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Lecture - 05
The relation of physical properties across a normal shock

Let  us  carry  over  from the  previous  lecture.  So,  what  we  are  going to  do  today  is

basically drop a relationship between the properties of the fluid before and after a shock

wave. What I mean by that.

(Refer Slide Time: 00:31)

Say this is a shock wave, when I saw this sort of I am calling this say a normal shock

wave. Now when I saw something like this for first time saw there is lot of confusion; in

the sense that what is this mean that you know the shock wave start from here and stops

over this or is this should I draw this just as a straight line or is it how thick should this

be. So, when I am going to draw no more shock like this.

Well, there is no really such thing that stops here, starts there is there is really nothing

this is basically region where properties are changing it is a region of disturbance. And I

choose my domain in  such a  way that  I  will  be able  to  capture;  the changes  in the

properties or the basically the properties of the disturbance which in this case is a shock

normal shock you know as best possible.



Therefore, I choose you know my domain in such a way that all the disturbances within

that region will be captured. And like we define what exactly a normal shock is you

know previous times it is basically you have the properties changing in just this direction

in one direction really. So, if I do that let us therefore it define a region in which my

shock wave is changing and that is what we call as the domain; let us just define that.

So, what this essentially means is that there is some difference or some existence of a

disturbance and I sort of put a domain around that region of disturbance and try to study

it. So, if I do that. So, let us say this is right; and what I am going to say is that this

region is 1 and this region is 2. So, you can say this upstream of the shock this is trans

steam of the shock and we typically denote the values here as, right.

So, this is essentially domain that I am going to work with. Now what I am going to do

here is now is get a relationship or get a relationship between these properties and these.

So  what  exactly,  what  is  the  relationship  between  these  say  for  example,  say  the

pressures across a shock wave. So, when it is that we have a shock wave and then is this

a what is the relationship of the pressure after the shock wave compared to the before the

shock wave.

So, those are the kind of questions we are trying to answer. Therefore, let us go and do

that. And the way we will starts this; before we start developing this let us just say that

clearly so there is a change in properties. Now this change in properties is brought about

adiabatically. So, let us go ahead let us do that and start with the energy equation which

we develop for a normal shock wave in an earlier case.

Let me just write that. So, what is missing? What is missing is this term the heat flux, but

then we consider this as adiabatic and therefore we get rid of this term. So, this term is

not there because we consider this as adiabatic. So, what we deal with is just this. So, let

us see what information we can get from this relationship.



(Refer Slide Time: 05:25)

So, basically what we saying is. Now we also know that. So, if I able to write this it gives

a some more information about the fluid; the gas that we considering here what is that; it

is calorically perfect. Now this is something that we talked about previously- say if I

have a calorically perfect gas then we can have a constant C p.

Therefore, I can rewrite this equation as: so then will write this as: now let us write C p

in any other form that we know; how can we write C p. So, C p can also be written as,

right. Now also from here what we know is that; you see something that is familiar here

or we can replace a couple of term with something else.



(Refer Slide Time: 07:44)

For example: is this term familiar? So, this is nothing but the superior sound. So, there

you can see here, so this term up here can be replaced by the square of this superior term.

So, if I do that then what I get is this. So, this is what we get. Now, let us sort of label

these equations. Now we had this equation out here, so let us call this a and let us call

this b. So, this is something that we basically get from the energy equations, you just sort

of deal with this.

So, if we do this, so what we have here basically is a relationship between the velocities

and the superior sound. Now so, the primary we dealing with here are pressure density

temperature etcetera, we still do not know anything about that here. Let us try to get that

in into these relationships. So, what to do that; so how else can be write the superior

sound because that is the term out here; how else can be write this, can I write it like this.

So, if I p by rho, so then if I replace this term over here by this from the equation b what

do we get; what we get is. So, this is the (Refer Time: 10:09) relationship let us call that

is  c.  Now, you can see that  this  is  the relationship  where we have the pressure,  the

density, and the velocity  before and after the shockwave. So, when I  say 1 and 2 is

basically  two regions in the flow field and here essentially  there is  a shock wave in

between these two regions, ok

Now, we will take advantage of these relations and go slightly further. Now we talked

about a reservoir condition as throat condition in the in the previous lecture. Now, let if I



go back to this diagram over here. So, you have a flow which is moving something like

this. Now there is a, now before the flow starts say moving now there is a chamber here

say for example there is a chamber here where I develop the fuels say. So, we have a fuel

which is going to pass you know through a chamber and there is going to be a shock

wave.

