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You know, in this class, we will discuss concepts related to J-Integral. J-Integral finds
application in linear elastic fracture mechanics. It is a useful parameter in non-linear
elastic fracture mechanics. And, these concepts are extended for elasto-plastic fracture
mechanics. So, we will see all these aspects, as part of this chapter. And, what you will
have to really look at is, limited plasticity at the crack-tip was the focus in LEFM. And
with that, you could solve a variety of problems.
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So, there is an advantage. You had certain pressing need to understand, how crack-tip
structure would behave. You could immediately apply to a variety of problems. And
another point that you will have to note is, notably, for fatigue problems, the applied
loads are generally less than 30 percent of the yield stress. So, you are talking of
structures, which are loaded far below the yield stress; and you are confining your
attention to high strength alloys, and LEFM was sufficient. And, this was possible
because, you had only limited plasticity at the crack-tip. You know, as design

requirements expanded, this kind of analysis was not found to be sufficient. So, when



you have a different combination of geometry and loading, it could lead to expansion of

the plastic zone; so, the plastic zone is not confined.
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So, in such applications, linear elastic fracture mechanics would not be sufficient.

(Refer Slide Time: 02:05)

Extension of LEFM

Limdtied plasticity at the crack-tip was the focus in LEFM, which
was found (o be adequate for a wide variety of probams
notably fatigue problems for which the applied loads are
penerally kess than 30% of the yield siress

LEFM does not apply when the combsnation of geometry and

loading s such thal the plasiic zone & not confined

& direct approach iIncorporating ngorous plasthicty theory has
-

JpLowen etusive, and atemate approaches (hat expand and
r.a::.;rf— the already firmly grounded LEFM have baen

HNFTEL

adopied m EPFR

So, you have to look for newer methodologies. And the desire was, to account for elasto-
plastic fracture mechanics. And, what was the difficulty? A direct approach,

incorporating rigorous plasticity theory has proven elusive. See, if you look at plasticity



literature, it is very mathematically oriented and even in conventional problems, people
use some sort of a design approach. Because, you have to keep track of the loading
history, in any plasticity problem. So, if you want to have a rigorous plasticity theory,
which was not quite convenient, and people were looking at, what are the alternate
approaches. And in those approaches, what you really want to do is, you have already
learned concepts related to linear elastic fracture mechanics; how these concepts could

be modified and adapted for elasto-plastic fracture mechanics.

So, what you will find is, like we have looked at energy release rate, we will also look at
energy release rate. And, we have looked at r curve, we will also look at J curve, here.
So, there is similarity between what you have done in LEFM. There you had, fracture
toughness, K 1 C has to be determined; similarly, here, you will find out, J 1 C has to be
determined. So, there is parallelism in this, but you need to go through certain
approximations. So, before we get into elasto-plastic fracture mechanics, we will try to

understand what is J-Integral. That is the way, that we are going to proceed.
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And if you look at the literature, the J-Integral is credited to J. R. Rice and historically, if
you look at, the concept of COD or CTOD has been developed earlier than J; around
1961, Wells and Cottrell have reported, how to account for problems involving larger

zones of plasticity. Because, LEFM was confined to very small plastic zone. So, people



felt the need for developing fracture mechanics concepts to materials, which would have

a higher level of plastic zone.

So, one of the earliest approaches is that for CTOD and | said, crack-tip opening
displacement; you have to understand the terminology. We would postpone it for the
time being, but we would definitely see, as part of this chapter. And while discussing J
Integral, you cannot avoid CTOD. So, you take that as crack-tip opening displacement,
for the time being. And we will first develop J-Integral, then, get back to CTOD.

