
Engineering Fracture Mechanics 
Prof. K. Ramesh 

Department of Applied Mechanics 
Indian Institute of Technology, Madras 

 
Module No. # 06 
Lecture No. # 29 

Irwin's Model 
 

In this class, we will try to look at the approximate shape of plastic zone, followed by 

Irwin’s model in finding out the extension of crack length from the plasticity point of 

view. He would try to do a redistribution calculation; we will look that in detail, but for 

the purpose of shape of the plastic zone. 
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What we are going to do is; we are going to use a very simple model, and we will first 

look at how to get the plastic zone length along the crack axis? And if you look at when 

the crack is sharp, both sigma x and sigma y varies like this and your Tresca yield 

criterion, because your other stress is zero, that directly gives you what is the value of the 

individual stresses, then yielding takes place. What we are going to do is; what is the 

value of the sigma y stress in plane strain? Suppose, I have Poisson ratio is 1 by 3, in 



plane strain the maximum stress value would be as high as 3 times the yield strength. So, 

what we will do in the simplistic model is, just pick out that point from this graph and 

say that is the length of plastic zone ahead of the crack. 

(Refer Slide Time: 02:29) 

 

So, the approach is simple and straight forward but it is not strictly correct. So, you have 

this as 3 sigma y as an in plane strain, and this distance you call it as a plastic zone length 

with the symbol r p. And in plane strain the expression takes this from, r p equal to 1 by 

18 pi, K 1 by sigma ys whole squared, and this is obtained by using nu equal to 1 by 3. 

And in plane stress you know, the yield condition is satisfied when sigma y reaches 

sigma ys, in the case of plane stress it is sigma ys, in the case of plane strain when nu 

equal to 1 by 3, it is 3 times sigma ys. 

Though the approach is very simple, it brings out a very important pictorial 

representation that, the plastic zone length in the case of plane stresses is much larger 

than what you have in plane strain so; this is the advantage you get from a simplistic 

model. 
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This we have looked at what happen ahead of the crack length, express it as a function of 

theta you get a shape, which is very approximate, in fact I had asked the students to plot 

this for mode 1, mode 2 and mode 3 in the last class. I am sure many of you may not 

have done it so, we will have a look at those shapes. 
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An approach like this, gives the first order approximation of the shape, because we do 

not make any attempt to redistribute the load. And for the case of plane stress we have 

looked at the Mohr circle like this, I have sigma 1, which is nothing but your sigma y and 

sigma 2 is your sigma x, and sigma 3 is zero, this you have to recognize in the case of 

plane stress. And what you are really looking at is, see you are looking at a case when 

the crack-tip is blend, the moment you are looking at plastic zone we will also have to 

recognize the crack-tip will become blend, in view of this, because of the free surface the 

sigma x will be zero at the crack-tip and it reaches a maximum at slight distance away 

from the crack-tip. 

So, a sigma x variation will be like this and your sigma y variation will be like this. So, 

in this case what happens? You have sigma y as well as sigma x both are positive, and 

you have to recognize sigma z 0 or sigma 3 0, the yielding is dictated by your sigma y. 

And this is what is depicted in the Mohr circle here, you have to take care of the zero 

value, this is very, you should not ignore this. Otherwise, you would make a wrong 

judgment that your maximum shear stress is only this, if you consider only sigma x and 

sigma y. 
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Sigma y will be like this and sigma x, and you should not take this, you should recognize 

the zero value of the other principle stress, and maximum shear stress is this is the value. 

And when you write this expression of r p as a function of theta it takes a form like this, 

and when you go to Tresca, the expression is different. If you plot this expression as a 

polar plot by varying theta and marking the values of r, you would be able to get an 

approximate shape of plastic zone at the crack-tip. What we will look at is? We look at 

for plane stress as well as for plane strains situation. 

For the plane strain situation, the expression for r p turns out to be 1 by 4 pi multiplied 

by K 1 by sigma ys whole square, multiplied by 3 by 2 sin square theta plus 1 minus 2 nu 

whole squared multiplied by 1 plus cos theta, and this for Von Mises. And for Tresca the 

expression is given for different extent of theta so, you have this as 1 by 2 pi, K 1 by 

sigma ys whole square, cos square theta by 2 multiplied by 1 minus 2 nu plus sin theta 

whole square. And for theta greater than 38.9 degrees and nu equal to 1 by 3, you have to 

use this expression, this is 1 by 2 pi, multiplied by K 1 by sigma ys whole square sin 

square theta. 
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So, what we are going to look at now is, rather than looking at these as expressions, if 

you plot them, that gives you some kind of an insight. And what we will do is, we will 

do a similar exercise for mode 1, mode 2 and mode 3, and look at what are the shapes of 

the plastic zone, but you have to keep in at the back of your mind these are very 

approximate shapes, and the polar plot is dawn like this. 

