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So, we have come almost to the end of the course. So, I will teach you yet another 

nontraditional optimization technique namely Simulated Annealing, S A as it is known in 

its abbreviated form. It is a nontraditional optimization technique, in the sense that we do 

not use regular calculus techniques or we do not use search technique which is based on 

dividing the interval and eliminating a portion of the interval and so on. However, it is 

also a search technique, we use some probabilistic laws. So, it is a stochastic 

optimization technique and apart from that we draw some certain principles used in 

metallurgy; for example annealing, annealing is basically a slow cooling. So, you mimic 

the process of annealing in metallurgy. So, it is a simulated anneal; that is why the name 

Simulated Annealing. 
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It is a stochastic optimization technique; that means it is based on probabilistic rules. So, 

that means it is similar to genetic algorithms in one sense. It is developed by Kirpatrick, 



Gelatt and Vecchi in 1983, the article was published in Science. I hope you are aware of 

this journal Science; it has got one of the highest impact factors considered very 

prestigious to publish in Science. Then is an offshoot of the Metropolis Hasting 

algorithm. It is basically an offshoot of this Metropolis Hasting algorithm which is a 

powerful sampling technique in statistics; you will see that in a little while. So, it is a 

global optimization procedure just like genetic algorithms. So, there is no premature 

convergence to local minima or maxima. So, it is very robust. It may not be very 

efficient in the sense that it will not quickly converge, but it is very robust. Then it works 

very well for discrete optimization problems as well as for exceedingly complex 

problems, right; for very very complex problems it works very well. 
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I will put this up on Moodle; the genetic algorithm is already there on Moodle. So, the 

basic philosophy is, consider the cooling process of molten metals through annealing. All 

of you have studied annealing, right, in one of the earlier semesters. At high temperatures 

the atoms in the molten state can move freely with respect to one another, right. At high 

temperature they have more energy; so, they can move freely with respect to one 

another. However, as the temperature is reduced the movements are restricted, correct. 

So, analogously during the initial iterations the samples are free to move anywhere in the 

domain; what is a sample? If it is a single variable the x; the x can move anywhere in the 

domain. Just like during the starting process of annealing, the atoms have a probability of 

being in any state but once the energy level is low the probability of attaining a particular 



state becomes low and so on. That is the problem of attaining all states becomes lower, 

are you getting the point? When the energy is high it has equal probability of attaining 

any of the states, right. So, that means in short the freedom gets reduced as the energy 

level goes down. 

So, similarly in the initial iteration the freedom is very high. The x, if it is x 1 and x 2, x 

1 and x 2 can move here and there but as the iterations proceed the conditions for 

accepting a particular sample, what is the conditions for accepting a particular sample? 

That is you are going from x 1, x 2 of i to x 1, x 2 of i plus 1 the condition for accepting 

it becomes stricter and stricter; that is, quiz 1 you make a paper very easy, then quiz 2 

you make little more difficult, the end-semester, you make it very difficult. I mean that is 

one way of looking at it. So, it becomes more restrictive; it becomes more restrictive as 

the iterations proceed. So, analogously if you look at the equivalent in metallurgy, the 

annealing, the atoms begin to get ordered and finally form crystals with a minimum 

potential energy. You have learned about this minimum potential energy. 

If the cooling takes place very fast, it may not reach that, it may not reach the final state 

of minimum potential energy, are you getting the point? So, the crucial parameter here is 

the cooling rate; the cooling rate decides whether eventually you will reach a state which 

has a minimum potential energy. Therefore, the cooling rate has to be tweaked or fine-

tuned or controlled in such a way that you get the optimum end product in metallurgy. 

Similarly, the convergence rate, the acceptance rate of sample, that is the convergence 

rate of the algorithm is tweaked or fine-tuned or controlled in such a way that you reach 

global convergence, right. So, whatever we are saying in English, eventually you have to 

translate into mathematics and we should able to solve, right. So, if this crucial parameter 

is very high, the crystalline state may not be achieved. So, this is not what we desire. 
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In fact the system may reach a polycrystalline state that may have a higher energy state 

than the crystalline state, are you getting the point? This is if the cooling is very fast; that 

means, analogously for the optimization problem you may get a solution which has 

converged prematurely. It is an optimum; unfortunately it is a local optimum. There is no 

guarantee that there is a global optimum. So, to achieve absolute minimum energy state 

the temperature needs to be reduced slowly; the temperature needs to be reduced slowly 

for annealing. So, this slow cooling is known as Annealing in Metallurgy. The Simulated 

Annealing mimics this process, mimics this annealing process. Achieving global 

minimum is akin or equivalent to reaching the minimum energy state in the end. 
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What is the key point? The key point is cooling is controlled by a temperature like 

parameter that is closely related to the concept of Boltzmann Probability distribution. 

What is this Boltzmann Distribution? A system in thermal equilibrium at a temperature T 

has energy distributed according to.  
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So, the k is Boltzmann constant, T is the temperature. So, this you have studied in 

Quantum mechanics, right. Now how do we apply this for S A? So, this is equation 1. 

What does the equation 1 suggests? Equation 1 suggests when the T increases the system 



has a uniform probability of being at any energy state. What does it mean? If T is very 

high what does it mean? It is e to the power of minus of a very low quantity; E to the 

power of minus of a very low quantity is? 

Student: 1. 

Student: Close to 1. 

It is close to 1. 
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So, equation 1 suggests that when T increases the system has a uniform probability of 

being at any state, but when T decreases what happens is e to the power of minus it 

becomes a large quantity. Therefore, this P of E becomes very small. When the P of E 

becomes very small, it has a small probability of being at a higher energy state, are you 

getting the point? How does it work? It is exponential, whether it is e to the power of 

minus 4, minus 5, minus 6, minus 7; all are 0 for me, are you getting the point? 

Once it has reached a certain threshold, e to the power of minus will approach 0, but if it 

is e to the power of minus 0.1, e to the power of minus 0.2, e to the power of minus 0.05, 

there is a chance of getting different numbers. But once you have reached e to the power 

of minus 4, 5 or then everything will become 0, are you getting the point? Close to 0, I 

mean your calculator or computer will not be able to recognize that. Therefore, by 



controlling T and assuming that the search process follows equation 1 that is the 

Boltzmann Probability distribution the convergence of algorithm can be controlled.  

