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Let us now look at review of theory of elasticity. What is the fundamental difference 

between theory of elasticity and strength of materials? In theory of elasticity, no prior 

assumption on displacement is usually imposed. What we did in strength of materials? 

We imposed plane sections remain plane before and after loading. With that kind of an 

assumption, for a class of slender members, we were able to arrive at the stress fields. 

In fact, if I take a circular disk like this, you cannot solve it from strength of material 

approach; in fact, you need to go to theory of elasticity, because in this, because of the 

diameter compression, plane sections do not remain plane before and after loading. 

So, you have to necessarily go for theory of elasticity, and fortunately from theory of 

elasticity, it is possible for us to find out a closed form expression, that means, if you 

specify x y, you will get this kind of value for all points in the domain, except the load 



application points and you should also recognize once you come to theory of elasticity, 

you will classify the objects as simply connected and multiply connected; this is a simply 

connected object. 

Though, in general, you do not impose the displacement, you may try to use 

experimental information on displacement as part of your solution approach. In fact, this 

is invoked in the case of torsion of rectangular cross section. I need a volunteer to come 

and take the specimen and then twist it. 

It is rectangular shaft and this is being twisted; you have lines drawn, after this twisted, 

you find these lines become curved; in fact, that is the projection and the access of the 

shaft, if you take that as z axes, you have a projection here and if you look at very 

closely, these lines are similar when z is varied. 

So, what you gain is there is warping and you say this warping is function of only the 

cross section, whatever the cross sectional plane, it is same as every section of z. You use 

this as a basis to solve this problem. In fact, when we look at solution of stress field for 

the case of mode 3, we would go through this displacement formulation; we would take 

this kind of an approach and evaluate the stress field, and once you come to multiply 

connected bodies, you have to invoked uniqueness of displacement and what are 

multiply connected bodies? 

Suppose I take a ring like this, what you have here is I have a hole in between, in fact, 

you have solved this as a Lami’s problem; you have internal pressure and this is a thick 

cylinder; so you can find out what are the stresses developed because of internal 

pressure. In fact, if you go and look at the way that you have solved the solution, you 

would have made one of the coefficients defining the problem to go to 0 mainly, because 

when I go through this complete circle once, you want to have at any cross section, the 

displacement remains same; in order to ensure that you make one of the coefficients of 

the stress fraction to go to 0. 
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So, when you go to a multiply connected object like this, you have to bring in uniqueness 

of displacement and how do you identify, whether the object is simply connected or 

multiply connected? Now, I say I have a ring, this is multiply connected; you all accept. 

 The test is you take a contour; suppose I take an arbitrary contour like this, I can shrink 

that contour to 0 without encountering a boundary in the case of a disk, whichever type 

of arbitrary contour I take on this; I can always shrink that contour to 0 without 

encountering a boundary. On the other hand when I take a ring like this, suppose I take a 

contour like this, when I shrink it to 0, I have necessarily crossed this boundary. 

Suppose I cut this horizontally, I have only a specimen like this; this is open like this, 

like a c specimen, then I cannot take a circular contour like this; I will have to take 

different type of contour. So, one of the tests is, if I am able to take an arbitrary contour 

and if I shrink it 0, if I do not go out of the region, then that problem is simply 

connected; otherwise, the domain is multiply connected. One simple thumb rule is, if I 

have cutouts like this, I have many cutouts like this; this is the multiply connected object. 

I have another specimen like this; this is a very interesting specimen; this is appearing 

like Greek letter theta so it is called a theta specimen and when you apply compression 

what happens here is on the horizontal web, it experiences uniaxial tension. This was 



developed by Professor Durelli for a verifying some aspects of moirae and this is a 

multiply connected object. 

So, in multiply connected objects, you have to invoke uniqueness of displacement in 

theory of elasticity. A general dictum is no prior assumption on displacement is usually 

imposed so that is what is summarized here. One attempts to evaluate the displacement 

or stress field by solving the governing differential equations satisfying the boundary 

conditions. 

So, the fundamental shift is, you solve differential equations in theory of elasticity. But 

even that solution procedure you developed your simpler methods to handle; you never 

go and solve the complicated differentially equations, you have a simplified procedure. 