Now where we are develop the fuel? I have a chamber in which the fuel is developed.

Now in that condition, in there we can say that there is a reservoir condition because the

velocities are extremely small the fluid is really almost not moving so that we can say

that of reservoir. So, that the velocities there is 0. And all the corresponding properties

there are the reservoir conditions and we will denote that with a subscript naught. And

the other condition that we talked about is that when it is passes you know when it when

it moves there is a condition where we have a throat; we have a throat condition. So, let

us just use this word here- throat condition which is essentially which means is a sonic

sound. So, Mach number is equal to 1.

So now, if I say take say this relationship out here, this relation a if I take this a right and

I say I consider this. So, basically 1 and 2 regions on the flow field, so say I consider one

of these regions to be a reservoir. So, just say instead of saying u 1 now just use a generic

term which is just C p T. Let us sort of do that, let us do this here.
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So this is essentially. So, T is the temperature anywhere, anywhere in the flow field. So,

this  is  anywhere  in  the  flow  field.  And  the  second  location  here  is  essentially  the

reservoir. So,  I  can write  that  as;  that  as we said in the reservoir  the fluid is  hardly

moving,  so this  is  0.  So,  what  we get  here  is  essentially  a  relationship  between the

temperature velocity and the reservoir temperature over here.

So, if I use this relationship then from here I will try to get relationship or an expression

for T by T naught. Let us see what I can do with this.

(Refer Slide Time: 14:10)

So, essentially what I get is, right if I do this then; so or alright. So, if I again divide by T.

So, I get 1 plus u square by 2 C p into T is equal to T naught by T.

Now, this C p here C p again we will write this as in terms of the gamma r by gamma r s

1. So, then I will write this as, right. So, we know this. So, I think by this time you

should be able to get what I am trying to well I am going from here so then. So, this then

becomes let us do it this way gamma R T. So, it is gamma minus 1 by 2 u by a square is

equal to T naught by T.

So, what happens here is this that this gamma R T is a square if the superior sound, so

which is a square? So, there I just the values here so this is what I get. And what is this u

by  a?  It  is  the  Mach  number  and  that  Mach  number  is  at  the  point  where  we  are

considering this u and T. Therefore,  I can actually write this as, right.  So, that is an



interesting that is still another interesting a result that we get from here. Let us call this is

1.

So, what we are want to do now is that when we bring the reservoir condition, so we are

able to connect the temperature at any location or at any location in the flow field of the

shock wave with the corresponding Mach number and the reservoir  temperature.  We

consider to do this and then similarly if I have been able to connect the temperature, the

temperature  with  the  reservoir  condition  we  should  be  able  to  do  the  same for  the

pressure and density.

As we said that the process out here or the change in the properties, so the process is that

is an isentropic so will use this relationship.

(Refer Slide Time: 17:25)

So, this we know. So, for isentropic flow this holds. So, this is the relationship which

holds for isentropic flow. So, in one of these if we can just write this in terms of the

reservoir conditions. If I do that so essentially; so if I am able to do that so let us write

this. So, let us use that and we use it over here to develop the relationship here.

So, if I write that. So, let us consider say- I consider the second location as the reservoir

and this p 1 is just this is just any location. So, this is then equal to T naught by T to the

power gamma by gamma minus 1, but we already found out an expression for T naught

by T given in 1. So, then if I write that then that becomes p naught by p which is 1 plus.



So this is the other, this is the relationship for the pressure. So, we can now do the same

thing for the density; we can do the same thing for the density. So, then again T naught

by T is available here. So, I will write this as: therefore I get this relationship.

So, what we started out ah doing right trying to relate the properties before and after of

the shock wave. So, first things we started with this right we use this. So, this is the

relationship  between  the  temperature  and the  velocities.  Then  b  gives  a  relationship

between the superior sound on the velocity. And c here give us a relationship between

pressure density and velocity. And then we said we will use the reservoir conditions. And

then  we  were  able  to  get  relationship  of  the  temperature,  pressure,  and  density

corresponding to the reservoir condition and we were able to use the Mach number. So,

this Mach number is at the point where we are considering the flows. So, this could be

really any point in the flow field.