Historically, if we look at, COD was developed earlier and J Integral got developed later.
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And, you should also know, Rice’s work is one of the two most quoted papers, in all of
the fracture mechanics literature. This is because, the contribution has been very very

fundamental.
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And, what was that paper? This was the paper published in 1968, ‘A path independent
integral and the approximate analysis of strain concentrations by notches and cracks’.
This appeared in Journal of Applied Mechanics in volume 35. This paved the way for
elasto-plastic fracture mechanics, at least approximately. As engineers, we will have to
accept that. We will attempt for an exact solution; if you are unable to get an exact
solution, at least solve the problem approximately. So, I mentioned that, there are 2 most
quoted papers and what was the other paper? This paved the way for elasto-plastic
fracture mechanics; the other paper was, obviously, one by Griffith, which paved the
way for linear elastic fracture mechanics. He published in 1921, in the Philosophical

Transactions of the Royal Society of London.
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There was also another paper published in a conference in 1924. These two papers were
considered as fundamental ones for linear elastic fracture mechanics. You know, even if
you write the name of the author and the journal and the year, you should be in a position
to search it.
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So, now, we will look at, what is a J-Integral? And, before we get into J-Integral, we
have to look at, in elasticity, people have developed path independent integrals. And if
you take a two dimensional problem, you consider a planar situation. | have a plane X Y
and you take a closed contour and the contour shape can be arbitrary. On the closed
contour, at a particular point, we have depicted the outward normal and also the stress

vector acting on that plane, which is given as T n.



So, the boundary could be specified; whether we have traction on the boundary; there
could traction on some portions of the boundary. And, Eshelby introduced a number of
contour integrals. And one of them is picked up here. And this takes the form, like this. It
is essentially a line integral, taken over the contour, as shown here. And it has two main

terms. You know, in the literature, they put itas W into d y.

See, normally, we associate W to work done and it is better to change this symbol; |
would also show that. The first term, essentially gives the strain energy per unit volume
and the second term, you have the stress vector and this is the work done. And if you
look at elasticity, you will have strain energy minus work done would be related to a
potential energy. And, what you are actually seeing here is, this potential energy is

differentiated with respect to the crack-length.

So, what we had seen as energy release rate, what is the energy available for an
incremental crack growth, is written in a different form, which appears as a line integral,
after several simplifications. That is the way you have to look at it. And if you look at the
second term, this is written in indicial notation. So, | have T n i multiplied by dow u i
divided by dow x. So, this will repeat. If you look at the Einstein summation convention,
when | have i i, this indicates, that this would repeat. Since we are considering a planar

situation, you will have the first index 1 and second index as 2.

So, both, you will have essentially 2 terms for this. And if you go and really find out
what is this T n, you get that from the Cauchy’s formula. We have T n equal to tau i j
multiplied by the direction cosine vector n. So, if you really look at this, for a two
dimensional situation, you will have 2 terms for each one of T 1 nand T 2 n; either you
couldputitasT1norT Xnand T Y n. And the first term is nothing but integral sigma i
j delta epsilon i j. This we had already seen earlier, we will again have a look at it. This is
the final form of the integral and if you take a closed contour, the integral goes to 0. How
this is applied to fracture problems? This is what we have to look at; and, that was done

by Rice.
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As | mentioned, since we are accustomed to looking at strain energy with a symbol
capital U, it is mentioned here. As books show it like this, I thought | would show both
these type of expressions. And before we proceed further, we just recapitulate, for linear
elastic solids, the strain energy per unit volume is expressed as follows. You are
essentially getting it for a volume. This is one half of integral over the volume, sigma x
epsilon x plus sigmay epsilon y plus sigma z epsilon z plus tau x y gamma x y plus tau y
z gamma y z plus tau x z gamma x z multiplied by d V. This is expressed in terms of
stress and strain. If you employ the stress strain relations, you could also express the

strain energy in terms of only the stress components.
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Strain energy in terms of stress components is as follows. U equal to 1 by 2 integral over
the volume, 1 by E into sigma x squared plus sigma y squared plus sigma z squared
minus two nu divided by Young's modulus multiplied by sigma x sigma y plus sigma y
sigma z plus sigma z sigma x plus 1 by G multiplied by tau x y squared plus tau y z
whole squared plus tau z x whole squared, whole multiplied by the d V. These
expressions you already know. And this is just for continuity in discussion, this is shown.
And what is the J-Integral? A J-Integral starts from one of the crack faces and goes in a

counter clockwise direction and stops at the other crack face.
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And you should also note that, this crack face is not loaded. That is a very important
observation. J-Integral is applied to problems, where crack face is not loaded. And what
is attempted to be shown in this is, the integral is also path independent. So, | have taken
a path like this, A, B, C and to D and then, come to E, F and then close it at A. And when
you do like this, this is your Eshelby's integral and what does the Eshelby's result says. If
you take a closed contour, the integral whatever we have looked at, should sum to 0; and
| write this as different contours; in the contour 1, you have one integral, plus on C D

plus A F, plus the contour 2.