So, you use a Boltzmann distribution like condition to decide whether the next sample 

will be accepted or not, are you getting the point? Where is the question, now the 

question arises what is this, sir; for the first time you are saying something which is 

different. What is it? What is it that is different in what I am saying? I am saying that, if 

you are looking for a search algorithm, the conventional thinking is if Y of x has to be 

minimized, so I go to x 0 to x 1; that is I am going from Y 0 to Y 1. When will you 

accept x 1? 

Student: When Y 1 is less than Y 0. 

You put it pretty simple; otherwise, it looks stupid, correct. So, the simulated annealing 

also there is no problem with this. If you are taking 2 samples, x need not be just one 

variable x; x is the design vector, x can be x 1 to x n, right. It is a simple notation I am 

saying. So, when you are proceeding from x naught to x 1 and it translates from Y 

naught to Y 1, accept x 1 only if Y 1 is less than Y naught. So, what we are doing in 

simulated annealing is if you seek a minimum, if Y 1 straightaway decreases compared 

to Y naught, there is no doubt; there can be no doubt in your mind that x 1 has to be 

accepted. 

But the beauty is if x 1 is such that Y 1 is higher than Y naught, do not reject it right 

away; reject it with a probability. How do you decide that probability? Please use the 

Boltzmann distribution. How do you use the Boltzmann distribution? This E replace it by 

e to the power of minus, this should be I think it is e to the power of delta E; that is the 

change in the energy, right. This change in the energy in the Boltzmann distribution is 

equivalent to change in the objective function; Boltzmann constant, you can make k 

equal to 1 for our optimization. So, you make k equal to 1, you make delta E equal to 

delta Y and T is the temperature. 

So, this temperature could be there are several ways to depict or represent this 

temperature. This temperature could be the average value of Y, when you start with a 

particular iteration. For example, how the system proceeds is like this. Initially, you want 

to start, what you do is if you have got only one x, let us say x, you will take four values 

of x, arbitrarily four values of x. Calculate the four values of Y; take the average. We 



started the G A was like this. You have a Y bar, you just assume that Y bar is equal to T. 

Assume k is equal to 1, fine. Now you draw a new sample x 1 from x naught. How do 

you generate x 1 from x naught? There are several ways of doing it; you can use random 

number table and Gaussian distribution whatever. 

Now you decide whether x 1 is such that Y 1 increases or Y 1 decreases. If Y 1 

decreases, very good because you are seeking a minimum, straight away accept it, but if 

it increases, you apply this probability criterion. So, you will get a number between 0 and 

1; generate another random number between 0 and 1, some other number called R. 

Compare R with P, and then if R is greater than or less than P, you decide a criterion and 

accept. What are you doing in this? What are you doing this way? Even if the objective 

function become worse, that is for a maximization problem Y decreases or for a 

minimization problem Y increases, initially you just allow; let him be like that, allow 

him to misbehave. 

But as you proceed, what will happen is this T will come down because over generations 

the T will come down because T represents the Y. When T comes down, it has a small 

probability of being at a higher state. Therefore, compared to that random number the 

other random number R which you are generating from the table is always varying 

between 0 to 1. But this random number is also with this P is also varying from 0 to 1. 

But when the T decreases, the probability will be such that if the function decreases for 

maximization, or if the function increases for a minimization, as the iterations proceeds 

when temperature T comes down, it becomes more and more difficult for you to accept 

the sample. It will proceed like a general algorithm conventional thinking only after 

initially the solution space has been thoroughly searched, is that clear? 
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Now the slides are meaningless. Anyway I have explained the whole algorithm to you 

without the slide. So, Metropolis 1955 suggested one way to implement the Boltzmann 

probability distribution in simulated thermodynamic systems. Whatever Metropolis 

suggested I have already explained to you. So, this can be also used for optimization 

problem. 
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So, let us say that so the Metropolis Hastings algorithm, what I have explained to you 

now quick in 2 minutes or 5 minutes, the M H or the Metropolis Hastings, it is basically 



a sampling algorithm. What is a sampling algorithm? A sampling algorithm is an 

algorithm which helps you get samples. What is a sample? x naught to x 1, x 1 to x 2. 

How will you generate new samples? New samples will be based on some laws; that is 

whether you accept a new sample or not depends on some condition. If this condition is 

based on the Boltzmann distribution, that is the Metropolis Hastings algorithm.  

The Metropolis Hastings algorithm has been listed as one of the ten most powerful 

algorithms ever developed by man in any field. It can be used to solve a variety of 

engineering problems because it is actually called an MCMC method; I mean for an 

MCMC method you use this; that is Markov chain Monte Carlo method. Under MCMC 

method, the Metropolis Hasting algorithm is one of the most powerful sampling 

techniques. Okay, we have achieved a lot of success in our research in satellite 

meteorology, in inverse problems; in our group we extensively use the Metropolis 

Hastings algorithm. Now let us say that the current point is x t and the function values E t 

is f of x t, right, that is, y of x. 
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The probability of the next point at x t plus 1 depends on delta E. Delta E is your change 

in the objective function which is E t plus 1 minus E t; that is y of x 1 or y 1 minus y 

naught and is calculated using the Boltzmann probability distribution. 



Now we apply the Boltzmann probability distribution P of E t plus 1 is minimum of 1 e 

to the power of minus delta E by k T. If delta E is less than equal to 0, that means the y 

is? 

Student: Less than 1. 

If delta E is less than 0, y 1 is less than or greater than? 

Student: Greater than. 

Delta e is less than 0, y 1 is less than y naught; for a minimization problem if y 1 is less 

than y naught, you want to accept or reject? 

Student: Accept.  

Accept, okay. So, if delta E is less than 0 the probability is 1 and x t of 1 is always 

accepted. We are not questioning conventional thinking, but while acceptance is 

straightforward, rejection is not straightforward. That is the essence. You do not mess up 

both the things. You accept when it is going in the right direction, but you do not reject if 

it is not going in the right direction. You reject it with some probability. You do not give 

you grade straight away. You reject it with a probability and this probability will be such 

that rejection will become higher, the rejection rate or the rejection will become stricter 

and stricter as the iterations proceed. 

Student: So, the random number we generate will become higher and higher. 

No, random number will become 0 and 1 only; but the P will be such that P will become 

very close to 0, are you getting the point? Because as iterations proceed, the T what 

happens to T? 

Student: No sir, I am saying the criteria will be. 

