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Supersonic Flow over a Wavy wall

So continuing with  the wavy wall  problem,  we came up with an expression for  the

surface pressure coefficient right.

(Refer Slide Time: 00:26)

So, wall pressure coefficient it look like this right. So, this was the expression and then

also we looks are how this really is acting on the surface, and we saw that you know that

the equal  let  us look at  the equation of the surface,  the surface equation  the control

equation rather was given as; the wall control equation was given as.

So, you can see that both these quantities that basically are functions r cosine functions

right; however, this is 180 degrees phase like because of this negative sign as a result of

which we saw that there was no horizontal component of this pressure, as a result of

which there was no drag which was commonly known theorem respire paradox. So, now,

let us just look at this a little more closely and see, what exactly this you know means or

if any other information we can draw from this equation out here.



(Refer Slide Time: 02:20)

Now let us see say for certain value of M infinity right. So, say as y say is very very

large. So we basically, look at a distance which is very very far away from the wall itself.

So, why is very very large then what happens to you know C p right. So, if y is very very

large then  essentially  right  tends two 0,  now what  this  essentially  means that  as  we

basically move farther away from the wall and the disturbances die out right.

So, which kind of make sense right the more we get away the slowly as so basically, we

can say that as y increases the pressure coefficient decreases and which in turn would

also mean that the velocity the perturbation. Now let us look at the say the perturbation

velocity  potential  right  now  for  example,  if  you  look  at  this  now  the  perturbation

potential now that that is proportional to essentially and exponential. So, if you look at

this as well. So, when y increases basically this tends to 0 which means that is

So, if you if you look at this. So, the which means are the perturbation you know dies out

or the perturbation velocity is die out, which is essentially means that the disturbances

die out as we move farther and farther away from the wall that is what inference which

you get from here. Another is that in here we are really looking at. So, let us get rid of

this ok.



(Refer Slide Time: 04:39)

So, now here we are look looking at subsonic right. So, we are looking at analysis that

you have done. So, far is for subsonic subsonic flows right.

Therefore, in here now look at this, now if M infinity increases within this subsonic flow,

if M infinity if the Mach number increases then what happens right. If Mach number

increases  look  at  this  term,  look  at  the  pressure  coefficient  here  if  Mach  number

increases and this decreases. So, this basically increases this increases now let us say

look at also you know look at this and now at the same time let us also say you know phi

p that is also this, this is also proportional to this right now see this if Mach number

increases so ok.

So, this term basically decreases. So, this term increases; now this has to correspondingly

increase this has to correspond this term this term actually increases. So, this term has to

correspondingly decrease to keep the proportionality correct. So, similarly you have the

same thing here the C p is also, you know similarly corresponding you know it  is a

function of it is also proportional to the pretty much the same thing right; therefore, if

Mach number is increasing; so if this has to decrease.

So, now in here therefore, if Mach number is increasing right, so this term decreases. So,

this has to correspondingly increase right. So, if Mach number increases essentially. So,

y also increases which means what; what is that physically mean let us look at this. So,

we have. So, essentially what we saying is if you look at the perturbation potential here.



So, if the Mach number increases the y also increases.  So, this is the relation of the

perturbation potential with y, and again this is also you know hence the relationship of

the pressure coefficient as well.

(Refer Slide Time: 07:21)

Now, if you look at this, now say this is our wavy wall right. So, this is our wavy wall

right. Now say this is at M Mach say this is at M flow is happening here say at a Mach of

say 0.1 right say this is happening at 0.1. And another case is that we have say what

essentially and this here. So, this says 0.9 this is say 0.9. Now what we said is that if

Mach increases y has to increase.

So, Mach is increased from 0.1 to 0.9, now the y has to increase what is that mean what;

that means, is that in this particular case you know you have the disturbance. So, say it

moves like that moves like that, moves like that, moves like that and so on so forth. So, it

goes up to  a certain and after  that  it  dies down. So, therefore,  you have a certain  y

distance over here now in here; however, let us see.

Now, we saying that as Mach increases y also increases, what this means is that right and

therefore,. So, essentially what we saying is that as for subsonic flows right as the Mach

number increases; as the Mach number increases. So, the disturbance also travels to a

farther  distance  right;  disturbance  also  moves  you  can  see  here  it  moves  a  farther

distance in y away from the wall. So, that is what that means. 



So, pretty much having done this now let us go and look at the same problem right for a

supersonic case. Is in the same linearize theories and see what we can infer from that and

what set of the equation we will get right and how do we go about solving those and then

we will sort of sum it up alright.