So, what is done here is, this is the crack-tip, I have radial lines drawn for various angles, 

make a neat sketch of this, you have an expression for the plastic zone length r p as a 

function of theta. So, mark this and join them as a curve, and this is obtained for plane 

stress situation by Tresca yield criterion, you have already written down this expression 

and you will have to draw this sketch. This is for plane strain, this expression also have 

written. And this expression also you have already written, the only thing what you have 

to do is you have to draw this sketches so, I have this for plane stress where the plastic 

zone size is very large, and when you come to plastic zone for plane strain, you have a 

loop here like this, only this blue and continues red line you draw it, the dotted line you 

do not have to draw and this is how the shape is. 

And how does this look like? We look at this, something similar to your isochromatics. 

Yes, straight, but it have to be forward tilted, and you have along the crack axis there is 

some extent of plastic zone is available though, this is approximate shape this gives you 



an insight that plastic zone size is very small in the case of plane strain, quite large in the 

case of plane stress. 

And you know, when you change the yield criteria then also there would be some small 

change in the shape, it is unavoidable. We have got this for Tresca yield criterion. 
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Now, we will go and see how the plastic zone shapes differ, when I use the Von Mises 

criteria and this is for mode 1 situation. This is for plane stress, you have the expressions 

you do not have to write them, but draw the sketch, and this is for plane strain the 

expression you have already written. And here again you have a visual representation 

that, the plane strain plastic zone is very small and this is also very similar to your shape 

of the isochromatics, there are similarities between the two. 
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So, make a neat sketch of this, and we would have similar plots drawn for mode 2 as 

well as mode 3. When I go to mode 2 situations, I am not drawing it for both the yield 

criteria I will draw it for Von Mises yield criteria, this is how the zones appear like this, I 

think you need to write this expression, r p is given as 1 by 8 pi K 2 squared divided by 

sigma squared by s, multiplied by 14 minus 9 sin square theta minus 2 cos theta. And 

when they change it to plane strain situation the expression turn out to be like this, r p 

equal to 1 by 8 pi K 2 squared by sigma ys squared, multiplied by 12 plus 2 into 1 minus 

cos theta, multiplied by 1 minus 2 nu whole square minus 9 sin square theta. 

See, that precaution you have a complicated expression, any times when you come 

across a complicated expression you also attach that, this is a correct expression, do not 

have that kind of a mental block, this is a very crude representation of plastic zone shape, 

you will be able to appreciate this only when you look at the Irwin’s method of 

calculation, where he also considers redistribution of load that to only along the crack 

axis that itself is the big exercise. 

So, unless you go to experimental methods or numerical exhaustive techniques you will 

not be able to get the shape for a generic situation nevertheless, these kind of plots give 

you certain kind of understanding on the relative sizes for plane strain and plane stress. 

And this also you can notice, how does the shape look like? I have already shown you 

mode 2 isochromatics, a similar to mode 2 isochromatics. 



So, that is one way of comparing the shapes. And the difference between plane stress and 

plane strain is not that significant in the case of mode 2, in the case of mode 1 the sizes 

where quite different for the two cases. And what you need to draw is, just draw the 

shape, you do not have to draw these polar plot the way it is drawn, this is to aid your 

understanding how this graph is drawn, you collect several points for various values of 

theta and join them as a smooth curve, for your purpose you just draw these two shapes. 
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Now, we will go and see, what is the type of shape in mode 3? You find a very simple 

graph, you get r p equal to 3 by 2 pi K 3 squared divided by sigma ys squared. See only 

in the case of mode 3 loading the plastic zone shape is circle, in other cases the shape is 

far different, and in many books if you come across, whenever they come across the 

plastic zone they will simply put a circle. That kind of utilization came into existence, 

because they have looked at the shape is circular in the case of mode 3, which is 

extrapolated to for mode 1 also, which is not strictly correct. You will have to look at the 

actual shape, we will also look at the actual shape as seen in experiments or as done by 

complicated numerical analysis. 