Criteria same, generate a random number r, r is less than equal to P or r is greater than 

equal to P. You decide something and stick to that criteria and random number you will 

continuously generate; random number will always vary between 0 and 1. P will also 

vary between 0 and 1, but as the iterations proceed P will become closer to 0, but the 

random number will be between 0 and 1. 



So, if you put a condition r less than equal to P, if r is less than equal to P I accept the 

sample, are you getting the point? So, r, you can generate 0 to 1. P also it will be 0 to 1, 

but initially P will be close to 1. So, out of 3, 4 times when this rule is violated, that is y 

1 becomes more than y naught you will still accept it. But when the cooling proceeds that 

is the T is decreasing, then the chance of P becoming high will go down. r has always a 

chance of going up and down between 0 and 1, are you getting the point, fine. 
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So, the interesting situation happens when delta is greater than 0 which means Y of t plus 

1 is greater than Y of t. So, it is worse compared to E of t; however, we do not reject x of 

t plus 1 right away. According to simulated annealing, there is some probability of 

selecting it even though it is worse than x 1. However, this probability is not the same in 

all the situation, P actually depends on delta E and T. That is what I told you. 
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If T is large, the probability is more or less high for points with largely disparate 

functional values. Thus, any point will be accepted for a large of T. Initially, any point 

will be accepted; however, when T decreases, the chance of an arbitrary point being 

accepted is small. 
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So, S A is a point by point method generally. So, unlike G A we start from one point and 

follow that point but however, S A for multiple points is also there. That is also possible, 

but the original S A was a point by point method. So, as usual it is a search technique; we 



begin with an initial search point and a high temperature T. The high temperature T is 

equal to y bar for 3 or 4 values of Y you take the average.  

A second point is created in the vicinity of the initial point and delta E is calculated. If 

delta E is negative the new point is accepted; otherwise, the point is accepted with a 

probability of e to the power of minus delta E by k T where k is equal to 1, this 

completes one iteration. In the next generation again a new point is chosen but now the 

temperature T is reduced; that is you control the cooling rate. For the purpose of this 

class and in exam and all that you can reduce T by 0.5; each time you can reduce it by 

0.5.  

Student: Sir, every iteration we reduce or only for? 

Every iteration you reduce it by 0.5. You can reduce it 0.25, 0.3 also but for uniformity 

we will reduce it by 0.5. 

Student: Here T represents Y bar, is it? T represents Y bar. So, for maximization 

problem, Y bar increases. 

No, I am explaining the algorithm for minimization. 

Student: Only for minimization? 

You convert it into an equal minimization problem. 

Student: Sir, how do we choose the next point? 

You have to use random number table and I will explain it to you. We will work out a 

problem, right. 
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At every temperature, a number of points are usually tested before reducing the 

temperature, right. Convergence criterion T is very small or delta E is very small, right. 
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This is how it is; I have taken it from some these things. So, you can see that Parameter 

A and B, if this is the solution initially it will go zigzag, zigzag, zigzag finally it will 

reach there. 

Student: Sir, in this we are using the Boltzmann distribution here, but there are lot of 

other distributions which have similar properties what we have seen. 



Boltzmann because the Boltzmann distribution works very well for annealing and they 

have got success with annealing, it has been used in Metropolis, okay. 

What is the algorithm? If you want you can write down. It will be better, okay. 

(Refer Slide Time: 21:52) 

 

Choose an initial point x naught, a stopping criterion epsilon. Set T sufficiently high, 

decide on n. Can you just copy this down? It is going to be helpful to you. 

So, choose an initial point x naught, a stopping criterion epsilon. Set T sufficiently high, 

decide on N and set t equal to 0. t is the counter, that is small t is the iteration counter. 

Calculate a neighboring point x t plus 1 to N of x t. How do you do that?  
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Okay, please look at the board; stop for a while. For example, suppose I want to 

optimize; so, this is the cargo ship problem, right. Let us say that 0.5, correct. Now what 

I do is let me take first sample x naught equal to. So, I will take this as the mean. I do not 

want the samples to exceed; I do not want my samples to exceed 25.5; I do not want my 

samples to fall below 0.5. So, 99 percent of the time I can do this, if I follow a Gaussian 

or a normal distribution whose mean is equal to 13 meters per second and whose 3 sigma 

is given by, are you getting the point? So, 25, 12.5; sigma is 4.16 meter per second. So, I 

will have mu equal to 13 that is initial iteration. So, I start with mu, that is x naught. 



How will you generate x 1 now? Ashutosh you asked this question, right. How will you 

generate x 1? No, he is not able to, how will you generate x 1? So, if you use the normal 

distribution f; so, what is the ordinate of this? What is the ordinate of this distribution? 

When x equal to mu what happens? f equal to? 

Student: 1 by root 2 pi sigma. 

So, this will be the maximum probability you are getting. This will be the maximum 

probability you are getting. That will happen when x equal to mu. Therefore, x minus mu 

equal to 0. So, what I will do is I will use the first column; generate a random number, I 

will assign that to f. Sigma is known to me, mu is known to me; I will generate the new x 

but what will be the problem with this procedure if you straight away apply it? The 

distribution is correct. 

Student: You get points which are outside? 

No, point is outside; sometimes it may lead to some meaningless this thing because 

sigma is very high here, are you getting the point? And f is between? 

Student: 0 and 1. 

0 and 1 but in the maximum f should be only 1 by root of 2 pi sigma. Therefore, you 

have to use a normalized standard distribution, are you getting the point? Or how else 

can we take care of this, any suggestions? 

Student: We have to generate something like a random number and we have to convert it 

to whatever. 

Yes, how? We have to implement now. 

Student: We use the value of sigma and we just add that random number to this to the 

existing value. 

What, what, what? 

Student: We generate a random number. 

Okay no, no, you have the table you generate the first random number. Okay, then? 



Student: From that random number we generate a random normal. We can generate 

random normal. 

Random normal means what, what does it mean? 

Student: Standard normal n 0 1. 

Okay. So, I generate n 0 1, I convert that to n 0 sigma. Choose some value of sigma 

which I want which is some small part of the domain and add that to x and x t to get x t 

plus 1. 

No, no, okay. So, is it like this? If I understand you right, are you saying that? 
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If suppose I say x 1, this is not correct, is it not? Then you are not following the random 

number, is it not? Is it correct? 

Student: No sir. But random normal is on both sides. 

No, but what is that rand now? Is it the random number you are taking from the table? 

Student: No. 