Now obviously, this is a place where we use now the sonic conditions; sorry the reservoir

conditions.  Now, let  us go ahead and try to see if we can introduce sonic condition,

because see mathematically what mathematically the usefulness of using this reservoir

condition for 1 is that we were able to get rid of the velocity because that is why the

velocity  is  0.  Similarly,  mathematically  when we use  the  throat  condition  the  Mach

number is going to go to 1. So, let us see if that gives us you know easier relationships

through work with. 

Now since we are basically trying to study the properties how they vary before and after

of  the shock wave and the point  is  there  so many properties.  So,  we have so many

relationships, alright. So, if we do that, so let see you know what relationship we going

to use over here. So, let us go back and see this over here. 

Let us use this relationship over here, let us use this relationship over here. And say that

if I use this relationship now where I go back and write this. So, I think I will erase the

few things we will just write this up again where we come back to it, ok.
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So, we use this relationship over here and we will consider say point 1 location one as

the throat, right. And this all the properties here basically denoted by superscript star. So,

we denote it this way. So, then if I chose that then what I get essentially is that; if I do

this then what else can be put it over here.

So, Mach number is one what does that do to my u star that is also equal to a star right

because the Mach number is 1 which implies that this. Mach number is basically the

velocity and this superior sound relation the fraction of the u star over a star. Now this

star is basically denoting the values at the throat. Therefore, if this is a throat condition

then u star is basically equal to a star ok. So, let us do that.

Therefore, what we get over here is this. Now let us do one thing. Now this point here is

any point right;  so this point is any point in the flow field. Let us do a thing,  let  us

consider this as the reservoir if we consider this as a reservoir then what happens. So,

then I will denote that this way right and what happens to this that close to 0, because it

is a reservoir. So, that is all we get over here. So, if I get this, so then we will work with

this. So, essentially this is our relationship. And what we will get here if I work around

this is this should I do this. So, maybe I will do this. So, a star so what we get; let me just

take the time and do the math over here. So, 2 plus gamma minus 1 plus 2 into gamma 1

is equal to a naught square by gamma minus 1, ok. So, if I do that what I get over here is

a star by a naught square is equal to 2 by 1 plus gamma, correct. So, we get that right.



So, a star by a naught is we get this. So, we get this and let us just remember that how

else can I  write  this.  This is  this  is  important  here.  So,  what  we got  over here is  a

relationship  between  the  reservoir  condition  and  the  throat  condition.  So,  we  have

basically related these two. Now, this a star square is also equal to right; this is also equal

to this, this superior sound. So, if I do that so essentially, if this is it therefore I can

actually write this as. So, what we have actually is quite nice and simple relationship

between the throat condition and the reservoir condition.

So, let me write that out slightly say let us go here and write it over here, ok. So, what we

have is essentially is this.

(Refer Slide Time: 27:52)

So, basically what we have is, right. And let us call this as the forth relationship. So, we

get this, so that is the relationship between the conditions. Now from this relationship

over  here  right,  from  this  relationship  over  here  now  the  second  relationship  we

developed will at any point and the reservoir.

So now let  this  any point  be  is  throat  condition.  Therefore,  what  happens  here  this

becomes p star and this becomes M star then this M star is equal to 1, because this is the

throat. So, let us write that out you see what I mean by that.
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So, what I mean is that, so if you take this from basically the second relationship. So,

from two will just take the point the relationship between the throats. So, we have p

naught and let this p be the throat. So, we will write that this way, this is equal to 1 plus

and this going to be M star and that as. So, this is the point that; this like I said before is

this is any point in the flow field and let that any point in this particular case be the float

condition. Throat condition means M star; so M star. So, essentially this is the throat. So,

that goes to 1, right.

Therefore, what we get over here is say if I just write it like this, say p star by p naught

right is equal to 2 by 1 plus gamma to the power gamma by gamma minus 1. So, this is

this is the relationship. Similarly we will do the similar exercise for the density and we

will found out the relationship between the throat condition and the reservoir condition.

So, basically we will use expression three. So, if I use expression three this is what we

get. So, essentially this is the relationship. Now if I use, ok.
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So, the expression three is, ok. So, again let us consider this to be; so let us consider this

to be throat conditions then this becomes that and then this M square goes to 1, because

it is the throat. Therefore, what we get again is essentially this. Therefore, what in sink

here is that all  these relationships,  right so we got a relationship for the temperature

between  the  throat  and  the  and  the  reservoir;  the  temperature  the  pressure  and  the

density, right. We got a relationship for all of these only in terms of gamma. And for

standard conditions for air we all know that gamma is equal to 1.4.

