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So, we have been doing linearized flow right and the primary reason for doing linearized

flow is what, we have exact equations which is very large, and then we said no we are

going  to  linearize  this  use  small  perturbation  right  and  then  we  are  going  to  use

linearized equations. So, essentially what do you think is the reason for that.

The main reason to do that is for simplicity right, for simplicity, it is just too difficult to

solve those equations and even if we do how do we validate them right that is the mid

concern. So, if we can do with something that you know at least we are sure off we kind

of better off. So, let us see something a little more interesting in terms of linearized flow,

we this is well you could say those classes about similarity rules. 

So, we will see what is I am talking about. We will do a transformation in space and

space meaning you know in domain rather  x y to another  to transform it  to  another

domain of space and then see that what linearization actually does simplify or does it

have any more physical meaning or what happens. So, a linearization of course, when we

say linearize we basically saying we are you know bringing in some simplicity in the

way we solve our numerical equations governing equation solutions to them. So, and the

physical analogy to that is that we basically small if you assume small perturbation then

that results in linearizing you know the equations the numerical part becomes simplified.
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So, like we have done earlier right. So, we had for 2D a subsonic flow right. So, if you

remember  right,  this  was  our  governing  equation.  So,  this  now  this  phi  p  is  the

perturbation potential and you can see that this is in our usual x y or Cartesian coordinate

system. Now, so if we have this in our. So, let us do this here. So, essentially what I am

saying is that. So, say we have right say we have an air foil like that in this x y you know

coordinate system then the governing equation for a 2D subsonic flow will be so, so phi

p and perturbation potential and if I know the perturbation potential I should be able to

find out the velocities and so on and so forth enhance the properties.

Now let us use say what if instead of this x y in a coordinate system what if I change the

coordinate system a little bit, now let us I just assume this. So, let us say we will you

know change this coordinate system to something like this. So, it is a orthogonal system,

so similarly, I am just if I change the coordinate system to say something like the two

questions now what exactly is the transformation what is the connection between the

relation between x and z, and what is the connection between y and eta right, and what

happens to this shape how does this air foil look in this coordinate system how does this

look in this coordinate system and another question is what happens to this equation, this

is the governing equation in the x y coordinate system and how does that change over in

this coordinate system right. There are some other questions will try to answer you know.



So, having said that let us use, now let here whether just denote we are going to just

denote you know the lambda square to be equal to this. So, therefore, our governing

equation basically becomes this is I am just writing the governing equation in the x y

coordinate  system in this  form right.  Now if I do that now, therefore,  like I said the

relation between x and z and y and eta. So, let us use this transformation. So, let us use

this transformation where we say that x is the same as z path. 

So, essentially what you are saying is that z is the same as x, but eta is equal to lambda in

to y where lambda is this. So, this is a transformation that we are trying to use here. So, if

I do that right if the y axis is somewhere connected to the free stream Mach number in

this fashion and z z axis remains as it is then 2 questions one is what happens to the air

foil shape in the x y access how does this transform in to the space number 1 and number

2 is how what happens to the governing equation how does this look in this transformed

space.

Let us see. So, since we have this here right. So, therefore, what we will say now we

writing the governing equation in terms of a perturbation potential. So, therefore, let us

call say this equation as 1, right. If I do that, now using this transformation of course, if I

use this transformation then I am going to denote this as a bar right it is called that as 2.

So, basically what we have here is that this is our the perturbation potential and the way I

denote that here is pi bar and what I note is that this is equal to write or let us say I will

write it this way. So, this is basically the transformation. So, now, let us do some Mach

with this. 
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So, now, if you look at this, we said that x is this and eta is equal to lambda y this is our

transformation. So, if that is true then what we get is, what is this del z del x is 1 right if

you look at this if you do the math from here then is of course, 0 del z del y is of course,

0. So, what I note here is the relationship or change of z if I change x or y. Similarly let

us do the same for eta for eta, del eta del x is 0 and del eta del y is equal to lambda right.

So, this is basically the change in the coordinates transform coordinates with respect to

the Cartesian coordinates or the original coordinate system that we are using right. If I do

that, then now phi p x, now phi p x, or this is now this is what this is basically right. So,

then this I can write if I write this in terms of the potential perturbation potential in the

transformed coordinates right. So, this is this, is not it, this is what this is all about.

Now, if I were to write this more clearly you can see that this is this now this is in the phi

p is essentially in the x y coordinates and this is in the zeta eta coordinates and I need to

take the del del x of this. So, basically what you are saying is this we can write as del del

x of phi p see to this. So, the way we will write this is like this. So, we are basically

going to take a change of this perturbation potential in the transform coordinates with

respect to x. So, that would mean that we need to also check we need to take that change

with respect to the change in coordinate z and eta with respect to change in x right. So,

therefore, what I can write here is. So, I take this out here. So, this would mean del zeta

in to del theta del x right plus the change in del eta right, makes sense.