Okay. So, I am not sure whether this is, why I am discussing it at length is it is this 

Simulated Annealing is a research algorithm; it is not discussed in text books. There is 



no standard procedure available, it is not written in 10 text books. We solve it in a 

particular way; I want to see whether first time when I propose this to you, you can come 

up with something. Now I want suggestions. You still have 20 minutes. 

Student: Can you just repeat the question? 

Now we want to generate randomly a sample. We have this sample; we want to go either 

here or here. So, I want x 1. 

Student: We can generate a random number between 0 and 1 by root of 2 pi into sigma. 

We can generate a random number? 

Student: between 0 and 1 by root of 2 pi. 

Now we are cooking with fire. So, you can generate a random number between 0 and 1 

by root of 2 pi. How do we do that? 

Student: You just divide the random number. 

You just divide the random number by root of two pi sigma that is it. The problem is 

solved. Ashutosh, does it answer your question? It leaves you more confused. Then, see 

if the right hand side is varying between 0 and 1 there is no problem, but right hand side 

the ordinate is when this become 0 it becomes only 1 by root of 2 pi sigma; that means I 

am not using a standard normal, I mean normalized normal distribution. I do not want to 

complicate things; after all I want one sample. Suppose, I want to normalize and every 

time I normalize my sigma may change; it will lead to a lot of mess. I want to quickly get 

over to this thing. I do not care about Gaussian distribution, but I want a random sample. 

I have to follow some rule; that is why I am using this fellow, right. 

Now because f can vary between 0 to 1, if suppose by chance I am getting f 0.99, one 

random number could be 0.9. If I put 99, this may lead to completely arbitrary results, 

are you getting the point? Because this will be e to the power of minus will be 

something. So, it will go completely outside the range or it will lead to some silly results. 

So, therefore it is important for us to keep f between 0 and 1 by root of 2 pi sigma. So, 

generate a random number, divide it by root of 2 pi sigma and then equate it. Now there 

is a thing that it is x minus mu whole square. When you generate a new x 1 it will always 



go to one side, is it not? Is everybody able to follow what I am saying? I am teaching 

funda concepts. So, when you take x minus mu whole square, it will always go to one 

side. 

Student: That again you could use another random variable. 

You use another random number. Take the random number in the row 5; take, generate 

another random number gamma or k. If k is between 0 to 0.5 put plus delta x; if it is less 

than 0.5 minus delta x. So, so many things are required. But this is the variety you are 

introducing; by putting so many stochastic things, you are doing that zigzag. So 

therefore, if there is a treacherous function which goes up and down, this fellow will not 

leave; he will catch him. But your Golden section search and all that will work only for 

the unimodal; this fellow and GA can catch any fellow; are you getting that point? But 

they will be slow, but they will catch. And, it is infinitely superior to exhaustive search, 

because there is some funda based. Exhaustive search, there is no funda. It is funda 

based, are you getting the point? 

Now have you written all the four; everybody through with this? So, calculate a 

neighboring point x t plus 1 is N of x t; N of x t is the normal distribution which we have 

seen. So, using a random point in the neighborhood it is created. If delta E is E t plus 1 

minus delta T is less than 0, set t is equal to t plus 1; that is move to the new point else 

create a random number in the range 0 to 1. So, this random number should be in from 

the row 3 or row 4. In your random number table, if r is less than equal to e to the power 

of minus delta by T, set t is equal to t plus 1. So, this is P probability r less than equal to 

P, you can set the criterion. So, please note that you have to use three sets of random 

numbers for simulated annealing. The first set of random number is for the sampling. 

So, you can stick to row 1 and 2 for this. Row 3 of the table you can use for generating r 

and row 4 or row 5 you can use it for generating that k or whatever which will decide 

whether the delta x will go to the right side of the mean or to left side of the mean. So, if 

x t is less than your criterion stop, else reduce and cooling schedule. What is our cooling 

schedule? Cooling schedule is, so this is our cooling schedule. T and N govern the 

convergence. If T is very very high convergence is low; if T is very small it may lead to 

premature convergence.  
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Please note this; to calculate initial T, draw a few random x values and calculate the 

average f of x. This you have to note down, how to generate the initial temperature and 

then set T equal to average f of x. So, you know the initial sample, initial x will be the 

mean of the range. Initial standard deviation you know, right. Initial cooling rate I have 

given you, use random number, generate and proceed it, right. Yes, that is it. Now 

problem number, for calculating 

Student: T. 

Yeah, you do not have to do. For second iteration onwards T is equal to T by 2; you do 

not have to do that. I will give; I will put the question paper on moodle. So, one question 

on DP, one question on LP, one question on GA, one question on SA; 4 questions, one 

question on Lagrange multiplier; 5, one question on non-linear regression, right. Then, 

Golden section and other things depending upon same problem I will say solve it by 

Fibonacci or Golden section; golden section everybody all of you know it just takes 10 

minutes. And then initial simulation I will give a tough problem which will involve some 

dou y by dou x and all, either Newton-Raphson or I can give Gauss-Seidel, system of 3, 

simulation is also involved. So, you have a fairly good idea of what to expect, right.  

Now we will start solving, because simulated annealing we have not really solved. You 

should know how to use a random number table. So, problem number 43; consider the 

cargo ship problem. We would like to solve it using SA. Consider the cargo ship 



problem. Anyway, problem statement can be conversational know instead of being very 

formal and. We would like to solve it using SA. Perform four iterations of the SA. 

Perform four iterations of the SA, with an initial interval of uncertainty of 0.5 less than 

equal to x less than equal to 25.5 meters per second. Perform four iterations of the SA for 

this problem with an initial interval of uncertainty of 0.5 less than x less than equal to 

25.5. Use the random number table provided to you. 

I want to use the board. Shall we minimize? Shall we put it on standby? I will use it 

again. So, I told you the difference between B Tech, M Tech, PhD know? You know 

that; you do not know? Anyway before we start solving before everybody gets. If you 

think you know everything, you will get B Tech; if you begin to doubt that you know 

anything at all, you will get M Tech if you are convinced that you do not know anything 

and you are also convinced that others also do not know anything, you will get PhD.  

