is a rotator that could be reasonably understood, when I look at how a half 

wave plate behave, it is for a plane polarized light. So, similarly people found there are 

ways that you can rotate the light ellipse, the elliptic characteristic will remain the same, 

only the azimuth will change it’s direction. So, that is what a concept of a rotator. 
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So, what you have here is, in a half wave plate, I have delta equal to pi, in a quarter wave 

plate, delta is equal to pi by 2, and a full wave plate, delta equal to 2 pi. Let us 

summarize this is concept of also summaries in this slide. And so, what you find the first 

observation is, when I have a crystal plate, even when I send a linear polarized light 

impinging on the crystal plate, the emerging light is in general, elliptically polarized. So, 

that is the general observation number one. And if I so adjust the thickness of the plate to 

produce a phase difference of pi by 2 radian, then I call that as a quarter wave plate, it is 

also labeled as lambda by 4 plates. If the retardation is pi radian, then it is a half wave 

plate, if the retardation is 2 pi radians, one gets a full wave plate and the incident light is 

unaltered. And this understanding is very important. Even before we go and find out the 

expression of delta, a clue is given and the sketch was also drawn, that thickness is one 

parameter which I could play with to get different values of retardation. That is the 

simplest, when you look at the expression, when you look at, it acquires retardation 

within the model. 
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So, it is easy to anticipate by changing the thickness. So, what we will have to look at is, 

when I say a crystal plate, I should look for two reference axis, one is the fast axis and 

slow axis, and I also have to know what is it’s refractive indices, n 1 and n 2, I should 

know what is it’s thickness. So, what I will now try to do is, I will get an expression for 

delta, which is a function of the optical properties of the crystal plate. That should be our 

next goal. Your first thing is, we said delta is very crucial, any changes in delta is 

reflected in the nature of exit light ellipse, and now we go back and find out whether 

delta could be evaluated from the parameters of the crystal, whatever the crystal plate 

that we think of. So, that we will do that. So, what we want to do is, we want the express 

the relative retardation in terms of the thickness and optical properties of the crystal 

plate. 

So, what you want to do is, when I say optical properties, what are the properties. I have 

refractive index n 1 and refractive index n 2, or you can also classify it as ordinary ray 

refractive index and extraordinary ray refractive index, that is fixed for a crystal. The 

difference between a crystal and a model is, every point in the crystal has same behavior, 

every point in the model in general, will have different behavior, depending on the 

stresses introduced. Suppose, I take a tension specimen, apply uniform tension, then it 

will behave like a crystal plate only, because you are applying a uniform state of stress, 

so every point will become identical. Leaving that apart, in a generic situation, the local 

stress state dictates what would be the properties of the crystal at that point of interest. 



Now, what we want to do is, we want to get an expression for delta as a function of the 

thickness and properties of the crystal plate. 

So, how do you go about, what is the clue? Say, one ray travels faster; suppose I fix the 

thickness of the, because in practice, we will have a model of a particular thickness being 

analyzed. So, thickness of the plate is fixed. So, one ray will travel the say had a the 

thickness faster than the other. So, looking at, in other words, the time taken to traverse 

the thickness by these two rays will be different. And that is why we looked at, when we 

learnt Snell’s law, I said you have learnt in your Physics course at the school level, there 

you worried only about sin a by sin r, you never bothered to look at as ratio of velocities, 

and I said in photoelasticity, we have a purpose, we want to look at it ratio of velocities, 

now we use that knowledge and identify that the rays will take different time interval to 

traverse the thickness. 

Suppose, I have v 1 as the velocity, v 2 as the velocity, I will have h by v 1 and h by v 2 

is the time taken to traverse. And then, I have omega t as the phase and omega is nothing 

but 2 pi f. So, using this input, it is possible to write an expression for delta. That is what 

we are going to do. So, refractive index, whenever we want, we will look at as ratio of 

velocities, and we look at as a sensor, when I want to related it to stress. So, I use it in a 

way that help my theoretical development. That is what I am going to do. 