(Refer Slide Time: 10:45)

So,  here  we  go.  So,  we  will  start  with  the  (Refer  Time:  10:41)  velocity  potential

equation. So, the (Refer Time: 10:44) velocity potential equation was this is what we

have done right. So, this is what we have we had originally done for in the subsonic case

ok.

So, now let us do this for a supersonic case. So, where we will write this equation as say

let us write it like this way right. Now if you write it this way then let us look at 2 D

picture of this. So, which means that we basically going to look at this right. So, this is

our equation this is the 2 D picture. So, if we look at this. So, or we can write this as

right. So, if you have this now if you I am hoping that you recognise in this equation is

typical wave equation and mathematically this has. So, set for a solution to this right.

So, therefore, we can write this solution to this in this form right. So, we will take two

arbitrary functions and say if phi p here which is the function of x and y is therefore,

equal to say right. So, this is our typical solution for an equation like this right. So, now,

we used method of separation of variables for the subsonic case and this case however,



we you know this is in this equation the wave equation. So, we have a solution which

will look like this.

Now, let us sort of again go ahead and find an expression for this. Now to do that let us

say let us again let us say you know we will set t is equal to 0 in here.

(Refer Slide Time: 13:59)

Let us say g is equal to 0. So, to find a solution for that, let us say we will say g is equal

to  0.  So,  that  makes  my  right.  So,  this  is  my  velocity  potential  equation  now. So,

therefore, p del y is let us call this as one, ok

So, this is my del del the del phi del y we dash essentially at the wall. So, now, this is.

So,  this  is  not  at  the  wall  this  is  at  the  wall.  So,  essentially  this  will  go  to  0  you

considering small perturbation theory. So, this is del phi del y now as we learnt from our

last exercise. So, now, del phi del y right this at the wall is essentially the velocity. So,

this is what we have derived yesterday as well, but if you just look at this expression, the

loss of the perturbation velocity  component  at  the wall  is  essentially  the free stream

component in the direction of the wall ok.

So, this is the slope of the wall. So, this is a what we have done earlier and we have an

expression for this d y by d x at the wall, which is what we get by differentiating the

equation that we had for the wall which was y w right. So, therefore, let us just do that



here. So, like we said now at the wall we will set now at the wall this y considering small

perturbation theory right. So, if we do that. 

So, therefore, let us equate these two here. So, what we then get is this right is equal to

and the slope was given as. So, this is what we get. So, here therefore, we can get our f

dash x. So, let us get our f dash x right which is equal to. So, this is my f dash x slope

here this is what I get now. So, let us. So, if say we will you know integrate this let us

integrate this. 

(Refer Slide Time: 18:40)

So let us see what we get. So, f dash x is this now if I integrate that right if I integrate it.

So, what I get is f x, f x is essentially. So, if I integrate this plus a constant. So, therefore,

this or essentially f x is equal to right. Now this f x is a essentially at the wall is not it, we

derived all of this essentially at the wall. So, f x of the wall looks like this.

Now, therefore, now if instead of now we know that instead of any arbitrary position in

the flow field right. So, that argument here was x minus this. So, instead of x be in just x.

So, let us say for any arbitrary x here. So, if I have this. So, therefore, then this equation

for any position in the flow field will look like x is x this and essentially what this is

equal to our perturbation potential ok.

So, therefore, this is what it looks like. So, let us box this and let say let us call this as say

2; now that we have done this. So, basically we found a relationship found an expression



for the velocity potential here. And of course, you also if you will remember that if the

we took the; if we take 0, if we take g to be equal to 0, then what this results in is

essentially right running characteristics right and then if we take a f to be 0 then what we

get is left running characteristics.

So, we if you know done that earlier. So, now, having got an expression for this velocity

if the perturbation velocity potential,  what we need now is the coefficient of pressure

right surface pressure coefficient. So, let see we will two how we will go about that ok.

(Refer Slide Time: 23:28)

Now, what we learnt from last time is that the C p right C p at the wall is equal to this C

p of the wall depended on the u component of the perturbation velocity right. 

So, if I have to do that let us say we will try to find an expression for this using the

perturbation potential  with which expression for the perturbation potential,  which we

have just derived right. So, if I would do that. So, let us say let me write that again here.

So, phi p essentially now is equal to. So, let us see this right. So, this is essentially u dash

is not it? This is essentially our u dash. So, del phi p del x now this is u dash what we do

get here. So, what we get is right.