We will have a look at it. 
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Usually two formulations are adopted; you have a displacement formulation; in this, you 

find the displacement first; from displacements you move on to determining strain by 

invoking strain displacement equations, then finally, you get the stress components by 

invoking stress strain conditions and the other formulation is stress formulation in fact, 

this is more popular for analytical development. 



So, in this you first find the stresses; from stresses you find out the strain components; 

for strain components, you use the strain-stress relations; from strain, you find out the 

displacement; you invoke the displacement strain conditions. 

Here you have a catch. See if you look at, the strain components are six; the 

displacement components are three. So, when you want to find out displacement from 

strain, unless you bring in compatibility conditions, the displacement will not be correct. 

So, in stress formulation, you will have to always look at compatibility conditions, they 

go with the solution procedure. 
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And we look at each of these formulations what kind of governing equations you have? 

We would first develop it for a three dimensional scenario, then simplify it for planar 

problems. So, in the case of displacement formulation, you can get the governing 

equations by combining stress equations of equilibrium with the stress displacement. So, 

this gives you, they are in cyclical order, we will look at them. 

So, you have this as del squared u plus 1 by 1 minus 2 nu dou by dou x of dou u by dou x 

plus dou v dou y plus dou w by dou z plus 1 by G F suffix x equal to 0. For each of these 

directions, you will have cyclically this is formed; for the u displacement, you have dou 

by dou x; for v displacement, you will have dou by dou y and for w displacement, you 

will have dou by dou z. 

The basic form of the equation is similar and here you have F x, F y and F z, and del is 

the very famous operator dou squared by del squared is nothing but dou squared by dou 

x squared plus dou squared by dou y squared plus dou squared by dou z squared. And 

what you will have to look at is, from mathematical point of view, I have to find out 

three unknowns u, v and w. 

I have three equations; so I am in a position to identify by solving this, get the solution 

for u v and w; once I get displacement, go to strain and then, finally go to stresses. So, 

the procedure is fairly straight forward in the case of displacement formulation. 
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So, this is what is summarized here; from displacement calculate strain and then, stress 

using the appropriate set of field equations and what you do here is you evaluate the 

displacements satisfying the boundary conditions and equilibrium conditions. 

So, automatically the compatibility of displacement is guaranteed. In fact, the very 

famous finite element  course that we have, that is based on displacement formulation. 

One of the questions that could be asked an interview is where do you see compatibility 

infinite element formulation? You will have to simply say it is the displacement based 

formulation. So, compatibility is automatically satisfied. 
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Now, we move on to what are compatibility conditions. I have already pointed out that 

you have six strain components, which are related to three displacement components and 

what is the problem because of this? 

Determination of displacements from an arbitrary strain field may not lead to a valid 

displacement field. See the problem is you have more number of equations than number 

of unknowns; that is also a problem. You should always have equal number of unknowns 

and equal number of equations. 

In either case, whether the number of equations is more or number of equations is less, 

you have a problem. And what is mentioned here is in simply connected bodies, if I 

satisfy the compatibility conditions, I am guaranteed to get the displacement field from 

the strain field; if I invoke the compatibility conditions. On the other hand, if I go to 

multiply connected bodies, I will still have to look at uniqueness of displacements, 

compatibility conditions alone are not sufficient; I will also have to look at uniqueness of 

displacement field. 

And if you look the compatibility conditions, two sets of equations could be constructed, 

which you may not have noticed it earlier; you can actually have one set expressing the 

normal strain components in terms of shear strain components and vice versa. 



So, on the left hand side, you will have normal strain components; on right hand side, 

you will have suitable combination of shear strain and you will have on the left hand 

side, shear strain components and suitable combinations of normal strain. 
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We would look at them. In fact, you would have derived it in your earlier classes and the 

set 1 looks like this and this is also in cyclical order; on the left hand side you have shear 

strain, which are related to normal strain components and you have strain epsilon xy 

epsilon yz and epsilon zx. 