And so, what you find here is, the velocities of propagation within the crystal is different 

for the two rays, they will take respectively h by v 1 and h by v 2 seconds to traverse the 

plate. And we take h as the thickness of the plate. t, if I use, it indicates time. So, we 

want to have a different symbol for the thickness. And we take advantage of our 

understanding on refractive indices. So, this time difference contributes to the phase 

difference. Suppose, we have the frequency of light be f, then I can write the expression 

for delta. Can you try out? How you will write delta, make an attempt, even if it is 

wrong, it is fine, that is how you learn things. 

So, what I have here is, I know that ordinary and extraordinary ray travel with different 

velocities and I understand, because it has to traverse the same thickness, these will take 

different time intervals. Now, the question is, can I write an expression of delta in terms 

of the parameters that I know. You can go in stages, first you take the time difference, 

then look at how it can be converted into phase difference, then bring in certain 



identities, f can be written in different ways, and finally, write down that expression in 

terms of difference in refractive indices. That is how we will go, we will look at 

difference in velocities first, difference in time taken, then finally, write it as n 1 minus n 

2, that is my requirement, that is how I want the results to be reported. 
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I can do that, it is very simple, I think some of you might have got it, and that is what 

you have here. So, I have this as 2 pi f h by v 1 minus h by v 2, add again, rewrite f as c 

by lambda, where c is the velocity of light. And we have already seen, if I write c by v 1 

c by v 2, I can write it as n 1 and n 2, these are absolute refractive indices. And you have 

to note a very key important observation on this expression, I have the expression for  

delta, this is given as 2 pi h by lambda into n 1 minus n 2. 

So, what you find? Suppose I say, I want to have a delta equal to pi by 2, I want to have a 

quarter wave plate, I can find out what is the thickness corresponding to that. And what 

is hidden here? h will become a function of wavelength, it is very important. See, I said 

from mathematical development of photo elastic analysis, the mathematics becomes lot 

more simpler, if I confine our attention to monochromatic light source. Where does this 

come? Till now, we have not looked at, we wanted to see colors, so we used white light, 

we enjoyed seeing those bright colors. But when I come to mathematical analysis, we 

find a crystal plate behaves like a quarter wave plate for a given wave length. The same 

is applicable for wave plates as well as the model behavior. 



So, we would confine our attention, our mathematics will become lot more simpler, if I 

use monochromatic light source and do my photo elastic analysis. Now, you have also 

achromatic quarter wave plate; where the plate gives a phase difference of pi by 2 for 

different wave lengths, for a range of wave lengths, you have such plates available. 

When there is a problem, you have an opportunity for research, and research has 

developed a way to overcome this. So, that goes on parallely. So, what you have to 

understand is, in photoelasticity, why the wave length is important, monochromatic wave 

length comes hidden in the expression. Now, what we will do is, we will go back and 

then see what great scientists have contributed, how this could be related to sigma 1 

minus sigma 2, more by induction rather than clear mathematical development. 
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So, what you have here is, we called this, this law relates stress and optics, and I call this 

as stress optic law, it relates stress and optic, so I call this as stress optic law. And when I 

do this, I consider a transparent model material and this is made of a high polymer, and 

we also take for simplicity, subjected to a plane state of stress. And what you will have to 

note is, each statement you have to qualify. Let the state of stress at a point be 

characterized by the principle stresses, sigma 1 sigma 2. I am looking at a two-

dimensional state of stress, I can have a matrix involving sigma x, sigma y, dou x y and 

so on, but I can also represent the same stress sensor in terms its principle stress values. 

So, that is what is indicated here. Let the state of stress at a point be characterized by the 

principle stresses, sigma 1 sigma 2. 