So, if am just taking derivatives of phi p with x. So, what we get out here is this 2 pi by l

will comes here and the cos the derivative of cos is sin for this is what we get right. So,

this our u dash right. So, we took derivative. So, we get negative sign here because of



this sin right. So therefore, what we get over here yes. So, let us say. So, these signs

essentially cancel out. So, this is what we get right this is all what we get; now again now

at the wall taking small perturbation theory.

So, again y will tend to 0. So, therefore, at the wall what we get is. So, this is what we

get at the wall. So, therefore, our C p at the wall coefficient surface pressure coefficient

right which is the C p at the wall therefore, becomes it is minus 2 u dash by V infinity

right this our expression for this. So, what we get from here is this. So, in here therefore,

that becomes right into right. 

So, this is our expression for the wall pressure coefficient and this is it. Now let us try

and understand this little more. So, like we did for the a subsonic case let us try and

understand this little more what does this means. Now as you can see that the wall let us

just point out a few things the wall equation. The wall equation was if you remember the

wall  equation  was  and  the  pressure  coefficient  equation  here  is  this,  the  pressure

coefficient equation here is this ok.

So, let us see what these mean and if you can get little better understanding of this in

here. Now as we have done before and as we just said that taking either f as 0 or g is 0

we basically get left running or right running characteristics right. 

(Refer Slide Time: 29:16)



So, now, if we do that, now say if we take g is 0. So, therefore a line of constant if we

take g is 0. So, lines of constant phi right.

So, lines of phi constant phi essentially say they correspond to right. So, they correspond

to this because phi p is then is function of is f of this right which we just done. So,

therefore,  in  this  case I  can write  the slope of each line,  divided by t  axis  this.  So,

essentially what we saying is that. So, essentially we are going to get this lines which

have a slope of. So, d y by d x is essentially this you know given by this. 

So, let us say this is theta. So, these are the right running characteristics we will get and

if put f is equal to 0 we will get the left running characteristics this is something that we

done earlier on; now having done this now let say then the Mach angle ok.

(Refer Slide Time: 31:00)

So, now this mu then is equal to this right now and here. So, now, I am. So, if I do a little

bit of math out here then I can write this as ok.

So, now, therefore, what we can say is that this is also d y by d x is also equal to this is

also equal to 10 mu. So, say let us keep the entire thing looks the entire thing right. So, d

y by d x is given by this and this is also the slope is also equal to the tan to the tangent of

the Mach angle. Now see at the wall. So, theta is tan theta so this d y by d x at the wall

right. So, this is tan theta is the physical slope right.



So, tan theta at d y by d x is right this is what we have done before right and taking small

perturbation considerations. So, which would mean that this is very very small compared

to v infinity, what we get here is this right.

(Refer Slide Time: 32:57)

Let say what we have out here is that phi now is equal to we have taken g to be 0 right.

So, f of into this; so then this is the perturbation process. So, u dash is which is equal to f

dash right. Now then v dash is equal to and this is equal to.

So, this, but f dash is also is equal to u dash. So, therefore, I can also write this as this

right. So, therefore, I can write that u dash is equal to; now what we saw from here?

What we saw from here is that we can write at the wall tan theta is equal to this v dash is

here. So, let us say from here let us say v dash we can write as v infinity tan theta. Now

please try and understand this here that this theta is the physical slope right.

So, if you have when we have the slope here. So, when we have this actually wall over

here right. So, then this is the actual slope physical slope of the wall that we are talking

about. So, that is the slope right and we have also said this is the d y by d x at the wall

and we equated that to the to this to this which essentially the angle which is made by the

velocity components right and this and since the velocity vector is tangent to the wall

itself we are able to connect the physical slope to the direction of the velocity and. So,

therefore, I can write that this is what we basically trying to do here is that this is the



perturbed  velocity  component  in  the  y  direction  and  we  are  connecting  that  to  the

physical slope at the wall right; which is this.

So, now, we have written here that the u component of the perturbed velocity is equal to

this and we therefore, we can also write this v dash right, we can also write that as this

because this is this can be written in terms of the physical slope at of the wall which is

this right and considering that this is again small perturbation. So, therefore, we can say

that this is theta is really small. So, then what we can write here is this right.

So, what therefore, we can write is this is equal to. So, we can write this because for

small perturbation. So, this I will take as very small and therefore, I can write it as theta

right.  If  I  do  that  then  what  happens  to  my coefficient  of  pressure  at  the  wall.  So,

therefore, what happens to my coefficient of pressure than is this?