And what is the condition that you have? 2 times dou squared epsilon x y divided by dou 

x dou y equal to dou squared epsilon xx divided by dou y squared plus dou squared 

epsilon yy divided by dou x squared. I would like you to have these equations in your 

notes. And this is in a cyclic order; if you write one such expression, following that 

example you could write for the other. 

So, if I have epsilon yz, I will have epsilon yy and epsilon zz coming in this equation and 

you differentiate it with respect to z and then, differentiate with respected to y here. So, 

when I go to epsilon zx, I have dou squared epsilon zz divided by dou x squared plus dou 

squared epsilon xx divided by dou z squared and these are the conditions relating strain 

components. 
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Because each strain component is related to a particular displacement component based 

on that only, to emphasize compatibility of displacement field, these strain components 

have to be inter related; they are not totally independent. And the other set is I have on 

the left hand side normal strain component. 

On the right hand side, you have a combination of shear strain components and what I 

have here? I have dou squared epsilon xx divided by dou by dou z equal to dou by dou x 

of minus dou epsilon y z divided by dou x plus dou epsilon z x divided by dou y plus dou 

epsilon x y divided by dou z and this equation is repeated cyclically and you have to 

recognized that minus sign is related to whatever the differential here, If I differentiate 

with respect to dou y dou x, you have minus sign attach to that. 

 In the second expression I differentiate with respect to dou by dou y. So minus sign 

comes to the term involving dou by dou y; a similar thing you can see when you have the 

differential with respect to dou by dou z, you have the minus sign attach to dou by dou z. 

And how the components are… see if you look at epsilon xx, I have epsilon yz, zx and 

xy; they are repeated yz, zx, xy are repeated; the minus sign changes depending on the 

position. And you differentiate with respect to x in the first case; the second case, you 

differentiate with respect to y and finally, you differentiate with respect to dou z. These 

are very standard expressions. 
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Now, we what we want to look at them is, we want to look at them in terms of stress 

components. You know by putting the stress components and solving it, it is a bit 

involved process; we would nevertheless look at the final expression and these are 

famously known as Beltrami-Mitchell equations. 

And we would observe how the equations look like. These equations are very long 

nevertheless take pains to write them down, I would read them for you. del squared 

sigma xx plus 1 by 1 plus nu dou squared by dou x squared I 1, where I 1 is the first 

invariant that is equal to minus nu by 1 minus nu dou F x by dou x plus dou F y by dou y 

plus dou F z by dou z minus 2 times dou F x divided by dou x. So, what you find here is 

this term gets repeated for all the expressions; only the last term changes. The first 

equation it is F x; second equation it is F y and third equation it is F z. 

And this changes as sigma xx, sigma yy, sigma zz and the middle expression everything 

remains similar, except the first expression is dou squared by dou x squared; second 

expression is dou squared by dou y squared and third expression it is dou squared by dou 

z squared. 

And another aspect you have to look at, see what you have this is as F x, F y and F z are 

body forces. See one of the important class of problems in solid mechanics is when the 

body force either remain constant or goes to 0; whether it is constant or goes to 0 what 



way this expressions look like? If you look at very closely, suppose I take the case when 

body force is constant, none of these differential can exists they will all go to 0. 
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So, the right hand side of these expressions will go to 0; if you look at the left hand side, 

the equation is a function of the Poisson’s ratio; you have to keep this in mind. So, the 

elastic constant of the material comes into play when you are looking at a three 

dimensional problem in the absence of body forces. So, I have three such expressions; I 

will have three more such expressions involving the shear stress quantities, they are del 

squared sigma xy plus 1 by 1 plus nu dou squared by dou x dou y into I 1 equal to minus 

of dou F x by dou y plus dou F y by dou x. 

And these are cyclically repeated and it is mentioned for clarity, del squared is nothing 

but dou squared by dou x squared plus dou squared by dou y squared plus dou squared 

by dou z square and I 1 is the first invariant sigma x plus sigma y plus sigma z and F 

suffix I are body force per unit volume. 