And Maxwell, in 1852, formulated relations between stresses and the indices of 

refraction as. He conducted a series of tests, and then found out that n 1 minus n is 

related to sigma 1 minus sigma 2, it is a function of the material constant. So, what he 

found was, he found a direct stress optic coefficient C 1, and there is a transverse stress 

optics coefficient. And what he found was, that n 1 minus n, that is n 1 and n 2 are the 

refractive indices of the ordinary and extraordinary ray, and n is a refractive index in the 

unstressed state. 

So, based on a series of experiments, he was able to establish a relationship, n 1 minus n 

is equal to C 1 sigma 1 minus C 2 sigma 2, and n 2 minus n equal to c 1 sigma 2 minus C 

2 sigma 1. A similar exercise could be extension for three dimensions, which I am not 

paying attention now. And what you find here? We are interested in n 1 minus n 2. So, I 

subtract these two equation, then I can group the terms, and mind you, that C 1 and C 2  

depends on what is the transparent model material that I going to use. So, there is the 

material parameters that comes in the formulation. Whatever I see, is also a function of 

the material that I use. The arithmetic is very simple. If I want to relate it to sigma 1 

minus sigma 2, the arithmetic is very simple, there is no great deal about it. But to 

understand the physics, we have to look at how a crystal behaves, reinforce ourselves 

that for a one single incident ray there will be two refracted rays, the two refracted rays 

are plane polarized in mutually perpendicular direction, in general, they will be 

elliptically polarized, when it comes out the crystal. All that knowledge is required to 

appreciate the link, but if you look at the mathematics it is very simple. 
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Now, I am going to have rewrite this delta in a form convenient for us to use, and those 

steps are fairly straight forward, there is no great mathematics involved here. So, I have 

this as 2 pi h by lambda n 1 minus n 2. Now, we know n 1 minus n 2 in a different form, 

so I put this as C 1 plus C 2 into sigma 1 minus sigma 2. And what I have is, this is the 

material parameters and for convenience we replace it by another symbol in order to 

differentiate it from the velocity of light, we use a capital C, I can recast this equation. 

So, I have this as 2 pi h by lambda into capital C into sigma 1 minus sigma 2. So, it is a 

function of the material that I am going to use, and it is also a function of the wave 

length, that is very important. And if you go to any of the optical techniques, you would 

not tell the retardation in terms of radians. It is lot more convenient, if I label it as fringe 

orders, and I do not know how many of you have really looked at what is a fringe order. 

If you look at fringe order, it is defined as delta by 2 pi. So, if I say fringe order one, the 

relative retardation is. What is related retardation, delta by 2 pi, I say. So, the retardation 

is 2 pi. If I say fringe order and one, and fringe order one, fringe order two, fringe order 

three, you can go, and I can also have partial fringe orders. So, what we will do is, we 

will recast it, we will segregate the term delta by 2 pi. 
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Then, the expression becomes lot more simple to look. So, I will write this N, N as delta 

by 2 pi. So, I can recast this equation as h into C by lambda sigma 1 minus sigma 2, and I 

can write sigma 1 minus sigma 2 finally, as in this fashion, NF sigma by h. And we have 

introduced a new symbol for the term lambda by C in this fashion. And mind you, this is 

a very famous relation in photoelasticity, sigma 1 minus sigma 2 equal to NF sigma by h, 

a very famous relation. And if you know only this expression, it is not sufficient, it is 

misleading, that is why I put immediately F sigma equal to lambda by C. Because if you 

look at the basic equation, because you bundled some of those quantities by a new 

symbol, there is a chance that you may misinterpret where is the wave length comes in 

the expression, there could be mistake like this, and when we ask questions in the 

examination, then we understand that you have not understood it, until then it looks as if 

it is crystal clear, only one questions are asked, you find that your understanding is not 

complete. 