Have you seen the fringes for this case? Photoelasticity would is not applicable for mode 

3 loading situation, because it is out of plane loading. Photoelasticity is not applicable, 

only for in plane loading you would be in a position to do so, photoelasticity is 



applicable only for mode 1, mode 2, and combination of mode 1 and mode 2, you cannot 

analyze mode 3 problem from photoelastic analysis. 

So, we have not seen the shape of the isochromatics there for you to compare 

nevertheless, you have to keep in mind when you see a circle plastic zone is circular only 

in the case of mode 3, many books they simply put a plastic zone even for mode 1 as a 

circle. 
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Now, what we will do is, we have already said that, we are going to model the plastic 

zone from further fracture calculation, by defining what is an effective crack length. The 

previous analysis has brought out the fact that, the plastic zone is much larger for plane 

stress than plane strain. However, the approach has been quite crude.  

The incremental crack length has to be determined based on the redistribution of stresses 

that were above the yield stress, if you do not do that, the estimation of incremental crack 

length would be erroneous. And if you look at the literature, two models exist: one model 

was proposed by Irwin and another model was proposed by Dugdale. See, you will have 

to see the distinction, it is only a model it is not a theory, the problem is very complex so 

they have modeled it in this fashion, this is valid under certain restrictions you have to 

take it that way. 
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And, because the problem is complex, whatever the value of incremental crack length 

that you would get from Irwin and Dugdale models would be different, we have to 

anticipate that, they will not be identical, they will be different. And what is said Irwin 

has done in his analysis, you have to look at the animation very carefully, and this is 

considered as elasto-plastic analysis, because we do some kind of redistribution of load, 

and he definitely presented a simplified model, which considers the redistribution of load 

due to plastic differentiation. 

And how the model is developed? You make a sketch of this, I have a crack-tip and you 

have on the x axis the distance x as well as the length of the plastic zone r p, then you 

have stresses on the y axis sigma ys, 2 sigma ys, and 3 sigma ys. And what was done in a 

simplistic model? The simplistic model, you simply mark this and set that, this is the size 

of the plastic zone whereas, this stretch of material was supporting a load like this. 

Where would the load go? You cannot simply knock off, when you are drawing a graph 

on the board you can simply erase it and then show the graph can be thought of like this, 

but what happens the materiel? When you say this stresses reach a value of sigma ys in 

essence, what Irwin argued was the extent of plastic zone would become longer for 

redistribution of load to take place. 

And look at the animation very carefully, and that physics is illustrated here. So, you 

have this, since this has to be taken care of by the neighboring material, you will have a 



larger plastic zone ahead of the crack-tip. And you will have to find out the areas marked 

as A 2 and A 1 such that, they are equal. Is a physics clear? If you want, I will again do 

redo the animation. You just observe the animation, Irwin presented a simplified model, 

and the model is like this, you have the stresses shown like this. 

Since, this cannot be cut off just like that what we have done the simplified model this, 

has to be supported by the neighboring material so, instead of only this zone subjected to 

this loading, because of yield stress it will extend and will occupy, and we would find 

out this extension in such a manner that the area A 2 equal to A 1. 

So, as part of the calculation we will have to find out, what is delta? As well as, what is 

lambda? The whole length is the plastic zone length, it is very simple if you just follow 

the physics, translate it into mathematics and you will be able to get the expressions for 

delta as well as lambda. 

So, you make an attempt to look at the redistribution of load, which was not done the 

simplistic model and imagine this itself is a big circus, along the crack axis, if you have 

to find out the shape of the plastic zone, this kind of redistribution should be looked at 

for every angle, which is not possible from your hand calculation, we will have to 

depend on a computer to do it. 
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We will start our discussion from our simplistic approach, see first of all you will have to 

know, what is the stress that need to be redistributed? This is the area above the yield 

stress that has to be redistributed. 

So, I will have to know what is this lambda, this calculation is very simple to your very 

similar to your simplicity calculation, we simply say K 1 by root of 2 pi lambda equal to 

sigma ys, that is how we locate this point. 

So, this also gives you a definition of what is K 1 in terms of lambda, which we would 

use it later in the derivation, this is very similar to your simplistic approach, from this I 

can find out what is lambda. Lambda is given as 1 by 2 pi multiplied by K 1 by sigma ys 

whole square, what we say here is, this estimation of plastic zone length along the crack 

axis is not strictly correct. So, we have to go and try to redistribute the load and make the 

calculation. 
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We have already seen the sketch, based on that sketch I can make a statement that length 

delta is chosen such that; the load that is not taken beyond point P on length lambda is 

equal to the load sustained on length one. 