So, what we are writing here is with writing phi p x, which is essentially del phi p x with

respect in the x coordinate. So, then a I write that in terms of the perturbation potential in

the transformed coordinates here, which is essentially this now. So, I say transformed

coordinates with respect to change in x right, which means that if you change x we need

to  change  take  the  change  in  phi  p  where  with  the  change  in  z  as  well  as  the  eta

coordinates. Now as we have just seen now if you look at it del z del x del z del x this is

one right this is one and del eta del x del eta del x is 0, so then this is 0 right. So, what we

essentially get over here. So, therefore, you can say phi p x is equal to 1 by lambda right.

So, you can write it like this phi p zeta or this is nothing, but del z is not it. So, therefore,

this as we call this as equation 3. So, phi p x is nothing but phi p z by lambda this is the

transformation.

So, del phi p this just this term out here, just this term del phi p bar del x and that is what

we expanded in this bracket here turns out to be del phi p bar del z there is no really no

difference. So, therefore, let us write that down as well. So, we can write that down that

del phi p bar del x is equal to del phi p bar del z and let us call that as 4. So, we basically

get 2 information here. So, what we get is a connection between the del phi p del x and

del phi p bar del z and also del phi p bar del x is also equal to del phi p bar del z.
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So, essentially having done that, so let us using this, phi p x x which is nothing, but right.

So, if this is it. So, what this is nothing but del del x of phi p x right and as we have seen

from here if I were to write this in you know the phi p bar then the way I would write this

is. So, this is what we get here right. So, then, this what we get here is this and we get del

del x of phi p z phi p z now as we have seen over here you can see this phi p del del del x

of phi p is equal to del del phi p bar of del z. So, then again we can also write this as. So,

therefore,  we can write  this  as one by phi  right.  So,  and let  us  call  this  as say five

hopefully you got this one right. So, what we are doing here is taking del 2 del x 2 right.

So, we write this, phi p x I write in terms of the z here and what we have seen here that is

this is phi p x is equal to phi p bar z. So, this phi p x this phi p x you can also write as phi

p bar z.

So, therefore, if you do that, essentially what we have here now is that del del x of this

which is again the same as del del z of, so therefore, this actually you can write this as

one more the bracket this also you can write at del del z of phi p z. So, you can write

that. So, therefore, what we get is this relationship for the second order derivative. So,

we have this here. So, having done that obviously, now we will do the same thing for a

phi p y and you know phi p y y. So, without sort of, let us go ahead and do that. So, now,

if I do that right, phi p y which is nothing, but right, del y, this I can write as del phi p.

So, this is del del y of 1 by lambda bar phi p is not it, bar phi p. So, again if I expand this,

if I expand this also essentially what I am getting here is one by lambda del phi p bar del

y right now let me go ahead and expand this. So, what we get here is that this is what we

get now del phi p del z del z del y then plus del eta del eta del y. So, basically we are

tracking the change of the perturbation potential in a transform coordinates with respect

to the change of both coordinates with respect to y and again as we have seen before del

z del eta.

So, if you look here del sorry del z del y which is 0. So, del z del y this is 0 del eta del y

if u del at a del y is equal to lambda right this is equal to lambda. So, what we get here is

that what we get here, phi p y is equal to you know this lambda cancels out, so what we

get here is phi p bar eta, we can call this as 6.
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This and also if you look at this here del phi p del y this is just determine the bracket. So,

also what we see is that del phi p bar del y. So, this del phi p bar del y is equal to lambda

in to del phi p bar is equal to lambda del phi p bar del eta and let us call this as 7. So, this

is essentially the different the relationship between the perturbation potential in the x y

coordinate  and  in  the  transform  coordinates,  and  this  is  the  transform  perturbation

potential transfer coordinates with and the differentiation with respect to the y axis and

the eta axis 

So, having had done that, similarly what we need to get now phi p y y. So, phi p y y is

what, phi p y y, so I can write this that phi p y is equal to phi p eta right. So, this is. So,

basically this is. So, I can write this is phi p eta y, so this is nothing, but ok, this, so phi p

eta y. So, this is again equal to right if you look at this over here. So, this term is nothing,

but phi p eta this phi p eta and, so I introduce this here. So, therefore, what we get is,

having got all these terms right. So, the reason we are doing this hopefully you can see

because what we are looking to do here is how does this transform in to the transform

coordinates or equation. So, we basically need to get a term equivalent to del 2 phi p del

x 2.