So, do not remember only this final expression, always think that F sigma is a function of 

wave length. Why we say function of wave length? Why we emphasize this? If you go to 

photoelasticity benches, some of the earliest benches, they had a mercury arc lamp, that 

was one of the easily available monochromatic light source, then people had sodium 

vapor lamp. So, these two wave lengths you come across, some of the old polariscope 

they may have only a mercury arc lamp, some of the recent polariscope, they may have 

white light as well as the sodium vapor lamp, and some of the material property stabled 



may have been obtain for a particular wave length, and you may have to use that 

property for your mathematical analysis, then I have to convert from one wave length to 

another wave length. So, that is, all that you can get by looking at F sigma is a function 

of wave length. And this is considered as independent of wave length for the most part of 

analysis and this also gives that this is a linear expression within limits. Suppose, I apply 

load, which are very close to plastic region, and I have very high stress gradient, this 

relationship is no longer linear, and you have to use it with caution. See, sometimes you 

look at an expression, whether the expression tells you or not, you assume many things.  

So, one of the first wrong assumption that is possible is, it is independent of lambda, is a 

wrong conclusion you can arrive at, also, because people have introduced F sigma for 

convenience. And F sigma, how it is defined, this also has units newton per milli meter 

per fringe, an F sigma is known as the material stress fringe value, and this has a units 

like this, and when a plug in here, I will get stress as empea, that is the purpose here. 

And many things you can understand from this expression. See, when I will introduced 

fringes from photoelasticity, even when you looked at the famous problem of four point 

bending, where you had tension and compression side, the fringes where always labeled 

positive integers. On the other hand, when we went to Moire, you found that fringes are 

numbered both positive and negative, whereas in photoelasticity you always number it as 

positive integers. Why is it so? That comes from this expression. Because when I say 

sigma 1 minus sigma 2, I always arrange the principle stresses in algebraically 

decreasing order, that is sigma 1 is the algebraically is the greatest, sigma 2 is middle and 

sigma 3 is the least. So, this will always be positive. 

Let me go back to my other question that I raised about three classes back I took. An 

aluminum disc and also a polyurethane disc. I said, polyurethane is one of the 

photoelasticity model material. And then, imagine that I apply a same load, I said what is 

the nature of the stresses developed. Because polyurethane is a plastic, which has a low 

Young’s modulus, you can visually see the deformation. Aluminum is  so strong, it has 

about70 gpa, and this is about 0.3 gpa, it is very small value. So, that deformation is 

definitely different, there is no two opinion about that. The question I asked was, for the 

same load and for the same size, how the stresses would be? It is a plain problem. Have 

you brushed your solid mechanics and found out? What do you anticipate? Stress will be 

same. I am happy to hear that. That is the very key point, without which there cannot be 



any photoelasticity. Suppose, I have three dimensional model, story is different. This we 

will see towards the end of the discussion on photoelasticity, we will look at the relevant 

mathematical equation and then show, I said in all the experimental techniques the 

Poisson ratio is a nuisance value, the Poisson ratio will do the spoiled sport, when I go to 

a three dimensional problem. 
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In planar problems, the stresses are same, it is very advantageous. Now, let us look at the 

expression, now what I have. See, if I have to use this expression, my interest is to find 

out sigma 1 minus sigma 2, that is very clear. From the experiment, I will have to find 

out what is the fringe order. And depending on the material that I use, if you look at 

photoelasticity, for class demonstration we bring in polyurethane, and then you have 

polycarbonate, you have epoxy, you have Perspex, you have even glass, they are all 

photoelastic material, and even the recently introduced stereolithography resin, they are 

all photoelastic sensitive material. And we use this for certain purposes, in class it is easy 

for me to apply the load and then show the generation of fringes very conveniently, 