What is the load not sustained on length lambda? What is shown as area A 1 is not 

sustained on length lambda, and I have taken a plate of thickness B, and the expression is 

written like this, it is integral delta l to lambda sigma yy dx minus sigma ys lambda. 



See just, because it is written like this I have been saying many times, you have to be 

alert, is it right? Are the limits are put correctly, this is understandable you have sigma ys 

into lambda is understandable, that refers to this area, but it is not from delta to lambda 

you are actually doing it from, you are only calculating this, So, you are doing it, you 

have to do it from 0 to lambda, because my interest is to find out this area, for that area it 

is going from 0 to lambda and that is what we are looking at.  

So, we have an expression for A 1, and the load sustained on length delta is B times the 

area A 2. So, I have this as B times sigma ys multiplied by delta, say it will also have to 

caution you here on symbolism, I have used delta in these derivations as the extension of 

the original crack A by a fictitious length delta. For all my future calculation, I will use 

the length of the crackers A plus delta, by delta as a symbol for advance studies when 

you go to EPFM, it is used for crack-tip opening displacement. 

So, we have also seen crack opening displacement expression, the crack opening 

displacement talks about what way the crack opens up when you have a loading apply, 

we have seen that it opens up like an ellipse. Once you go for elasto-plastic analysis, 

people define crack-tip opening displacement, that comes from Irwin’s model or 

Dugdale’s model, we are taking a crack length as a plus delta so, we will look at in those 

context delta will be used for C T O T. 
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So, depending on the context attach a meaning to the symbol delta. And we are 

discussing the plane stress situation and we have the equate the two, and this animation 

is repeated here for your convenience. 

So, sigma ys multiplied by delta is equal to, integral 0 to lambda sigma y by dx, minus 

sigma ys lambda. And I can replace sigma yy in terms of K 1 by root of 2 pi x, 

multiplied by dx, what is there in this expression, minus sigma ys lambda. We have 

already looked at how to express K 1 in terms of lambda, just go back to the expression 

and I can write K 1 as sigma ys multiplied by root of 2 pi lambda or 2 pi lambda whole 

power half. 
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And you substitute this expression for K 1 in the above equation, and simplify. What we 

are really looking at is, we have to estimate what is delta. So, what you have here? I have 

sigma ys delta equal to integral 0 to lambda, sigma ys multiplied by 2 pi lambda whole 

power half, divided by root of 2 pi x dx, this is very simple to integrate, there is no 

difficulty at all. 

When you integrate this, you get this as sigma ys square root of 2 pi lambda divided by 

square root of 2 pi, multiplied by 2 times root of x in the limits 0 to lambda. So, on 

substitution of these limits and on simplification you get this as 2 sigma ys lambda, and 

we already have sigma ys lambda does not here. So, on subtraction you get sigma ys 



delta equal to sigma ys lambda. So, this gives you a final expression delta equal to 

lambda. 
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So, what you are really looking at is, you estimated lambda based on simplistic 

calculation, and you find the actual plastic zone, because of redistribution is much larger 

in fact, it is twice that length. Then we also have expressions for plastic zone size so, the 

r p becomes, r p equal to 2 delta equal to 1 by pi K 1 divided by sigma ys whole square. 

And what is the effective crack-length? From Irwin’s approach the effective crack-length 

is taken as, a plus delta and delta is 1 by 2 pi multiplied by K 1 by sigma ys whole 

squared. See, in fact these are models, the moment I go to Dugdale’s calculation he 

would take the entire plastic zone length as the effective crack-length, that is why he said 

these are all not theories, but they are models which are applicable for certain kind of 

situations, when they satisfy the approximations. 
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And you will also have to keep in mind that delta has a different symbolic representation 

when you go to EPFM, where it refers to CTOD rather than extension of crack length 

like this, we have looked at for plane stress now, let us see how do we estimate the 

plastic zone length in the case of plane strain? 

Here again you will look at the simplistic model, you have to find out the length lambda. 

And what we did. we simply took the stress at the crack-tip is 3 times sigma ys when nu 

equal to 1 by 3, while doing this calculation we have ignored blunting of crack-tip, in 

reality when you are looking at plastic zone correction blunting of crack-tip also takes 

place, you cannot ignore that. 