Now if you are convinced that you do not know anything at all, if you are convinced that 

others also do not know anything at all and more important you are also convinced that 

in your lifetime, nobody can ever figure out that you do not know anything at all, you 

become a Prof. So, 12 years back one fellow was very serious, very serious when I told 

this. He put his hand up, ‘sir, I have no doubt that I do not know anything, sir’, then he is 

trying to trap me. Then, why am I registered for M Tech sir, I should get PhD’, he tried 

to trap me. I said that, ‘you still think that I know’. It took some time for him to 

understand. 
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Now first step; that means use 4 values. See all of us calculated 4 values using GA, right; 

we will use that itself. Go to the problem 42, using GA we started with 4. So, we got Y 

bar. What was the Y bar? 

Student: 96.85. 

So, Y bar. 
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So, now iteration 1; so, every iteration you have to draw this. In the exam also you have 

to draw this and indicate the mean, only then I will be convinced that you have 

understood, right. So, X naught equal to mu equal to. So, the X naught, sigma, no, no, 

no, 3 sigma, right; each time you have to write this, X 1. What is the objective of writing 

the Gaussian distribution? You have to solve this equation to get? Solve this equation to 

obtain? 

Student: x 1. 

What is it? x 1, good. So, solve this to get X 1 and then apply your funda. What is that 

funda? e to the power of minus delta by k t. If Y straightaway decreases, no need to 

apply that funda. If it goes in the wrong direction, you have to apply that funda. 
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Now generate f. First row, 499629, can you show this? Please show that because the 

other students do not have this or you can show this, okay, not for you guys. So, we want 

to use this.  
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This is a random number table. So, lot of such random number tables are available freely 

available in the internet and also available in the appendices of standard mathematics text 

books or probability and statistics text books. Here is one such table. So, we will start 

with this. Generate the first random number. First random number is 0.001213; now that 

is the f value. So, we use this; divide it by 2 pi normalize this. How much are you 

getting? Very bad, very small know. So, 1.16 into 10 to the power of minus 4 equal to 1 

by, yeah, solve for X 1. Is it okay? 

Student: Sir why do we divide by each time and then, here it gets cancelled. 

Should we divide it or multiply it? 

Student: We should divide it. No sir, actually we can just equate that e power minus 1, 

because e power the maximum value of that is between 0 and 1. 

Yeah, but anyway it is also going on the, you do not have to divide it. When you are 

actually doing it, get rid of the 1 by 2 pi sigma, to make it very formal and since this 

lecture is also going out, I will. What they are saying here, what people are saying is, 

anyway these two get cancelled. You have to just look at, okay. First step you write like 

this; next step onwards you do not write, so that you do not get confused. It may so 

happen that you may use a normalized normal distribution then you should not get 

confused. Now what is this now? X 1. I can only say delta X, right because X 1 minus 



mu, does it give arbitrary answers? No, it would not give arbitrary answers. What is it 

giving? Which is out of range? 

How much are you getting? Has anybody finished? 

Student: 28.24 because this 0.001 is going out of. 

It is X 1 is 28 point? 

Student: 24. 

I am sorry, out of range. Choose second random number. 

Student: 38.91. 

X, anyway it is going in the wrong direction. Now next random number f, what is f? 
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Student: 0.499. 

Initially, yeah yeah okay, what Varun is saying is correct; that gets cancelled, it is okay. 

Now I will do some little bit of cheating, I mean, first we got 28.24 by adding to the 

positive side of 13. Now I am allowed to do the negative side. But this if you do not 

believe me, go to row 5 and take another random number. What is the first random 

number in row 5 column 5?  



Student: 0.05, sir. 

0.05. Then, if it less than 0.5 I will add. What is the second number? 

Student: 0.182. 

Okay, we will start from second because I know the answer man 10.4 meter per second, 

are you getting the point? But you should not do all this in the exam. So, go strictly by 

the random number. See I told you whether delta X will become positive or negative, this 

is a square. So, whether delta X is positive or negative, you have to decide by another 

random number; you set up an algorithm based on column 5. If random number generate 

a random number, less than 0.5 you go the left side; greater than 0.5 go to the right side 

whichever way. Now I will say delta X is how much? How much is it Sampath? 

Student: 4.9. 

4.91. So, let me say X 2, X 1, 8 point? So, the first step, what is Y of X 1? What was Y 

of X naught? I think so far you did not calculate Y of X naught. What was Y of X 

naught? 

Student: This is 68.68, sir. 

This is lakhs. What about Y of X naught? No, no, no, no Y of X naught? 

Student: 68.41. 

At 13, now it is good. I wanted to tell you the algorithm in one iteration itself we got. 

Now Y of X 1 is worse compared to Y of X naught, we are seeking a minimization, 

correct, but I do not want to reject it right away. I want to use the Boltzmann distribution, 

Y of X 1 greater than Y of X naught, but we do not reject right away.  
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So, generate random number r third column. So third column, what is the first one, 57, r 

equal to 0.5788. Now P, delta is how much; 0.27, 98.61? 

Student: 98.61. 

Okay, I am very happy, it is very close to 1. So, if r is less than equal to P we accept, 

right. What did you say? r is less than P, therefore we accept this new sample even 

though it went down. That is the simulated annealing. It may look counter-intuitive, but 

in the long run it works. Because now next iteration I am going to say T 1 equal to T 

naught by 2, okay. We will do one more iteration and then we can close. You can see 

that it can be eminently programmed, easy to write an SA program. 

People who want to do their B. Tech project, M. Tech project, dual degree project, 

whatever or you are interested in optimization, you can use Mat lab, you can code GA, 

you can even use code SA, take any of the problems which we discussed in this class; 

quiz too we had a good problem Lagrange multiplier d to the power of 1.5, you can code 

it and then use various strategies; that is a good learning experience. Ideally I think this 

course we should have a lab, right. Make it a four credit course and you should have a 

lab and all of you will work on a system, we will do the iterations, we will plot contours 

of; it will be real fun optimization lab. Maybe in the future I should think about it. 
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So, iteration number 2, okay. X 1 is, T 1; that is lakhs of rupees, right. T is lakhs of 

rupees where delta Y T is dimensionless. There is no e to the power of minus rupees is 

not there. Do not worry how e can be raised to the minus of rupees. That is 

dimensionless. Now what should you do? f equal to, we will retain the same sigma, right, 

or you want to change? Now what will be the mu? 

Student: 5.01. 