And when I do an experiment, I want certain amount of satiability, I do not want model 

to deform and introduce large deformation, when I introduce large deformation, the 

whole analysis becomes different. So, I want to minimize deformation. So, that is one 

reason why I choose different material, that is also another reason availability, then you 

have what is called time edge effect, we will see all those issues later. So, the essence 



here is, there will be chances for you to use models of different material. So, each of this 

material, I need to find out the material stress fringe value. Now, the question is by 

looking at this expression for a given problem, I change the material, what would happen 

to the fringes. We have just now seen, I take aluminum disc or a polyurethane disc, for 

the same load applied stresses do not vary. Instead of aluminum disc, I am going to have 

arielle disc or poly carbonate disc or perspex disc and so on. So, in such a scenario, what 

happens? Sigma 1 minus sigma 2 will not change at a point of interest. So, this product 

will change appropriately. So, if I have F sigma is small, I will have more fringes, if I 

have F sigma is high, I will have less fringes, this product will remain a constant. And if 

we look at the kind of problems that can be coined, the arithmetic is very simple, if you 

understand the physics behind it, if you anticipate that this is how it has to, the left hand 

side, here it is the left hand side, sigma 1 minus sigma 2 does not change, and only the 

right hand side changes. So, they will adjust. So, you will see more fringes, less fringes. 

More fringes, less fringes is not the indication of the values, you need to know the 

material parameter, only when you know that, I can evaluate the stresses. And also this is 

very important, if I find out this parameter in accurately, then all my match between 

experiment and, if I want do the comparison, whatever I do from the experiment and 

analytical methods, they will not match if I measure this quantity carelessly. I have to do 

sufficient care in finding out. 

So, what we will do is, we will have a detailed discussion on how to find out F sigma as 

accurately as possible. And from photoelasticity point of view, we will have to find out 

how to get the fringe order N. I cautioned you even several classes back that in all optical 

techniques finding out the fringe order is tricky. You do not get it in the first go, you 

have to use auxiliary method, you will have to develop engineering equipment, you have 

to verify from varies methods of finding out, and then another question is, you find only 

fringe order and the fringes, you do not find out in between fringes, so you have to use 

compensation techniques.  

So, finding out fringe order is an issue. So, if I have to find out the stresses, I have to 

know the fringe order N and material parameter. So, what we will proceed is, we will 

first go and see how to get the fringe order, then we will have discussion on how to find 

out F sigma. But even before we discuss on these issues, let us have a look at what is it 

that photoelasticity can give. See, I said photoelasticity can give you directly only fringe 



order and the principle stress direction. How it is going to give, how we have to do, we 

have to look at the optical arrangement, understand, and then go about it. But even 

before get into that details, we can now find out from our strength of materials 

knowledge, can I extract what information if I know these two quantities that would be 

of interest. 
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Because even before we want to do an experiment on photoelasticity, you can be assured 

what I can get as information from stress analysis point of view to the extent possible. 

So, that is what we will see in the next slide. So, what is the stress information obtainable 

by photoelasticity. So, here for this discussion, we assume at a point of interest you know 

the fringe order, we have not yet looked at the fringes, how to find out the fringe order, 

what is the optical arrangement, all that we will take it up later. Suppose, I know the 

fringe order, I know the material stress fringe value, and I also find out theta, what I can 

do? So, I will go to the Moire circle and look at what it is. And take an advantage from 

your knowledge of most, it is not new, it is all we build on your understanding of solid 

mechanics, strength of materials, the foundations have to be strong, that is why we had a 

review on solid mechanics, you should know about Moire circle, you should know that 

stress is a sensor and Moire circle represents this beautifully. And what I have here, I 

have sigma 1 minus sigma 2 is given as NF sigma by h, and if I know the Moire circle, I 

can easily write, sigma x minus sigma y equal to sigma 1 minus sigma 2 into cos 2 theta. 