So, we need to get a term here which is del 2 phi p bar del z 2 del 2 phi p bar del eta 2

right. So, that is why we went about doing all these things. So, let us see how does the

our equation transform, how does our equation transform. So, now, let us see, so we have

say let us say erase this. So, this is our equation.
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So, now here, what we can here. So, let us we can also write this as lambda square as we

have assumed.  So, then if  I  write  this  how does del  2  phi  del  x 2 transform in the

transform coordinates. So, if you look at this, this is your del 2 phi del x 2. So, this is this

all or we can write this as around the square phi x x plus phi y y 0. So, if you look at this,

this is the perturbation potential of course, now this phi p x x is nothing, but one by

lambda phi p z phi p bar z z right. So, therefore, this I can write, this I can write as 1 by

lambda phi p bar C C right, this and what happens to the next to the next one phi p y y.

So, let us look here. So, phi p y y is lambda in to phi p eta eta. So, again this is equal to

lambda in to phi p bar eta eta right. So, this is our x y coordinate system and this is our

transformed coordinate system right. So, when we have this. So, now, if I write this out

now let us see what we get. So, if I do so, basically this becomes lambda, so the lambda

cancels out. So, what we have from here do you recognize this let me write this out

another form.

Now, do you recognize this? Well if you are saying Laplace equation will you are right.

So, this is therefore, our transformed equation this is therefore, our transformed equation

and this is nothing but the Laplace’s equation right. So, therefore, let us say, this is our

equation here, and the governing equation here is lambda square phi p x x plus phi p y y

is 0 right.
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And what we get over here is that here,  so in here our governing equation basically

becomes phi p bar or let us just say Laplace equation in phi p bar, Laplace equation in

phi p bar. Now that is very very interesting that is very very interesting why because this

is  a  2D subsonic  flow, 2D subsonic  flow when you see  the  Laplace  equation  what

happens  to  the  Mach  number  is  not  there  right  anymore.  So,  Laplace  equation  is

basically the governing equation for 2D, in this particular case 2D incompressible flow.

So, therefore, if I transform my space in the way that I have done here my 2D subsonic

flow governing equation actually gets transformed numerically to the Laplace equation

which is the 2D governing equation for incompressible flow my life gets easier right,

could have it better.

So, having you know done that having got that out of the way. So, the next question to

answer is, but what happens to my air foil now does that does that become a square or a

cylinder or what does what happens to that, you know what happens what kind of shape

is it because the equation has transformed itself to the Laplace equation which is great.

So,  this  phi  p,  so  this  is  essentially  this  is  compressible  flow  here.  So,  this  is  a

compressible flow right. So, this space is however, it is right here. So, when I transform

it here it becomes incompressible all right now what we need to look at is how does this

shape change. So, let us look at that. So, in order to look at that let us go ahead and look

at a few things. So, if you remember what we did in terms of the boundary conditions

right.

(Refer Slide Time: 33:01)



So, now dy this is in the x y coordinate system that Cartesian coordinate system. So, this

is the physical slope of the body right this is the physical slope of the body here right this

is dy by dx here and this is this was equal to right. If you remember, these were the

perturbation velocity in the y component and this reserves assuming small perturbation,

which is what we are doing here linearizing the flow. So, what we have is this at we had

this. So, in this case how does now this transform here, how does this transform here. So,

therefore, in this case yeah and this also one could write of course, this one could write

as if I write this in terms of the perturbation potential then of course, I can write it this

way all right. Now if the like it was for the problem that we had that the contour was

given to us let this function let that function be this, let that function be f x which gives

the contour of the body here. So, I could write this I could write this therefore, as equal

to.

So, dy by dx would be the df d x. So, therefore, I can write let us do that, so del phi p del

y is let us give the function to be say y is equal to f x let us give the function to be here

the when I draw the body out here let the function be like this y is equal to f x and here.

So, let that be eta is equal to. So, we do not know how the body will look like here we

still  do not know. So, let  that let us write that as eta is equal to this one. So, this is

basically the definition. So, from there, when I write dy by dx is essentially df by dx this

is what we get in the Cartesian coordinate system. So, now, we will do the similar stuff in

the transform coordinates.



So, in order to do that, essentially what you are looking at is right. So, this is the. So, the

corresponding, del phi p bar del eta right, del phi p bar del eta is equal to, if you look at

this particular which is just now, del or this is basically del phi p del y is equal to del phi

p bar del eta. So, therefore, this I can actually you know this is actually equal to from our

transformation del phi p del y is actually equal to del phi p bar del eta. 