We can definitely comment about, what happens for the integral on the contour C D and
integral on the contour F A, to start with. For clarity, the crack is shown as a V type of
shape. In reality, it is almost like a line. So, that means, the d y term will be 0. And

another aspect is, this is a free surface. On a free surface, traction is 0.
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So, in essence, the integral C D and integral F A would go to 0; the reasons are stated
here. Because it is a free surface, the traction is 0; and it is a very fine crack, so, dy equal
to 0. Do not get misled by this V shape. This is, for illustration, it is put like this. So,
when these two integral goes to 0, we get a very interesting result, integral over the
contour 1 plus integral over the contour 2, equal to 0.
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So, | get, these are equal and opposite; in one case, you are going in anticlockwise

direction; another case you are coming in a clockwise direction. That is why the sign



change is there. And, what do you see? We took a arbitrary contour. We have not put any
restriction, which path the contour should take. So, this gives a proof, that if you take a
integral from the crack surface and ends with the other crack surface, the value of the
integral is independent of the path that you take. So, J-Integral is path independent. It is a
very very important result. That is what is summarized here. The negative sign indicates
that, the direction of line contour is different. This result implies that, in crack problems,
if a contour starts from one crack face and ends in another crack face, the magnitude of
the line integral does not change.
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We have already seen, what is the expression that you would write for this integration.
That | have, that is not written here. You have two terms; one involving strain energy;

another involving traction. We will see that later.
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The result also indicates that J-Integral is path independent. That is well utilized in linear
elasticity. If you really go to finite element computation, they use this path
independence, find out J-Integral, from that, determined the value of the stress intensity
factor. That is one of the uses of J-Integral. So, we will see, in a summary, what is J-
Integral. | have a two dimensional crack body; | start the contour from one of the crack
faces, and it ends in the other crack face and the crack faces are not loaded; and the
integral of the type J equal to W into d y minus T n i dow u i divided by dow x into d s;
this is how you see in books; | would prefer to draw your attention, that it could be
written better this way. Instead of W, putitas U d y minus T n i multiplied by dow u i by

dow x into d s.

The key point to note is, take a line integral path that encloses the crack-tip, such that,
the initial and end points lie on the two crack faces. See, if it is a closed contour, then,
the integral value will go to 0. Here, it starts from one crack face, goes in an
anticlockwise direction, encloses the crack-tip and ends in the other crack face. Then, it
has some finite value. And this finite value is the value of J. And you know, for you to
understand this expression better, we need to take up a known problem and evaluate the
energy. Then, you will know, how to identify the interplay of these terms. And the
contour can be anything; it can follow the boundary of the object also. Any contour, that
encloses the crack-tip, starts from one crack face, ends in the other crack, crack face; that

is the only requirement.
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So, before we do the calculation further, let us look at the terms a little more closely. The
strain energy term is given as integral sigma i j d epsilon i j and the traction term is
expanded here. It is, it was written as T i dow u i dow X. Now, when you expand it, |
have two terms; T n x dow u x divided by dow x plus T n y dow u y divided by dow x.

And each one of these terms, would be obtained from your Cauchy's formula.

So, when you solve a problem, you would know how to fill in the quantities. You know,

the line integral calculation, you have to do it carefully. What has happened is, people



are using finite element calculation. There the software is so well developed, you identify
a path and the software calculates the value of J, and churns out the number. So, many
times, students do not even understand, what are all the terms in a J-Integral; it is taken
care of by the software. It is a very bad scenario. You will have to understand, how the
software calculates, what is the kind of expression that is used; it is very very important.
So, we will take up a problem, which you have already solved as part of the linear
elasticity. And what you have here, is a double cantilever beam specimen. You have a
crack and the cantilever beam specimen is opened by the load P as shown. See, the
moment you come to elasticity, you show that as a distributed loading. You are actually
applying a shear, and when you want to analytically analyze, we have already seen, in
theory of elasticity, when you had that uniformly distributed load of a beam, supported
using simply supported supports, we had replaced the reactions as a shear; a same