So, what we will do is, without blunting what is the kind of result that we get? With 

blunting what is that we have to modify? If we use this as 3 sigma ys considering that the 

crack-tip is sharp, I get K 1 divided by root of 2 pi lambda equal to 3 times sigma ys. 

Hence, lambda becomes 1 by 18 pi, K 1 by sigma ys whole squared. See, this is not 

going to be correct, because we want to look at certain final aspects, we are saying there 

is plastic deformation at the crack tip and we want to find out modification of crack-

length by an incremental amount, and in the process you get values without considering 

blunting of the crack-tip, would not be the right approach. 
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When there is no blunting in plane strain the sigma y, the maximum stress reaches the 

value of 3 sigma ys, which we find is not strictly correct, because of blunting, this was 

pointed out by Irwin. It is no longer 3 sigma ys was his argument, and what are the 

factors? Due to plastic deformation the crack-tip blunts and the tip acts as a free surface, 

I have already noted this down in earlier part of the lecture so, what you have is sigma xx 

is 0 at the crack-tip. 

So, sigma xx is not same as sigma yy and the effect of release of xx is felt for some 

distance on x axis beyond the crack-tip. So, when you get into the yield criteria, the 

maximum stress I mean, the value of stress corresponding to, yielding to take place will 

not be 3 sigma ys, it would be different than, that some estimate needs be done. Irwin 

made estimate, what you have done was the failure stress is closer to square root of 2 

root 2 sigma ys, which could be simplified and taken as square root of 3 sigma ys. 

So, if you really look back and see what we were really saying is, when the crack- tip is 

sharp your simple calculation show, that sigma y would be 3 times sigma ys. If you 

consider the crack-tip to be blunt, you have to modify that as root 3 times sigma ys, this 

is an accepted practice many other discussions and fracture mechanics we will use this 

value. 
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So, I get K 1 by root of 2 pi lambda as root of 3 sigma ys. See, the moment you find out 

lambda, when you look at the redistribution of load, we have already establish lambda 

equal to delta similar expression, you will get for plane strain also from that you can 

write, what is the size of the plastic zone as well as, what is the effective crack-length. 

The plastic zone size for the plane strain case becomes r p equal to 2 times delta that is 

equal to 1 by 3 pi multiplied by K 1 by sigma ys whole squared. So, if I look at the 

effective crack-length, I would have to get delta which would be 1 by 6 pi K 1 by sigma 

ys whole square. 
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Say now, what we will have to look at is, what do you understand as small scale yielding 

approximations, because this is the key idea that is useful in applying LEFM so, if we 

want to extend LEFM to materials, that exhibit highly localized yielding at the crack-tip, 

the materials need to satisfy small scale yielding approximations and what do we mean 

by that? 

We will see three aspects of it this: the first aspect is the size of the plastic zone, as well 

as the stress distribution in the singularity dominated region surrounding it or 

characterized by the single parameter K. 

Later on, we will look at EPFM, we will have a singularity dominated zone, then you 

have a j dominated zone and so on. So, in the case of LEFM when you are looking at 

SSY, we are looking at the situation like this, it is pictorially represented I have a crack 

and let us see that, this is a general stress state. And when you have SSY, what we are 

saying is near the vicinity of the crack there would be a zone, which is known as 

singularity dominated zone K is important, mind you, this is the highly enlarged picture 

for clarity it is drawn like this, make a neat sketch of this and within the singularity 

dominated zone I have what is known as the fracture process zone. 

You know, these shapes are freely drawn there is no mathematics attached to it so, you 

have to take it as representative figures, in an actual problem these shapes have to be 



obtained by a detailed calculation, these are representative shapes so, what you are really 

looking at it, you may have general stress state prevalent everywhere, but near the crack-

tip you can identify a zone which is singularity dominated, within which you have a 

fracture process zone, we will also see what is the fracture process zone later, within 

which you have the plastic zone. In fact the plastic zone I have given a shape which is 

very similar to what is seen in experiments when I am having a mode 1 situation that 

representation is given here. 
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So, what you are really looking at it is, these zones are much smaller compare to the 

singularity dominated zone, that is the key point here. The primary influence of localized 

plastic deformation on the elastic stress distribution is to translate it by an amount, equal 

to the plastic zone radius. 

In fact, when you looked at the development of Irwin’s model we shifted the graph to the 

right, something similar to that is being stated here. The effect of localized plastic 

deformation is to translate the elastic stress distribution by a small amount dictated by 

the plastic zone. And the third point is, if the region of plastically deformed material is 

contained within the singularity dominated zone, I can still apply the failure law of 

LEFM provided the physical crack length is corrected as a plus delta. 