Therefore, if we know this, this is a very easy relationship between these parameters. So,

having develop this. So, let us go and sort of see if we will be able to apply this; how you

will apply this say to a set problem. So, we have done this before actually. So, we use

slightly different analysis there, because we did not know all these analysis, all these

relationships at that time now that we know these let see how if you going to able to be a

apply this and study this problem.

So, let us see what the problem is all about. So, basically we have a rocket nozzle and

there is an isentropic expansion of flow through this nozzle, right.
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So, basically we have a rocket nozzle that is flow through a rocket nozzle, right. The

flow is isentropic in nature and is a calorically perfect gas; which means that you all

these equations or relations we developed are really available for use.

Therefore, now we have, so basically now this goes from say here. Now in this say fuel

chamber  in  this  fuel  chamber  the  gas  is  at  a  pressure  of  15  atmospheres  and  the

temperature  here  is  2500  Kelvin.  And  the  gas  expands  through  the  nozzle  and  the

temperature here is its 1350 Kelvin. What we would like to know is that what is the

Mach  number  and  the  corresponding  velocity.  What  is  the  Mach  number  and

corresponding velocity in this case? 

I think we did last time will we just calculated the drop in pressure. Now in this case

what we are asking is what is the Mach number and what is the velocity, and this is you

know the flow through a rocket nozzle. So, how do we go about this? Now it is also

given that it is given here, right. So, this is the ratio of specific heat is the 1.2

Then what are we going to use over here right, what are we going to use over here, what

is the relationships that we are going to going to use over here, how will we calculate

Mach number and velocity. I think the way the easier way to tackle a problem to see

what information is available and what we can get out of that, right. So, essentially what

we know is the temperatures you know; the temperatures at the two places. Here we have



pressures we do not know anything about that. All we know is the temperature before

and after that is all, ok.

(Refer Slide Time: 36:55)

So, if we do that. So, we know that from isentropic relationships. So, p 2 p 1, right. If I

do this now let us consider this region as 1; let us consider this region as 1 and this

region as 2. If I do that then I can write this as; and gamma is 1.2 we do this. And this

comes out to be ok. Now, we need to find out the. So, this is what I know from my

isentropic relationships. Now what I can find out from here is my pressure; pressure at

the point 2 which is at the exit which is because p 1 is 15 atmospheres, so we get this in

and so what we get is point which is this is something that we had done the previous

(Refer Time: 38:25) problem. So, this is less than actually 0.4 atm; 0.4 atmospheres.

So, now, the point is we need to find out essentially the Mach number and the velocity

and how do we go about this. What are the relationships you see we can use over here.

Now first thing is first that if we were going to use the reservoir condition that is where

the Mach number information is involved, right. So, we developed all the let say- so we

developed  this  here,  so  this  is  1  2  and  3.  So,  these  were  the  relationships  of  the

temperature pressure and density which involve the Mach number; the Mach number and

the reservoir condition.

Now is there anywhere I can consider a reservoir in this problem over here. So, you can

see this is the chamber where the fuel is being generated. So, the fluid velocity hear is



nearly 0. So, we can consider this 1, this location 1 as a reservoir and that is what we will

do. We will consider that as a reservoir and see what. So, basically if I do that.

So, p naught; so I can write this. Now this is the pressure that I know this is the pressure

that I just calculated, so there and gamma is something I know. Therefore, I can actually

get M 2; M 2 from this relationship. And this comes out to be from my relation. So, you

can take the time and do this. So, p naught is know that is 15 atmospheres, then p 2 is

nearly 0.4 atmospheres, gamma is 1.2 which is given. So, you can just calculate M 2

which comes out to be nearly 3. So, the exit Mach number is nearly 3.

Now, when we do this? Now I also need to calculate the exit. So, here what is the exit

Mach number which is say nearly 3? We will kind of infer a little bit or may be a lot

from these values. So, let us discuss that after we get it. Then we have the velocity, exit

velocity; what is the exit velocity, how do we calculate that. 

So, to calculate the exit velocity what we need is the exit speed of sound; we need the

speed of sound. So, how do we calculate that? So, let us do that.

(Refer Slide Time: 41:44)

Now, we know the exit temperature, so we can find out the exit Mach number; sorry exit

speed of sound and this comes out to be, right. Therefore, the excess speed can now be

calculated as, right. So, exit speed is nearly. Now, what is the interstate is c over here is

that  we have  a  rocket  nozzle  here and we have a  flow which is  going through this



convergence diversion nozzle and the exit pressure here is say is actually the say around

actually less than 0.4. 