You all know, Moire circle you draw in the sigma and tau plane, I draw a circle and each 

point denotes the plane, and here it is x plane and this is y plane. And in Moire circle, all 

these angles are twice angles, that is why they are at 90 degrees it is shown at 180 

degrees. And when I have so many points on the boundary, it shows all the possible 

infinite planes, you can find out what is the normal and shear stress absolutely, no 

problem. So, that is why it is a beautiful representation. I do not know whether you 

looked at Moire circle from this point of view. When I said all the possible state of stress 

in all the infinite planes, when I have a point of interest, that is what you understand as 

stress sensor and a beautiful graphical representation is Moire circle. 

So, on the Moire circle, every point on the circle denotes a particular plane, and using 

this you can also find out what is the principle stress plane, what is the magnitude of 

sigma 1, and what is the magnitude of sigma 2, and simple geometry will help you to 

find out what is difference in normal stresses and also the shear stress. What is the value 

of shear stress? You all know it. It is simply sigma 1 minus sigma 2 divided by 2 into 

sine 2 theta. 

So, what you find is, from photoelastic analysis a simple normal incidence can give you 

fringe order N and theta at point of interest. And if I know the material stress fringe 

value of the model material, then I can go use Moire circle, find out normal stress 

difference as well as in plane shear stress. 

So, I can find out in plane shear stress very comfortably. And this is what I said, if you 

remember and recall, one of the very important problems in engineering is, I have a three 

point bends specimen, I want to find out what is the variance shear over the depth, I said 

when I go closer to the point of loading, though you have read in your simple strength 

material course that shear varies parabolically over the depth, this is no longer so when I 

go very close to the load application point. And I also mentioned, doing this analytically 

is possible; however, you have to represent this concentrated load by several Fourier 

harmonics is a circus. On the other hand, photoelasticity can give this information 

directly. 

So, what do you need to find out. Closer to the point of loading, I need to find out tau x 

y, tau x y means, I have to find out fringe order and theta. And in fact, you will do this as 

part of one of your laboratory experiment, you will find that so nice, so elegant. It is a 



very key point in strength of materials, though you learn it varies parabolically near the 

load application point, near the surface, shear is maximum. And even if you want do it 

by numerical analysis, you have to discretize the model very carefully, and also model 

the concentrated load as accurately as possible. 
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And is there anything like a concentrated load? It is an abstraction. Is there anything like 

a rigid body? It is again an abstraction. The concentrated load and rigid body goes 

together. In reality, all bodies are deformable. So, you live on approximations. And same 

concepts are required when we go and understand and interpret what is the result from 

photoelasticity analysis. 

So, what we have looked at here is, stress information obtainable by photoelasticity. 

Suppose, I know N, theta and F sigma, I do not have to say I get only difference in 

principle stress, I can also find out difference in normal stresses and in plane shear stress. 

So, in this class what we have look at was, we started looking at how to understand the 

physics behind the simple polaroid sheet, we found that they display the behavior of 

dichroism, very useful, we have taken advantage of that. Then we moved on to find out 

an expression for relative retardation and we found it is a function of the thickness of the 

crystal plate and also depends on the wave length. And we also reasoned out, why 

mathematics becomes simpler when we use monochromatic light source in 

photoelasticity analysis. 



Then we moved on to establish what is stress optic law. Maxwell has conducted a series 

of experiments, he found out there is a material parameter also comes in the equation, 

and I cautioned this material parameter is also a function of the wave length, you should 

not forget that. Because if you look at the expression, sigma 1 minus sigma 2 equal to NF 

sigma by h, it does not given an impression that is a function of lambda, but you have to 

keep in mind it is a function of lambda. 

So, the problems could be F sigma is determined in one wave length, I do it in 

experiment in another wave length, so you may have to do the modifications, then I use 

different materials, then I have to do. If you look at arithmetic in photoelasticity analysis, 

they are very simple, but the physics behind it, little involved, that is what we are looking 

at it. And once you know the physics, you can easily solve the problem and the most 

challenging and crucial aspect is finding out the fringe order value. That requires some 

type of training, understanding, and that is where digital photoelasticity aids in 

minimizing your effort. Thank you. 