Do not get stuck with the old mu, this is a mu 1, are you getting the point? But then the 3 

sigma that (( )) will be there know. There is a possibility that 3 sigma may go out; sigma 

will also be changed but this simulated annealing one on one. I mean so we are just 

trying to learn simulated annealing. In fact the actual Metropolis-Hastings algorithm, the 

sigma will change with respect to the current mean but let us not complicate the 

algorithm, we will keep the sigma same. If you keep the sigma same and it so happens 

that you generate a random number you get a new estimate which exceeds 25.5, throw it 

out and take the next random number. It is not very complicated in the exam. Only thing 

it will be lengthy; that is all. So, you should allot sufficient time for this simulated 

annealing. I mean, no traps, I mean, it will not let you down, I mean, the considerable 

labor is involved. 

In the actual Metropolis-Hastings algorithm, what happens is sigma is 5 percent of the 

current mean. Watch carefully. When we do research, when we actually apply the 



Metropolis-Hastings algorithm for research problems, what we do is sigma is 

dynamically updated to 5 percent of the current mean; that means the sigma will be 5 

percent of this, will be 0.4. So, it will be 7.6 to 8.4. But if you do that we will never reach 

the solution for this problem. So, we keep the sigma that way. Now that is required for 

the research problem because such a high value of sigma the solution will oscillate when 

you are looking at high dimension problems. The high dimension problems are problems 

with lot of variables, are you getting the point? Let us keep the sigma the same. Let us 

keep mu 1 as this. So, what is the next random number? You are already going to the 

third random number, correct, 0.108. Please note we are using this sequence for f, this 

sequence for r, this sequence for deciding whether delta x is positive or negative. 

Officially, that is our stand; Ashutosh is it clear? 

Student: What difference does it make which one you use? 

No, no, because that f has to be a particular random number.  

Student: Random numbers are random numbers; it does not make any difference with it. 

No, no, no, when you start with this you have to proceed. In this case you have to start 

and sometimes you will get 0.5, 0.5, 0.5 always, 0.6, 0.6. They are all in a particular 

sequence; when you are doing iterations you have to follow it. This is the way the 

computer will generate. In a do loop, if you put rand of x it will generate in this order. 

Otherwise, you will pick and choose all those things which are more than 0.5, are you 

getting that point? That sequence of random number is very important. So, what is the 

new random number? 0.108. We will leave this. And tell me whether it is going to be 

positive or negative? What are you getting Varun? 

Student: Sir it needs to be positive. 

Why? 

Maybe you are getting high value now? 

Student: Yeah, that is correct sir, 8.75. 

Which one? 

Student: Delta x. 



Delta x is 8.7. X 2 is? You add plus 8.7. 

Student: 16.78. 

Now we will apply the MH once more; So, Y of X 2? 

Student: 83.13. 

83.13. Now, is it getting worse? 
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Correct, we do not reject right away. r, what is the new r? 

Student: 0.45. 

0.45. 

Student: 0.73. 

0.73, very good; you are giving me some hopes. e to the power of minus? 

Student: Rejected values. 

Rejected, I am so happy. I can stop it, e to the power of minus? 

Student: 14.4. 



14.4. 

Student: 49.31. 

49.31. What is this? 

Student: 0.74. 

0.74, then how can you reject? Accept?  

Student: It is close, sir. You can reject sir. 

You have to accept. But it is going in the wrong direction but you have to accept. But 

you see it is getting stricter because the denominator is going down. Abhishek is that 

clear? Senthil are you able to see? The denominator is going down; therefore, it will 

become tough to accept it. Okay, this time r is less than P, we accept r 2. So, you can 

complete the other two iterations at home. Anyway, there is no funda involved; you 

know how to accept or reject. This is how the simulated annealing works. After some 

time it will cover the zigzag path. 

So, it will cover the whole of the solution space fairly well, so that global optima are not 

missed. It is a pretty powerful technique. So, if the objective function is computationally 

expensive, for example, you want to solve a tumor. You want to solve for a tumor using 

the peens by e transfer equation or you are doing FEM, ANSYS or CFX or FLUENT to 

generate all this and for getting each value of Y, it is going to take a lot of time. I keep 

telling you, you can develop a neural network. You can run for some so many 

combinations of X, validate it, train it, such that neural network is just like regression; 

just like Y equal to a x squared plus b x plus c. It is gives you a regression of the 

independent variable. And then, it gives y. And then keep playing with that y using 

simulated annealing and then finally see and then finally you will get the optimum. 

Now what you will have to do is after you get the optimum, you can substitute those 

values of x back into your original forward model. Which is the forward model? That is 

you want to find out the temperature distribution in a tumor or something. After you get 

all these parameters, you can substitute it into your original governing equation and 

generate all the temperatures and check whether temperatures which are predicted by the 

neural network are the same as the temperatures you are getting by the full model. This 



completes the loop. This is a standard operating procedure for doing research. Or one 

step further, you do this experiment, have a heat source, change the volumetric heat 

generation rate, put thermocouples, measure it and then use the experimental data. Then 

you can go to the highest, you can go to a very high journey. 

And, if you can come up with some algorithm which is more powerful, you can prove 

that for the Himmelblau function or Banana function, it is superior to what Kirkpatrick 

has done, you can aim at Nature or Science. So, it is possible and they did not come from 

heaven the people who are publishing there. You have to put effort that is all. Normally 

engineers do not try to work in those, try to publish in those kinds of journals but it is 

possible. Once you have Nature and Science, the advantage is you have lot of citations, 

lot of people will look at you work and all that. Suddenly, overnight you will have 

greatness thrust upon you. Then how to handle this will be another problem, okay. 

Now, I will summarize the whole course. 

That is by cooling rate algorithm. I am suggesting that T can be reduced by half. You can 

have different rates. So, ultimately what is the best reduction in cooling rate that you 

have to decide based on your problem. You do not want it to reduce it by 4 times or 8 

times or 10 times, because the rejection will become very this thing. Rejection will 

become very strict. It will accelerate your convergence but premature convergence. So, 

between the devil and deep sea, you have to. 

That is for starting. Only for starting, you have got the average. Then because initially 

what is that T, you did not know. So, you took for average of 4 values and, okay 

Student: Sir mu value, what is to compare? 

That is a mu value.  

Student: That will become the new. 

Which one? 

Student: The new value which is there. 