In fact, we have looked at while discussing surface cracks, Irwin has modified the length 

of the crack by a small increment and I pointed out, whatever the increment I have 

shown in that class was reported by Irwin in 1960, we would see improved calculation of 

this in the next chapter and we have seen those expressions given by Irwin in this 

chapter. So, you have to replace it with these expressions, when you do the calculation, 

but what it essentially says is, LEFM is still applicable provided I change the crack-

length, a effective as a plus delta. And there is also another thumb rule that you have 

SSY is generally not applicable for materials, for which the yield strength is less than 

400 mpa. 
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So, you have to apply some of these conditions only for high strength alloys, alloys 

which have yield strength greater than 400 mpa. And what is the fracture process zone? 

We have also seen that in the picture, it is a region of materiel at the crack-tip and 

undergoing transformation leading to fracture, to aid your visualization this picture is 

shown again, you do not have to sketch the picture, just observe that the fracture process 

zone is within the singularity dominated zone and if you relook at the LEFM theory it 

does not require that, we even understand the mechanisms occurring at the atomic level 

in order to establish critical stress conditions. 

Having said that you should also realize however, the more we understand about these 

mechanisms, the better we will be able to fashion materials to enhance their resistance to 



fracture. From LEFM point of view it is not required for you to worry, but from fracture 

mechanics point of view and understanding will definitely help you to improve the 

material that you want to use for such applications. And people have indeed developed, 

there are certain alloys which would change their from body centered cubic type two 

face centered cubic, and thereby stiffen and they will able to with stand very high level 

of stresses. 
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Now, what we will look at is, what is the motivation of Dugdale model? See, Irwin’s 

model was very simple and straight forward, there has to be a need for another type of 

model and what way Dugdale have has approach. See, an elastic analysis predicts 

singular stresses at the crack –tip, which is definitely unrealistic, we did not have a 

choice so we were doing it not only that elastic analysis was very simple to do. 

So, in order to capture some of these aspects Dugdale in 1960, and Barenblatt in 1962 

independently introduced what are known as yielded or cohesive strip zones extending 

from the crack-tip. A very popular, yield strip model is a very popular model in fracture 

mechanics literature and this was advanced by Dugdale as well as Barenblatt. 

The opening of prospective fracture surfaces ahead of the crack-tip is assumed to be 

opposed by a cohesive stress, and what did Dugdale do? He took that stress to be yield 

stress of the material, when we develop the Dugdale model we will also see he would 



make several assumptions, it is applicable for plane stress, and the material obeys elastic 

perfectly plastic, when all these conditions are satisfied his model reasonably predicts 

what happens at the crack-tip. 

(Refer Slide Time: 49:13) 

 

The extension of the cohesive zone is determine by the condition that, the stresses be 

nonsingular so, what I would appreciate is you go back and brush up whatever, the kind 

of stress intensity factor that we have developed for a crack subjected to symmetric 

loading. We will use that approach for us to find out the plastic zone length in Dugdale 

model, you need that expression. Go and brush up that, and come for the next class. 

We will also have to note there are obvious similarities between the approach of Dugdale 

and Barenblatt. Which has led researchers to refer it as Barenblatt Dugdale crack theory, 

there is also an opinion people do not accept this, we will have to see, why? 

Because you have to make a distinction on the physical basis that, they have used. The 

physical basis that, they have used in these two approaches of Dugdale and Barenblatt or 

different, you cannot argue that the final result are similar, both are same. Dugdale 

approach is based on macroscopic plasticity theory and Barenblatt is based on molecular 

cohesion. 

So, in this class what we have looked at is, we have looked at approximate shapes of 

plastic zone at the crack-tip for mode 1, mode 2, and mode 3, and I pointed out only for 



the mode 3 situation, you have the plastic zone shape as circular. In some of the early 

books people have extrapolated the circular shape even for a mode 1 loading for 

discussion purposes, which is strictly not correct. 

Even the approximate shape what we have got, is only an approximate, in that you have 

to keep in mind, because you have to do detailed calculation to get the shape, you have to 

do redistribution of load. And we have seen in the case of Irwin’s methodology, how to 

find out the extension of plastic zone along the crack axis, based on that he also provided 

what way the original crack-length needs to be modified. 

Then we moved on to understand what are SSY approximations and finally, we looked at 

what is the motivation of Dugdale’s model, thank you. 

 