analogy is done here.
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So, you replace this load by a shear. So, the integral of the traction on this, would be
equal to the shear load. That is what we are going to use. So, keeping that in mind, it is
shown as a shear. And you have a particular height h, and for our analysis, we are going
to consider the length of the beam as a, which is the crack-length, and do the
computation. And we have already noted that, J is path independent. So, choose a path,
for which the line integral can be evaluated conveniently. So, we will choose a path,



where the contour goes to 0 at many places. So, we have to do only computation, only at

a place where contour is non-zero; the contour integral is non-zero.
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So, what we are going to take is, consider a path which starts from one crack face to the
other crack face, through the boundary of the specimen. Because, if you look at the
boundary, it is a free surface. So, when into the free surface, you know traction is 0. So,
that way, your computation of the line integral would be a lot more simpler. For clarity,
the path is shown slightly inside the boundary as a green line. So, make a neat sketch of
it. So, we are taking a path which has straight edges, which has corners, all that is
permissible. The only requirement is the path should be continuous. | can choose any
convenient path; it should enclose the crack-tip, start at one crack face and end at another

crack face.

See, even before we look at the discussion, you can easily say that, whatever happens on
the face C D, D E and E F the line integral go to 0. We have to calculate the line integral
only for the segments F H and B C. | have already given you the reason, that you are
looking at a free surface; we would formalize it. Surfaces C D, D E and E F are free
surfaces; hence traction is O; thus the second term is 0. And second term, we have

already seen in an expanded form. Because traction is zero, the whole term goes to 0.
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In addition, you should also recognize that, U is also negligible; hence no contribution to
J. You will have d y equal to 0 in this. You will have very small value of stresses here.
So, U is also negligible. So, we have to focus our attention only on the segment F H and
B C. And you know, you have learned in solid mechanics, many things. Whenever we
have a solid mechanics problem, if there is a bending as well as shear, we would
recognize the energy due to bending better than the energy due to shear. We will always
neglect any shear effects in slender beams. We will also do the same approximation here.

When we are going to look at the surface F H and B C, you are having only shear.
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So, whatever the strain energy introduced because of shear, we would neglect it. So,
essentially, we will have to find out, what is the contribution for the J-Integral through
the traction term. And if you looked at, on this surface, | do not have T n x; there is no

component in the x direction; there is only component in the y direction.

So, even this traction term reduces to only T y dow u y divided by dow x. And, you do
this for two parts of the cantilever. So, you have this as two times that. So, you have this

as minus two times integral 0 to h, T y dow u y divided by dow X into d s. Can you just



recall, what is this dow u y by dow x? At the free end of the cantilever. You are actually
looking this as a double cantilever specimen. You recall your knowledge of your
deflection of beams; when you look at the deflection of beams, it is nothing but the slope
of the beam at the free end. And, can you write the slope of the beam at the free end? If
you want to find out the tip deflection, for a cantilever with the end load, a very famous
formula is P L Q by 3 E a, where L is the length of the beam. Here we are taking the
length of the beam as a. And if you look at the slope, it is P L squared by 2 Ea; when you
adapt it for this problem, it will be P a squared by 2 E a.

And that 2 and this 2 will cancel and you have to write this moment of inertia. You have
the thickness as B, and you will have this as B h q by 12 as the inertia term. So, when

you substitute all this, this simplifies to this form.
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I have skipped those steps and | have written the final expression. You have this as 12 P
a squared divided by E B h cubed and you have the integral 0 to h, Ty d s. And | have
already said, even while writing the P as a shear loading, | said the integral of the
variation should go to the value P. So, you have this as integral 0 to h, T y d s, that is
equal to integral 0 to h T y d y; you get this as P by B. And when you substitute this, you
get the final expression, J 1 equal to G 1 equal to 12 by E a squared by B squared
multiplied by P squared by h cubed.
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So, with this example, what you find is, if you are looking at linear elasticity, the energy
release rate which is known as G there, is obtained by a line integral. And you got that as
J. So, J and G are identical in the case of linear elasticity. And we also have an inter-
relationship between G and K. So, J and K can be related. That is how, in finite element
computation, what people do is, they evaluate the line integral and from that, find out the