I am putting my distribution around the new mean. The new value of X becomes the 

mean of the distribution. That is the way all sampling algorithms will work. When you 



are proceeding from 13, the mean is around 13. From 13 if you come to 8, the mean is 

around 8. From 8 if you come to 8.6, it is, the mean is around 8.6, are you getting the 

point? The new value of X becomes the value of mu automatically, are you getting the 

point? 
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So, it is just a quick summary of the whole course. Yes, next slide. Oh, what is this? Now 

it is a dumb question what is optimization after going through 43 lectures. Keep on 

pressing. Process of finding a condition that gives the maximum or minimum; I told you 



it may not always be feasible or possible because of the complexities, time and money 

involved. Small projects that cost time and effort may not justify. Complex system 

design is too complex. One possible strategy is to subdivide the problem into 

optimization of subsystems and proceed. 
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The important decision is what is to be optimized; that is called the Objective Function. 

For example, aircraft, racing cars, it will be the weight; for automobile, it could be size, 

cost and specific fuel consumption or it could be for a racing car, it will be BHP per ton 

or weight; for the refrigerator, it is the first cost. What is the first cost when you buy it in 

the market? For the air conditioner, more important is it will be the running cost.  
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Several levels of optimization are there. For example, if you want to look at optimization 

from two levels, in one level it is a comparison of competing concepts which we have 

not considered in this course; it is not possible to consider. That is there is a, are you 

getting the point? You want to solve the power problem in Tamil Nadu. There are so 

many ways; you can import power, you can have a coal-based power plant, you can have 

a gasification plant, you have a nuclear power plant, then you have to optimize each of 

this and find out; that is a big task. But once you decide that I want to have a nuclear 

power plant, then we can give for a nuclear power plant near Chennai what will be the 

optimum. So, comparison of competing concepts is more difficult. Second level is 

optimization within a concept. Only second level was discussed in this course. 
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Mathematical representation, y is written as y of x 1 to x n; x 1 to x n are independent 

variables and usually it will be constraints could be equality as well as inequality 

constraints. Economics is all about constraints; the constraints actually bind the solution. 

The economics is all about, economics in one line? 

Student: Unlimited wants and limited resources. 

Unlimited wants and limited resources. That is, the whole point is unlimited wants we 

have, but we have only limited resources. The resource could be anything; it could be 

time, it could be money, whatever, right. So, the equality constraints are given as phi 1 or 

phi 1 to phi m and the inequality constraints are psi i to psi j less than equal to l a; that is 

only representation. We can also have greater than equal to. Inequality constraints are 

more difficult to handle, okay. 

The following relations hold. Minimum of A plus y is A plus minimum of y; max of y is 

min of minus y, okay. 
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So, we have seen this problem heat rejected from a Carnot cycle. Go to the next one, 

next one. So, evaporator condenser is operating in outer space we solved this problem. 

So, only radiation is possible. We set up the optimization problem to minimize A; A was 

the area and we wrote it in terms of the temperature ratio. Temperature ratio is T L by T 

H. We optimized it straight using calculus. We did this? 

Student: No sir. 



No, we did not do this? I will put it on Moodle. So, this is simple. Do not worry, you 

have solved complicated problems. Okay then you want, you have time? I will show. It 

is okay, you are getting very conscious. Now you know how difficult it is. 

So, the work output is efficiency into the Q in. From thermodynamics you know that first 

law of thermodynamics Q out is Q in minus Q W. So, I am writing Q out in terms of W 

and eta where eta is efficiency. I am keeping W fixed. So, whatever heat is rejected is 

also the heat which is rejected from the condenser, right, in a power plant. The heat 

rejected from a condenser of a power plant operating in outer space is basically heat 

rejected by radiation alone. That is that can be given by the Stefan-Boltzmann constant. 

We assume the outer temperature to be 0. You have epsilon sigma A T L, temperature of 

the condenser to the power of 4 minus 0, okay. 

Now I have written epsilon sigma A T to the power of 4 is W into eta for a Carnot engine 

can be written as 1 minus T 2 by T 1. T 2 is T low, T L, T 1 is T H. I write it in terms of 

T L and T H. Now I am just doing some mathematical manipulation and I am writing out 

an expression for the area A. I want to minimize the area A. A is W, W is fixed, 

emissivity is fixed, Boltzmann constant is fixed, T L is fixed. I want to find out what is 

the ratio of T L by T H; that I call as A. So, I am posing this optimization problem in 

terms of X; X is the temperature ratio. What is the temperature ratio? 
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Now you can solve it by calculus. If you solve it you are getting the minimum occurs 

around 0.75; that is T L by T H is 0.75. This is a simple calculus based approach for a 

one variable problem. 

This is just to give you an idea of how to formulate an optimization problem; from 

English, you apply the laws of physics and convert it into mathematical form. After you 

convert it into mathematical form, you have to decide an appropriate strategy for solving 

the optimization problem. After you get the results you have to do post processing. You 

should be in a position to analyze; you should be in a position to analyze the results and 

then, in Lagrange multiplier and all that it is possible to do post optimality analysis 

sensitivity coefficient. 
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So optimization procedures, calculus methods and search methods, two broad categories. 
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Most powerful is the Lagrange multiplier method; uses derivatives to indicate optimum. 

So, the existence of derivatives is mandatory. 
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So, this method states that the optimum is reached when del y is minus lambda del phi 

equal to 0. Graphically we saw how this works. Here itself we can see that lambda equal 

to del y divided by del phi; lambda is the change in the objective function with the 

change in the constraint. So, it is a sensitivity coefficient. It is also the shadow prize, 

right. So, there are m constraints. So, m constraint equations, n variables, so n plus m 



equations, n plus m variables, lambdas are called the Lagrange multipliers. So, m must 

be less than equal to n. So, that is the problem with equality constraints. If m equal to the 

n directly the constraints can be solved. That is the solution whether you like it or not.  
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For an unconstrained problem this reduces to del y by del x 1 is equal to del y by del x 2 

and so on. Second order derivatives are necessary to verify this. We use the Hessian and 

evaluate it, okay.  
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So, it is a depiction of a two variable problem where the minimum occurs, dou y by dou 

x 1 equal to dou y by dou x 2 equal to 0. 
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Search methods are based on eliminating a portion of the interval or on systematically 

climbing to the top. So, you have elimination or hill climbing techniques. In both these 

techniques there is a progressive improvement of y. y keeps on increasing or decreasing, 

it is depending upon whether you are solving a maximization or minimization problem. 