So, basically we accelerated the flow, while we accelerate the flow and it went from like

0 to near to near a 3100 per second. It went up with that high speed, you know in normal

standard conditions this speed of sound is what around 350, 360, 340 meters per second.

So, let us say 340 meters per seconds. So, you can see the marked number is nearly 3

which means it is travelling at nearly 3 times the speed of sound.

So, we basically  when from 0 velocity, like from stagnant conditions  to the velocity

which  is  highest  this.  And  what  is  that  involve?  That  involved,  therefore  a  drop in

pressure  from  15  atmospheres;  15  times  the  atmospheric  pressure  to  less  than  0.4

actually, 0.4 atmospheres. So, that is how large drop in pressure. And there is also a

corresponding loss in temperature from 2500 Kelvin to 1350 Kelvin.

Therefore, all these time that we have the discussion that we are right from the invention

of Laval that to get such high speeds. So, if I have to get you know such high speed then

move it through you know shape like this nozzle you know nozzle like shape. So, if I

move it through duct, which is converging diverging here. So, then I get speech which is

as high as this. At the same time however, that it involves very high changes; very high

changes in pressure and temperature.

So, you cannot have a field for what exactly could be numbers like. So, basically what

we can say is that if I have a nozzle and I am trying to speed up my flow to nearly three

times the speed of sound then this is the kind of pressure drop and temperature drop that

we looking at. So, that is what example like this can sort of tell us.

So, also let us quickly the problem that we did right in the first class. Let us quickly do

that before we end today’s class. So, this is about.
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Now if you remember in the first lecture that we did a class where we said that; if we

have a up an aero plane and you had a flow. So, which is here say in a free stream, which

will accelerating from 100 miles per hour to 150 miles per hour, so then there what is the

corresponding pressure drop. And what we did here we said that this is let us consider

this incompressible. And then we calculates pressure drop and then we connected that to

the compressibility of the compressibility and we said that the pressure drop is small

enough and therefore the density changes and not going to be dominant. And therefore,

we said we can really consider this as incompressible. That is what we did in the last

lecture.

Now, what will  do here is let  us not consider this as incompressible.  Now we know

enough, let us consider this as a compressible flow and calculate the actual values of

density and temperature in c if we are capable enough to ignore them. Then say it is no

the change is small enough, so we can just consider that as incompressible.

So, if you do that, so how do we go about doing that? So, this is like; so this one ok. So,

C p will just use basically you know if I use this relationship. So, we will use a isentropic

flow relationships. And what we will do here is that we have at the standard sea level

conditions. So, our density is 1.22 and temperature is Kelvin. So, these are the standard

sea level conditions.



So, now if I do this what I know from here is the velocities; that is all I know from here.

So,  this  is  the  isentropic  relationships.  Let  us  look at  here.  So,  in  here  we need  to

calculate the C p and the C p we can calculate. And his gamma is given as 1.2; 1.2 or 1.4

here you can take it as 1.4 is this standard here right. And then this is of velocity which is

known and this is of velocity which is often known, right.

So, if you do that then you get a relationship for and relationship between this T 1 and T

2. If you do that T 1 is something that is available over here, you can take this as the this;

point you can take as 1 and this point is a 2. So, in here: so T 1 and gamma 1 are known

and this is u 1 and this u 2. So, this is all that is known to me. So, in here so therefore we

can find out you know T 1 this relationship.

Therefore, I can actually get a relationship for T 2 by T 1. If I do this then what I come

up with if I do this, what I come up with is this.

(Refer Slide Time: 49:40)

So, basically the density I get; the density change is around this and the temperature

change. It is really you have just mentioned off sink whether these changes are you are

going to really consider this changes, consider this flow as compressible or you can say

this is more enough will disregard the changes and just say that this is in compressible.

Well, so density change the actual density change or here is really just about one percent

corresponding temperature changes less than 5; 0.5 percent. So, it is like less than half



percent. So, I think it is safe enough to say that the problem that we had at the time said

it is incompressible that stays. We do not really need to use the energy equation here or

any isentropic relationships over here. We use the Bernoulli’s equations to just calculate

the pressure change so that should be fine. There is really no dominant density changes

in here.

That should be all.

Thanks.