stress intensity factor. That is one of the uses of J-Integral, but that is not the only use.
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What are the usefulness of J? Path independence of the J Integral offers a variety of
opportunities for determining its value. Because, | can choose the path, which is
comfortable for me to evaluate. It is used for evaluating stress intensity factor K, from
finite element solutions, and also for analytical computation for certain cases. And, what
we have done? We have first evaluated J for a known problem, which you had solved in
the linear elasticity. And, we find, whatever the expression you finally get for J, is same
as G, which is nothing, but the energy release rate. And, you would see further, because |
have advantage of path independence, what is the use of it, in finite element calculations.
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Since, the integral can be taken at a distance, somewhat removed from the crack-tip, a
cumbersome and precise computation of the field in the crack-tip region, then, is not
necessary. See, if you take a bench mark problem and apply J-Integral, you are not going
to have any advantage. Because, for bench mark problems, you can really fill it, with
very refined mesh. Suppose, | have a complex structure, even modeling of the structure
is difficult, and you need several elements for variation in geometry, if you save precise
mesh closer to the crack-tip, you have a enormous amount of saving; you have to view it
from that perspective. Practical problems. If you can do away with very precise analysis
near the crack-tip, and yet to find out the crack tip parameters, J has been useful. And,
that is what is summarized here. The need for a highly refined mesh may not be required

near the crack-tip.



(Refer Slide Time: 34:39)

Usefulness of J

Path independance of the J infagral offers a vamely of

apporunities for determining s valus

It is used for evaluating X from finite element solutkons and

a0 for analytical complutabon [of oefain cases

Since the miegral can be taken at a distance somewhat

removed om the crack-np, a cumberssme and precsa

compuiation of the field in the crack-tip region then s nof

a5l
@
] e Need for 1I||-_:r-l. refinasd mesh may not be regus

h

So, you can attempt to solve practical problems, when you have the advantage of J, for

you to calculate the stress intensity factor K. You know, we say that it is path
independent. Is it always so?
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You have path dependence of J; it happens if the crack faces are loaded or the crack is
curved, J is, in general, path dependent. So, excluding these exceptions, you can find J is
useful. And, there is also a caution given. See, in the case of finite element computation,
you say, you take a convenient path and then evaluate the value of J, you will have to
keep in mind, care must still be taken, to ensure, the increased stiffness of the numerical

model does not lead to an underestimate of the fracture parameters.

So, people will do reduced integration technique, a combination of that, they will do.
They will go through the Gauss points, away from the crack-tip. So, there are some
recommendations, that you have to follow from finite element solution developer. And
based on that, you will have to evaluate J. It definitely provides you, because of path
independence, a freedom to select your chosen path, but also look at the integration
scheme, that you employ, so that, the approximations of finite element does not affect

your fracture calculations.
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And now, you know, we have looked at, in the linear elasticity, J equal to G. And we will
also have a look at, graphical interpretation of J. In linear elasticity, we know what is G. |
have a specimen with crack of length a, another specimen with crack of length a plus
delta a; whatever is the shaded portion, is the energy availability for crack to grow. And
this, you call it as G, which is also equal to J. And we have looked at, a constant
displacement and constant load; and we had also argued, whether it is constant

displacement or constant load, the energy availability is same in the limit, when the



incremental value of crack growth is as small as possible. Here it is shown for constant

displacement.

So, this is the energy interpretation of G, which is same as J for a linear elastic solid. You
could extend this for non-linear elastic solid. Here, the force displacement relationship is
not linear; it is non-linear, in this fashion. And the crack extends by a small amount delta
a and this shaded area can be interpreted as J.

So, the advantage of J is, it is applicable for non-linear elastic solids too. | can still
evaluate this line integral and then say that, this is nothing, but energy availability for the
formation of 2 new surfaces. You have got G equal to differential of potential energy
divided by A, B A, in the case of linear elasticity; a similar interpretation of J as
differential of potential energy with respect to the growth of the crack is possible, in non-
linear elasticity. And you have this, J as, given as minus integral 0 to delta dow P by dow
a into d delta.
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See, now the question is, | had raised, from linear elasticity, we can go to non-linear
elasticity and J is useful. But J is also used for elasto-plastic analysis, at least
approximately. So, we will have to understand, what is the difference between non-linear
elasticity and elasto-plastic behavior. You just watch this animation carefully. I have this



stress strain curve and this is shown for a non-linear elastic solid; and up to this, there is

no problem.
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When | have a, this portion is linear elastic, and this portion is non-linear elastic.
Suppose, | unload, what would happen, if it is a non-linear elastic solid. The unloading

path will trace back, the same way.