Here again, you can notice when the body force remain constant or 0, the right hand side 

goes to 0, nevertheless the expression contains the Poisson ratio; it appears as 1 by 1 plus 

nu. So, when you look at the compatibility conditions in three dimensions, material 

constant also influences the stress field. 
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So, very important aspect and I hope you had sufficient time to complete writing these 

expressions. So, what you have is if the differentially equations of stress compatibility 

are solved such that they satisfy the boundary conditions, then one gets six stress 

components. You obviously have six differential equations to solve for six unknowns. 

So, now, you have stress components; from stress components, find out strain, then 

displacements using the appropriate field equations. See, although the governing 

differential equations are formulated; if you really look at the analytical approach, the 

number of three dimensional problems that are solvable are very less. And only a very 

few problems people have solved in all its totality, that is the reason why numerical and 

experimental techniques are really necessary for solving practical problems. 
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But what we would do is, we would look at solution to plane elastic problems. In fact, in 

this slide just observe the animation, you do not have to try to draw this; we would spend 

time on each of these special cases separately, at that time if you draw the animation, 

fine. Plane problems can be solved easily than the general three-dimensional problems 

since certain simplifying assumptions can be made in their treatment, that makes your 

life lot more simpler. 

In fact, a variety of practical problems could be simplified either as the .plane stress or a 

plane strain situation and what is a plane body? A plane body consists of a region of 

uniform thickness that is very important; the thickness has to be uniform bounded by two 

parallel planes and by any lateral surface. 
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So, what is emphasized here is the top surface and bottom surface have to be plane; they 

have to be parallel; it could be connected by any lateral surface, the shape could be 

anything; the thickness of the body must be uniform; it may be very thick or very thin, 

both these cases you could identify as a simpler methodology. 
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When the thickness is long, very high usually, the plane strain approach is used; on the 

other hand, if the thickness is small, plane stress approach is invoked. The key point here 

is loading should be in the plane x y. 
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Now, we will take a plane stress as well as plane strain case by case. You could now 

sketch the diagram; the key point here is loading should be in the plane x y and the 

thickness is almost close to 0; you know if only for convenience, you show a finite 

thickness; in reality, it just a plane. 

In the moment you plane stress, everybody will ask what is the plane stress situation 

define. Most of the times you would come out with the stress tensor and you state the 

stress tensor as sigma xx tau xy, tau yx sigma yy. 

But it does not stop here; see the moment you say plane stress and planar problems, 

people think everything related to the problem remains in plane, that is, the two stronger 

conclusion; you should not do like that, when you look at plane stress, the stress tensor is 

only in the xy plane. 

Suppose you take that as the plane stress situation, you will have sigma xx sigma yy and 

tau x y, but you look at the strain quantity, it is no longer two- dimensional; it will be 

three-dimensional and what is the strain tensor? The strain tensor will appear like this; I 

have epsilon xx epsilon xy, epsilon yx epsilon yy as well as epsilon zz. 

You know, if you take a tension strip and then pull it, you would really not recognize the 

change in thickness that much, because the stress levels are reasonably small; the strain 

is going to be much smaller. On the other hand, if I have a specimen, which has a crack 



because of very high local stress, you will find near the crack tip, a dimple would be 

formed. 
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That is because of the lateral strain lateral strain cannot be ignored and you have the 

dimple formation in the zone near the crack tip. In fact, I would show you another 

diagram; this is taken for an aluminum specimen, you could see here; you could see very 

clearly, I will enlarge large this picture. 

 I have a crack and you find a significant change near the tip of the crack and this is how 

the model has been loaded and this is a dimple; this is primarily because you have lateral 

strain; this cannot be ignored that becomes very significant when I have very high stress 

concentration. 

In fact, people have utilized this as a physical feature to develop a new experimental 

technical called method of caustics. You know normally plane stress, you look at the 

stress tensor and carry on with, you do not even look at how the strain tensor looks like; 

that is wrong. You have to know both this stress tensor as well as the strain tensor. 