It is the ultimate approach if other methods fail, right. But sometimes there is no 

systematic procedure which is followed, so you may feel that it is a Helter-Skelter 

method of searching. But generally in many of the methods even though it is mad as they 

say there is a method in the madness, okay. 
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So, single variable, multivariable; broadly optimization problems can be classified as 

single and multivariable, constrained and unconstrained. So, we saw the exhaustive 

search, the efficient search, dichotomous and Fibonacci search. We also saw the Golden 

section search, multivariable unconstrained I told you the lattice method; east, west, 

north, south, northeast, northwest, southeast, southwest and univariate search method is 

converting it to one variable problem and solving one variable at a time, then steepest 

ascent or steepest descent. Please remember lattice univariate and steepest ascent can be 

applied only to unconstrained optimization problems, are you getting the point? 

So, we have delta x 1 divided by dou y by dou x 1 is equal to delta x 2; that is the 

steepest ascent. You fix delta x 1 and then get all the other delta x’s or choose in terms of 

alpha and decide how much you will go. That is there are two strategies for that. 

Multivariable constraint we did not look at many techniques, but I told you how to 

convert it into an equivalent unconstrained problem by putting a penalty on violation of 

the constraint and the penalties there will be a square of the constrained term, so that it is 

always positive. For a minimization problem the penalty will be plus. For a 

maximization problem the penalty will be minus. For a minimization the penalty will be 

addition of cost. For maximization it is a reduction in profit. Though you would love to 

put a minus sign for the minimization problem, it is counter-intuitive, right. I have 

explained this to you several times. 
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So, the most important funda in any search method is the interval of uncertainty. Your 

final answer lies between which two limits; that is the interval of uncertainty. So, the 

precise point of optimization is never known because you do not solve using calculus. 

So, you can only specify the interval of uncertainty. The interval of uncertainty should 

keep on reducing and the original interval of uncertainty divided by your new interval of 

uncertainty gives the RR or the reduction ratio of the algorithm. 
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So, this is basically a very simple depiction of how to use the two point method. 

Basically, you can see that the function is increasing; it is monotonic. So, I can only say 

that the optimum lies somewhere between y 4 and y 6. I cannot say that it is left of y 5 or 

y 5, x 5 or the right of x 5 but I am sure that it is lying between A and B or x 4 and x 6, 

okay.  
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So, with respect to the figure that was an exhaustive search equal interval 2 I naught by n 

plus 1 or I naught by n plus 1 by 2. So, n plus 1 by 2 is the RR of this algorithm, okay. 
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So, this is basically if it goes like this, if the function goes like this, if maximum is 

sought. So, since y of x b is greater than y of x a, region to the right of x A has to be 

retained. 
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Valid only for unimodal functions; for dichotomous search it goes as RR goes as 2 power 

n by 2; for Fibonacci method Fibonacci series is used; for Golden section search the 

golden mean is used, 0.618 or 1.618. So, the ratio of the consecutive numbers in the 

Fibonacci search also approaches 0.618. 
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Let us consider the steepest multivariable unconstrained. Let us consider the steepest 

ascent or steepest descent. You start for a single variable problem; you start with a 

particular point and systematically reach the top. For a two variable problem you go in 

the steepest descent direction or ascent direction and reach the top.  
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At each trial point the gradient vector is calculated. The search proceeds along this 

vector. The direction is chosen, so that y increases if the maximum is sought, are you 

getting the point? Whether it is going to be positive delta x or negative delta x depends 

upon whether d y by d x is positive or negative and you want a minimum or maximum, 

that condition was there. So, this is the condition. So, if you choose delta x 1, all the 

other delta x’s can be obtained or simultaneously you can choose by defining an alpha 

and solving for alpha each time.  
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So, choose the increment for one variable and calculate for other variables. 
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So, consider the problem of minimizing. So, x 1 squared x is the numerator first term, x 1 

x 2 is the denominator in the second term, third term. So, you can do d y by d x, d y by d 

x 2; yeah, next.  
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So, we need a minimum. So, please go to the next one. 
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So, you can start with 0.5. I have a delta x of 0.3. So, I think we solved this, right. So, 

0.5, 0.82, it becomes like this. When suddenly the function becomes funny, then you 

reduce the delta x 1.  
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So, this is an easy method or you have to calculate alpha. So, this is basically, finally, 

you can see that d y by d x 1, d y by d x 2 are not changing much. So, the solution is 2.4 

and 0.7686. 
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For multivariable constrained optimization, penalty function method is very important; it 

is very powerful. The constrained optimization problem is converted to unconstrained 

problem by creating what is called the composite objective function which takes care of 



both the objective function and their constraints. The penalty parameter penalizes the 

objective function for violating the constraints. 
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The resulting unconstrained problem is solved using known techniques. Solve the 

problem with different values of penalty. If there is no significant change in optimum, 

then stop, okay. 
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Other optimization Techniques, linear programming applicable only if the objective 

functions and constraints are linear combinations of the independent variables. So, we 



try. So, we solved the LP problems using two techniques, the graphical method for two 

variables and also the method of slack variables. A systematic way of performing the 

method of slack variables is the simplex method which some of you must have learnt in 

operations research. Geometric programming is basically objective function is a sum of 

exponents. I did not cover this, because there are in many problems in thermal sciences 

which are amenable to geometric programming. 
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Dynamic programming: When a whole problem can be subdivided into stages, then you 

try to optimize with respect to each and every stage and proceed from your starting point 

to the destination. New techniques: Several new, nontraditional techniques or non-

classical optimization techniques like Genetic Algorithm, Simulated Annealing and also 

Neural Networks can be used for optimization; that means you train a neural network 

and exhaustively search; you trivialize the problem to a certain extent, but sometimes 

very complex problems cannot be handled this way. So, at least two of these techniques 

we have seen in this course, right. 
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So, what is the summary of the summary? So, the number of optimization techniques is 

very large. Optimization is very powerful tool in the hands of the engineer. Regardless of 

the field you work, regardless whether it is electrical engineering, mechanical, chemical, 

whatever, always there is scope for optimization. And once you know the basic 

methodologies and tools, then it is a lot of fun to optimize and try to seek because we all 

try to seek improvement, right, in whatever we do. So, the number of optimization 

techniques is indeed very large. 

The analyst should be able to make the right choice based on requirements. So, the idea 

behind this course is you have got a flavor of all these techniques. So, when you actually 

encounter an optimization problem, you know which is the methodology you have to 

choose. And then you will probably code or use a standard code and solve it. In many 

practical problems where differentials may not exist, so these non-classical techniques 

like Genetic Algorithms, Simulated Annealing, Particle Swarm and all these are gaining 

popularity. 
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So, these are some of the books I have used.  
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Thank you. 