In a linear elasticity, it will go up and down in the straight line; in non-linear elasticity
you will follow a curve. Suppose, | go to elasto-plastic behavior; from elastic region |
have gone to plastic region; when | unload, the unloading path is different; it is not same
as the loading path. This is a very key, important information, that you have to keep in
mind. And what is its influence? When | have a non-linear elastic curve, for every value

of strain, you have only one value of stress; there is no difficulty at all.
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Now, | do an unload; it has reached a plastic condition and | unload; the unloading path
is different. And what is its influence? Suppose, | take a strain value, two stress values
are possible. You know, this is the very very key, important observation and this is
where the complexity comes. When you want to go for plastic analysis, unless you keep
track of the loading history, you will not be able to find out a relationship between stress

and strain.



You have to keep track of the loading history. | am in the loaded path; when I am in the
unloaded path, for the same strain value, | have a different stress. And that is what is
summarized here. You have to keep in mind, in elasto-plastic, loading and unloading

paths are different; for one strain value, two stress values exist.

So, you have to keep track of loading history. So, this is where all your approximations
come, when you want to extend J-Integral for elasto-plastic fracture mechanics. For non-
linear elastic fracture mechanics, J is same as ¢g; you can also have this energy
interpretation, and you, the system is conservative. And the moment you go to plasticity,
system is not conservative; some energy is lost. Whatever the graphical interpretation
you saw, all that energy will not be available for crack extension; some energy is lost in

plastic deformation.

(Refer Slide Time: 42:45)

Extension of NLEFM to EPFM

Extension of HLEFM to EPFM & basad on the deformiator

theary of plashicity




(Refer Slide Time: 42:45)

Extension of NLEFM to EPFM

Extension of MLEFM to EPFM = basad on the deformaton
theony of plasticity

of

Provided no unioading s permatted bo ocour, the behawvsour of
an elastoplastic material and a non-linear elastic matenal s
indistingueshable to an oulside observer = that 1 any extema

megsure of the daformation woulkd ba the sama

®

So, people have to bring in some kind of approximation. Let us see, what are the
approximations people talk about. So, we want to graduate from non-linear elastic
fracture mechanics to elasto-plastic fracture mechanics. And this extension, is based on
the deformation theory of plasticity. And, we have seen unloading creates the problem.
So, you say, provided no unloading is permitted to occur, the behavior of an elasto-
plastic material and a non-linear elastic material is indistinguishable to an outside
observer. That we had seen; the loading and unloading paths are same, when your non-
linear elastic, but if unloading is permitted in elasto-plastic material, the unloading path
is different.

So, now, you do not permit unloading. For a external observer, it will remain identical.
What it means is, any external measure of deformation would be the same in non-linear
elastic material as well as elasto-plastic material. But you have to keep in mind, the
mechanisms going on inside the two materials are markedly different, but outwardly,

there is no difference.

So, this is what you take advantage. When you have unloading, you have a problem. So,
you ensure that, there is no unloading takes place, which is, we have to investigate;
whether it is pragmatic approach; under what conditions unloading may not occur; so,
what way you have to utilize J; these are all issues, that we have to look at. And, for
unloading not to occur, or if you want to extend the concepts of NLEFM to EPFM, the



stress components must remain in fixed proportion, as the deformation proceeds. This is

called proportional loading. We will see that in detail.
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So, in all fracture mechanics literature, you will come across the terminology
proportional loading. When you are discussing concepts related to EPFM. And what is
proportional loading? | think, before we go to proportional loading, we have to justify,
why we want to go for proportional loading. The plasticity theory, you have 2 aspects;
one is the deformation theory of elasticity; and another one is the incremental theory of
plasticity. The deformation theory of plasticity is easy to handle, because the
mathematics is far more simpler; whereas, incremental theory of elasticity, the

mathematics is very complex and highly involved.

And what you find here is, any solution based on the deformation theory of plasticity,
coincides exactly with a solution based on the incremental or flow theory of plasticity,
under proportional loading. So, we want to have a justification. We have already seen,
utilizing plasticity theory in a rigorous manner for EPFM, is going to be very
challenging.