Not only this, I would appreciate you go and look at what is the orientation of maximum 

shear stress plane in the case of plane stress situation. Because the maximum shear plane 

orientations are different in the case of plane stress as well as plane strain; when we take 

up modeling of plastic deformation in the crack tip, slip would be dictated by that plane 



only. So, you have to understand how slipping of planes can happen in the case of plane 

strain and plane stress. So, it is worthwhile to go and look at the more circle for these 

cases. 
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Now, we move on to plane strain; the moment you come to plane strain, you all note that 

you have to look at the thickness is sufficiently long and another important aspect is 

loading should be uniform in the thickness direction. Here it is shown as direction z; if 

the loading is not uniform, you cannot idealize the situation as plane strain. 

Normally you would take the case of a roller bearing the rollers in the roller bearing; you 

consider that as the plane strain problem or if you have the dam, the dam you consider 

the in civil engineering away from the edges as a plane strain situation; it is uniformly 

loaded and it is very long and plane strain assumption is valid. 

Here again, you should look at also the stress tensor; you should not stop with the strain 

tensor and if you look at the stress tensor, that will be fully populated; you will also has 

sigma z z; it is not in a plane; it is 3 by 3 matrix and what is the implication of this? 

See in a plane strain situation, you would take out a slice and you want the edges to 

remain straight- the meaning epsilon z suppose I have this as a z direction epsilon z 

remains 0 means, these two surfaces should remain straight; in order to keep them 

straight you will have stresses developed in the z direction only because of that the 



planes remain straight. In fact, we would look at this when we want to extend the 

solution for a finite body crack problem. We would study for series of collinear cracks in 

an infinite body from that solution, if you want to take out a single edged crack or double 

edged crack, we would pass a plane and we would argue what kind of situation that 

should be maintained on the surfaces. So, when you look at the plane strain situation, 

you should recognize and understand physically the meaning of sigma zz. So, here again, 

you go and look at what is the orientation of maximum shear stress. You must handle 

this problem as a three-dimensional one. 

Similarly, the plane stress also looks as a three-dimensional one. In this space, what is 

the plane that is very important. Right now you go and look at and clarify your 

understanding; that understanding will help you to rationalize what kind of deformation 

takes place in the case of plane strain and plane stress situation, when we are looking at 

the plastic deformation. 
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And we are going to look at the solution methodology in the absence of body force for 

simplicity. And we have already seen what constitute the stress tensor as well as strain 

tensor in the cases of plane stress and plane strain; in both the cases the number of 

independent stress components is only three. 



Because you could calculate epsilon z in the case of plane stress; you could also calculate 

sigma z in the case of plane strain; they are dependent on other quantities. So, the 

independent quantities are only three; so you require three equations to solve for these 

three unknowns and where do the three equations come from? 

You have equilibrium equations, they are very famous and mind you, we have already 

said that we are not going to consider body forces. So, the equation reduces to dou sigma 

xx divided by dou x plus dou tau x y divided by dou y equal to 0; dou tau y x divided by 

dou x plus dou sigma y by divided by dou y equal to 0. 
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And we can also look at the equation of compatibility. We have already said 

compatibility conditions are necessary when you are having a stress formulation and this 

reduces for both plane stress and plane strain in this fashion. 

In the absence of body force it appears like this del squared sigma xx plus sigma yy 

equal to 0. You know many times you look at this equation, you will carry on method 

you do not reflect what the equation conveys to you. See I had pointed out when we 

looked at a three -dimensional scenario, even in the absence of body forces, the 

governing equation had a material constant appearing in the form of Poisson’s ratio. 

If you look at in this case, the governing equation does not contain any material constant; 

this is a very added advantage. The observation is very important, because I have been 



saying I am going to illustrate many phenomena in fracture mechanics by looking at 

results from photo elasticity. People have done crack propagation studies in photo 

elasticity; people also have done static experiments on mode 1, mode 2 and mode 3. 

 As long as the problem is plane stress or plane strain, the elastic constant do not play a 

role. So, whatever I see in a plastic is same as what I would see in a metallic specimen; 

definitely the deformations will be different, we are talking about deformation; as long as 

you are concerning your attention only to stresses, for the same load both will have same 

levels of stress. Usually you invoke model to prototype relations and you apply a smaller 

load on a plastic model than what is actually happening in the prototype, but the stresses 

developed for that value of load is same in a metallic specimen. 