(Refer Slide Time: 37:28)

Now, coefficient of pressure is right this is my coefficient of pressure and you can now I

have an expression for u dash; however, in terms of the physical slope at the wall right.

So, therefore, I can write this as an u dash we will in incorporate this right. So, what we

get C p at the wall. So, now, this is what we get at the wall, now this is very interesting

because what we see from here is that if let we will have let us now take a look at this.

Now say if this theta is positive right if this theta is positive we get a positive C p w and

if this think theta is negative then we get negative here which means what which means



that. So, let us draw a wall here. So, say I have a positive like that. So, I have a positive

and then I have a negative. 

So, which means that as long as this is positive right. So, if this theta is positive I have a

positive C p. So, let us do that right a let me draw the wall right ok.

(Refer Slide Time: 39:25)

Let me draw the wall right. So, or say let this take a little bit of space here and do this. 

(Refer Slide Time: 39:48)



So, let us do this over here. So, if I look at this. So, say this may this is the wall this is

my original this is my physical wall ok.

So, if I look at that, now when I have say let us look at this part out here and so on so

forth. Now this is the region right this is the region where theta is positive. So, I have a

positive C p. So, I have a positive C p and then I have what and then if you look at this

theta is negative C p is also negative. So, if that is true then this becomes negative here.

So, then C p I am just using the conventional that ok.

So, this what this means now I think by now you should be able to kind of figure out

what this actually means from here from these arrows right. So, these are basically the

showing the direction of the pressure. Now before we go back there let us look at this

here. So, this is the other C p expression that we had got right. So, this is what this says

this varies a sin and this varies a cos. So, essentially what we have from here right. So, is

that. So, if I wanted to do this. So, let us say how this how should this look like.

So, if I want to do this what this would like is that. So, that should be what we get in

from here and I hopefully should able to correlate between the two. So, now, let us go

back to what we doing earlier, now if you look at this over here. So, now, let us take say

this and this velocity vector sorry the pressure vector if look at this, I get this and if I

look at this and I get this ok.

And let us take say another one. So, let takes this let takes this. So, let us take this and let

us take this what do we see from here? What we see from here that unlike in the subsonic

case right when this was symmetric when the C p was symmetric. So, we had a C p

distribution which was symmetric as a result of which we did not have any drag right

unlike  here  in  the  supersonic  case you can  see that  the drag  the horizontal  pressure

component is not cancelled each other.

So, we actually have a drag in this particular case. So, the drag does not blow away or

there is does not shown no drag. So, this is the prime difference between the subsonic

case  and  the  supersonic  case.  So,  we  basically  have  an  asymmetric  distribution  of

pressure as you can see as a result of which. So, if we if you just look at say this half

lambda over here. So, you have a positive pressure and negative pressure and. So, as a

result of which we do have a finite drag. So, what we will do now is got of you know let

sort of take a minute and summarise the whole thing ok.



So, do that let us let us say and also before we do that where was our phi p ok.

(Refer Slide Time: 45:15)

So, we got an expression for phi p. So, let us see let us look at that say let us say some of

the things. So, this was our subsonic and this is our supersonic right. Now, we got an

expression here for phi p right which was some of this sort. So, which was which look

like this exponential into sin and for supersonic case, supersonic case we got phi p which

looks like this ok.

So, first of the very first of we can see over here there is no exponential dependents of

the perturbation potential on y x or y there on y actually and for phi p there is in for the

subsonic case, we do have an exponential dependents of the perturbation potential right

and here as we had seen that as y tends to infinity as we go farther away from wall, this

disappears right the this disappears. Now if you look at here if you look here.

So, this does not sort of this does not die out in the supersonic case; however, for we

cannot  say the same thing it  is  not like if  you move away farther from the wall  the

disturbance dies out it does not. So, essentially like we said we basically the in here. So,

we have the disturbance which is propagating to infinity right on straight lines with the

slope of 1 by this, which is basically in the right running or left running characteristics ok

So, in here C p at the wall was this right and here of course. So, here on the other hand C

p at the wall this look like right and this was also say this was also equal to this. So, the



this is how the C p look like and we saw that this cause no drag where as this because of

its symmetry where as this did cause a drag, and finally, what we have here is an elliptic

p d e.

So, which we solve using the method of a separation of variable that is what we did, here

on the other hand right we have had an hyperbolic p d e right. So, for which is basically

the which is the wave equation and that is how we know we also had solutions for that

and we came up with which eventually resulted in solutions, which you know which

were valid on right running and left running characteristics. So, that should be all.

Thank you.