So, we need to go in for approximate approach. Even in plasticity analysis, you can do
by deformation theory of plasticity and incremental theory of plasticity. We find

deformation theory of plasticity is mathematically simple and this is applicable, when



you have proportional loading. And you have also indirectly seen, if you avoid
unloading, you can extend the concept of linear elastic fracture mechanics, non-linear
elastic fracture mechanics to elasto-plastic fracture mechanics. So, that is how the story
goes. And under proportional loading, stress components change in fixed proportion to
one another, for which no unloading is permitted at any point of the plastic zone. That is

a key point. We have already seen, what is the kind of complexity, when you have
unloading.
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So, in proportional loading, you ensure that no unloading is permitted. And, this also you
have to keep it at the back of your mind. Condition of proportional loading is not
satisfied strictly in practice. As engineers, we approach the problem. We want, at least,
an approximate solution. So, that is how we want to proceed and you have justification.
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You know, in intermediate strength metals, that can withstand substantial plastic
deformation beyond crack initiation while exhibiting very limited amounts of crack
growth, nearly proportional loading occurs. The moment crack grows, unloading takes
place. Because, you have formation of, 2 free surfaces. So, when you have 2 free
surfaces, the stress has to be redistributed. And what you are trying to say here is, certain
materials they can withstand substantial plastic deformation. So, essentially there is no
significant crack growth. So, nearly proportional loading is possible. That is the way we

have approximation.
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And this is again reemphasized. Proportional loading is a sufficient condition for the

incremental and deformation theories of plasticity to agree.
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Because of the relative mathematical simplicity, in many cases, the deformation theory
has been used. See, what we want to look at is, we want to have the mathematics as

simple as possible; a comprehensive to capture the phenomena.
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So, we have to necessarily make an approximation. In certain materials, you are able to
see, that you will have more plastic deformation and very little crack growth; then, this is
applicable. And here, you have a little more expansion on the terminology proportional
loading. In a number of stationary problems, that means, crack is not growing, under a

single monotonically applied load, the loading condition is close to proportionality.
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This means, that the strain and stress components are increased monotonically and in a

fixed ratio at each material point. And this is how, you justify your approximation.
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A number of studies, using numerical methods such as finite elements, have supported
this proposition. See, the whole of elasto-plastic fracture mechanics, you have to look at
proportional loading; that is how you justify the applicability of J, at least approximately.
That you have to remember; it is not an exact representation. Approximate solution is

good enough; as long as | am able to solve the engineering problems, even
approximations are welcome.
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You have to take it with a pinch of salt. In elasto-plastic fracture behavior, stable crack
growth is usually observed. And | have said, if there is a crack growth, unloading takes

place. So, you have to find out, to what extent you can apply, the concepts of J.
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So, what we want to do is, the focus of EPFM for practical applications is limited to the
ability to describe the initiation of crack growth and also handle a limited amount of

actual crack growth.
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As long as you are able to predict the initiation, you are happy; you are not interested to
study further. Some crack growth, you can possibly, analyze approximately. There is a
crack growth, you have a problem; unloading takes place; these approximations are not
going to be valid. And many concepts have been developed in EPFM. Of the many
concepts developed, two have found general acceptance. They are J-Integral and CTOD
or COD.

So, in this class, what we have looked at is, we have looked at J-Integral. We have seen
its path independence and | said, this path independence is exploited in linear elastic
fracture mechanics to calculate stress intensity factor, from finite element solution. And
we also saw a graphical interpretation of J. Like in linear elastic solids, in non-linear
elastic solid, the J is same as the energy availability for the formation of two new crack
surfaces. Then, we looked at, what is an elasto-plastic material behavior. The moment
unloading takes place, we found for a single strain value, there could be two stress values
and you need to keep track of the loading history. This is a challenging aspect. But we
want to extend our knowledge, from non-linear elastic fracture mechanics to elasto-

plastic fracture mechanics.

So, by bringing an approximation, as long as no unloading takes place, you can still
extend the concepts of J, at least approximately, to handle crack initiation elasto-plastic
fracture mechanics. We have seen the energy interpretation of J in this class. We would
see J as a stress parameter in the next class, and we will also see rudiments of CTOD.
Thank you.