So, therefore, therefore, in this particular case is this is also equal to del this thing, but

again eta is equal to g. So, del phi p del eta, which is basically d eta d is e. So, this also

again is equal to right again this is what you get. So, therefore, from here what we get his

del del f del x is equal to del g del zeta. So, what does that mean that this del f del x del f

del x which is the slope the slope in the x y coordinate is also the same as the slope in the

zeta eta coordinates in the transform coordinates. So, what we are basically saying here

the slopes are 

The slopes are same slopes are same which means what the slope of the body in the x y

coordinate system is exactly the same as that in the transformed coordinates what does

this tell us that the shape of the body does not change which means that here too I have

exactly the same shape as we had in the x y coordinate system is not that nice. So, what

we have done here is we have taken the coordinate system this is the original coordinate

system on which we have a body which looks like this an air foil and it is a compressible

flow as a result of which has governing equation is this right. 

So, what we do is we take the same body which looks exactly the same, but transform

these coordinates in to eta and zeta in such a way that zeta is x and eta is lambda y and

the perturbation potential in the x y coordinate is phi p here it is phi p bar this is the

transformed this is a relationship with the phi p of the x y coordinate system and what we

see is that we get the same body, we get the same shape, but the equation transform the

governing equation transforms to the Laplace equation in phi p bar which is nothing, but

the governing equation for incompressible flow.

So,  this  like  really  makes  our  life  a  lot  more  easier  then  you have  done even with

linearization whichever we had. So, if you do that now let us also you know just take a

second and you know write out the expression for the coefficient  of pressure in that

particular in this, in this case how will C p change from here to here.
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Now, C p if you remember right, C p was this. So, if C p is this what do we get this is

nothing, but del phi p del x right this is in the x y coordinate system and what is the

connection of del phi p del x with how does that transform to the zeta eta coordinate

system. So, what happen? See this is equal to right. Now, when if you transform this

what you get is right. So, this, then I am going to write this as. So, if I am going to write

this. So, let me write that as, if you look at this if you look at this, so let us del phi p del

z. So, this term I can write as basically the u component of the perturbation potential or

this is basically the yeah the x v z component of the perturbation potential this thing. So,

this  is essentially nothing I can write this as bar. So, this  is the u velocity  perturbed

velocity in the z direction in the transformed coordinates right.

So, then I can write this as u bar and let us just call that as dash just to denote that as the

perturbation potential perturbation velocity right. So, this is what we have. So, what we

can see here the C p which is minus 2 u dash by phi p it has the same form also out here

it has the same form here in the transform coordinates as well where this is nothing, but

the perturbation velocity component in the z direction which is the analogous of the x

direction right. So, therefore, what and now of that we have found out now that we have

been able to establish that this z eta coordinate system basically it is an incompressible

flow.



So, then I will write this in a special notation I am going to call this as basically. So, the

C p  naught  is  nothing  is  basically  the  incompressible  pressure  coefficient  right.  So,

therefore,  for  any you know in this  in  the  case  that  we are  considering  for  any 2D

subsonic flow right. So, this is a compressible pressure coefficient is basically given as 1

by lambda. So, now, lambda is basically the transformation used in to the incompressible

pressure coefficient. So, C p naught is basically incompressible pressure coefficient right

and this let us call this as and, so what we basically see that we have the same profile we

have the same body is not it, we have the same body and what we have basically done

now is that we have related the C p in this compressible flow field to the to the C p in an

incompressible  flow field over the same profile,  meaning say we have this  particular

body in one case we consider a compressible flow over it. So, we get a coefficient of

pressure which is C p.

Now consider another case where we have the same flow field we have the same body

and we have an incompressible flow over it and the corresponding pressure coefficient is

C p naught right and what we have just now established is this relationship which is a

relationship between the coefficient  of pressure in the compressible flow field to the

coefficient of pressure in the incompressible flow field over the same body over the same

profile and this is basically credited to Prandtl and Glauert and this is, so Prandtl and

Glauert. So, essentially Prandtl and Glauert similarity rule. So, this is the. So, basically

this connects the C p in the compressible and incompressible flow fields over the same

body.

So, briefly before we sort of you know closed for today let us also I will just write down

coefficient of lift. So, taking from you know take a cue from this similarity rule, taking a

cue from this similarity rule.
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So, coefficient  of lift  is lift  by dynamic pressure in to an area and similarly C M is

nothing, but this again in to yeah because I have M there, in this case also right. So, C L

is if I were to write this what is our lambda yeah, so lambda. And, basically what we do

here this these are the two incompressible C L and C M right and this is the Prandtl

Glauert  correction  toward  you  can  add  this  correction  toward  and  use  it  as  the

compressible C L and C M over the same profile.
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So, this you can say this is the yeah you know rules, so that manner. So, basically they

we can use the incompressible C L and C M add a correction to it and use it as the

compressible C L and C m. So, I think will stop here and continue with this next class.



Thank you.