So, this gives the mathematical justification of validity of photoelasticity for solving two- 

dimensional problems. So, you should also look at that as part of this. 
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Now, what we will have to do is we will have to solve these equations and how people 

have approached? You know people wanted to make our life simple; they have looked at 

a stress function approach. 

You know this was introduced by Airy and this is known as Airy's stress function 

approach. We have to get the solution by solving the three equations, instead of doing 



that, the problem could be reduce to a single equation by assuming a stress function phi, 

which is related to the stress components in the following fashion. 

So, you have sigma xx is related to phi as dou squared phi by dou y squared; this is for 

cartesian frame of reference; we are looking at the cartesian stress components; sigma yy 

equal to rho squared phi by dou x squared and tau xy equal to minus dou square phi by 

dou x dou y. 

So, what we would try to show is, by just finding out phi, we would immediately get to 

know what is the sigma x stress component, sigma y stress component, dou x stress 

components. So, instead of three unknowns, we would modify the set of equations to 

determine only one function phi. 

The moment phi is known, the problem is solved; once I get the stresses, go to strain, 

then go to displacement and the equations are given like this sigma xx equal to dou 

squared phi by dou y squared; sigma yy equal to dou squared phi by dou x squared; tau 

xy equal to minus dou squared phi by dou x dou y. 
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We have already seen the compatibility condition as del squared sigma x plus sigma y; if 

I substitute the definition of sigma x and sigma y, how does the equation change? 



The equation changes to del square of del squared phi equal to 0; it reduces to del power 

4 phi equal to 0 and in an expanded form, this is nothing but dou power 4 phi divided by 

dou x power 4 plus 2 dou power 4 phi by dou x squared by dou y squared plus dou 

power 4 phi divided by dou y power 4 equal to 0. 

So, what we have achieved is, for plane elastic problem, the solution reduces to finding a 

function phi satisfying the boundary conditions. We have to go and look at; do we solve 

the problem like this? See we said in strength of materials, you assume the displacement 

field and solve it for a class of slender members. 

In theory of elasticity, we said we do not assume the displacement; we evaluate as path 

of solvent differential equations, then we qualify; in some cases we will have to look at 

uniqueness of displacement. So, multiply connected bodies are difficult to handle, then 

we said we will look at experiments and look at how the displacement is we will invoke 

it; we said all that finally, we are not looking at as a mathematical exercise. Ideally I 

have to get phi satisfying this equation and the boundary conditions and solve the 

problem. 
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So, I have to define the problem by specifying the boundary and evaluate phi from that, 

but we will not do that, what we will do is, we will follow what is known as an inverse 

approach. 



So, what you do in an inverse approach? We will not solve the bi-harmonic equation and 

obtain phi, but forms of phi that satisfy the bi-harmonic equation would be investigated. 

So, we do it in a reverse fashion. Ideally what I should do? For a given problem, specify 

the boundary condition and you know the governing differential equation, solve the 

governing differential equation and get phi we do not do that; we look at what forms of 

phi are permissible that they satisfy the bi-harmonic equation. Either the functions 

individually or in linear combinations are investigated to see what problem it represents 

physically. 

So, you are actually adopting an inverse approach; you are not solving the problem up 

front; what you are actually doing is, this is the bi-harmonic equation, we would look at 

what functions of phi are valid candidates to satisfy the bi-harmonic equation, then we go 

and see which physical problem this stress function represents. 

So, in fact in 1930’s, the research was focused on determining phi for various types of 

problems. The moment phi is determined everything else is found; because once phi is 

known sigma x is given as dou square phi by dou y square and so on so forth. 

So, the challenge is in finding out what is phi. 
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As I mentioned, we are actually looking at forms of phi in different coordinate system. 

Now, we take up the cartesian co-ordinates; we will also look at forms of phi in polar 



coordinates and phi could be a polynomial function that is a simplest think off; you can 

take different orders of polynomial that satisfy the bi-harmonic equation and investigate 

what physical problem it solves; you could also have phi represented in terms of Fourier 

series. 

See in fact, when you are learning a first level course, you learn the bending moment 

diagram and shear force diagram to understand how the bending moment changes along 

the length of the beam. You normally take up concentrated loads, because they are easy 

to illustrate how a bending moment could be drawn. When you come to theory of 

elasticity, it is always convenient to handle it distributed loading; concentrated loads are 

difficult to handle. 

So, when I have a concentrated load, I have to use a Fourier series and invoke several 

harmonics to obtain a concentrated load. So, you will find solution to three point bending 

is done in a much more complex fashion using Fourier series than a beam with a 

distributed loading. You learn it other way when you are learning the bending moments 

and you could also find out phi based on analytic functions. 

In fact, in a course in fracture mechanics, we would look at analytic functions as 

candidates for defining the stress functions. The moment I strike a gold mine what is the 

stress function for a given problem, all other steps are completely known. 

So, the challenge lies in finding out what is phi for a given physical problem and it is not 

a simple task and if you look at, are there set procedures to find phi? The answer is only 

no. One may obtain it intuitively or by trial and error. 

So, the whole of analytical development hinges on what is the stress function phi. If you 

are able to find out a stress function for a given problem, the problem is completely 

solved and this is the reason why people also developed different coordinate system to 

comfortably specify the boundary conditions. 
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So, what we will look at is, we will take up a simple problem; we will just start the 

procedure and continue it in the next class. 

So, what I am showing here is beam under uniformly distributed load and this is the 

problem usually solved in a course in theory of elasticity. We would just see the 

highlights, we will not get into the complete solution procedure and we would look at 

what is the shear force as well as the bending mode variation. And what is shown here is 

what is the sign convention used on a positive phase, positive shear is positive. Similarly, 

on a positive phase anticlockwise bending moment is positive and for a problem like this, 

you will have variation of shears force like this; variations of bending moment like this. 

See I have already pointed out is flexure formula valid for this case? This question you 

would not have asked when you have done a course in strength of materials. You simply 

learn flexure formula for a beam under uniform bending moment and applied it to 

cantilever beam, simply supported beam and over hand beam. 

So, many problems you had done; you have never looked at the no answers. In the last 

class, I had shown when I have constant shear force, then plane section do not remain 

plane, before and after loading in fact, it has a variation; fortunately it does not interfere 

with bending. So, bending and shear were uncoupled for normal cross section beams 

unless, you look at deep beams. 



So, you are justified in extending flexure formula when shear force remain constant and 

what you see here? Shear force is not constant; so bending stress whatever you calculate 

from your strength of material will not be accurate from a mathematical stand point; the 

solution will not be accurate you have anticipate that. 

See you should not say I have already solved this problem in strength of materials why 

should I solve it in theory of elasticity? You would solve it by theory of elasticity and 

find out what are the corrections that you get and you say for practical situation, these 

corrections are very small, I can still live with strength of material solution; that is 

different, that is ok and that is how engineers operate; the engineers always solve the 

problem and bring in correction factors. 

In fact, we would look at from that perspective. Because while learning fracture 

mechanics, you should also have your fundamentals clear and that is the reason why I am 

spending some time on reviewing strength of materials as well as theory of elasticity to 

bring out the no answers. So that is the idea behind it. So, in this class, we have looked at 

basics of theory of elasticity; I have said that you determine displacement as part of the 

solution procedure. 

So, essentially you attempt to solve differential equations. Even in that case, we have 

segregated class of problems involving simply connected bodies and multiply connected 

bodies. In simply connected bodies, compatibility conditions actually guarantee for you 

to get the final solution while using stress formulation; in multiply connected bodies, you 

have to bring in uniqueness of displacement until, then the solution is not complete, then 

we moved on to look at what is an Airy stress function approach; we said that it is an 

inverse approach, rather than finding out phi satisfying a given problem of the boundary 

conditions, we in fact look at candidates for phi, which satisfy the bi-harmonic equation, 

then qualify, which physical problem does this phi represent. 

So, in that sense, it is a semi inverse method. Once you get the phi for a problem, 

everything about the problem is known, because that is embedded in the development of 

this semi inverse method. 

 Thank you. 


