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Flow over a Wavy wall: Formulation using Perturbation Theory

Now that we from composter shock tube, right. We started learning the flow property

changes across I an expansion fan, we started with learning doing a brief review of how

things work in terms of wave propagation, right. And we used linearized equations we

introduced the concept of how we could use small perturbations, right. The way property

changes in, when there is a wave disturbance or wave is traveling is considered to be a

small disturbance over the ambient. So, that is something we sort of dealt with at the

time.

So, let us just sort of look a look at a problem and see if we can use that concept here,

right. And solve equations and you know get some information about the flow properties.

So, say we have a problem like this. So, let me draw this.
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So, let us just say, I need to draw a straight line here. Let us as straight as I can go fine.

So, we have x axis like that. So, I am going to draw this. So, what we have here is this

essentially  this  is  like  this  is  called  this  wavy wall  problems,  this  is  the  wavy wall

problem.  So,  in  this  here,  essentially  what  this  is;  let  us  call  this  as  L which  is  the



wavelength this could this could be land of if you want to choose it that way. This is the

amplitude of course, this is the amplitude h. And the Y ordinate is given as Y w or Y

wall, right. And this is actually given to us as; so, this is essentially the problem. So,

what we need to do here is assume that h is small. 

So, essentially considered considering this as a small perspiration problem, find out an

expression  for  the  velocity  potential,  which  is  phi,  right.  And  the  surface  pressure

coefficient, the pressure coefficient at the wall. So, this is what we need to find out. So,

what I will do here is just write out the velocity potential equation just to sort of remind

you. So, before I do that. So, essentially what is happening here is that we have a flow,

right. We have a flow which comes in like that right. So, incoming free stream is at a

mach number of mach number which is m infinity, right. And then we are going to do

this you know problem to find out velocity potential phi and coefficient of pressure at the

wall.

Now, for Irrotational flow, right; for Irrotational flow we know that the velocity can be

written in the in terms of the gradient of the velocity potential right. So, that is essentially

for Irrotational flow. And let  me just write out the velocity potential  equation just to

remind you. 
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 And that is; so, this is essentially the velocity potential equation. So now, let us just so,

the basically the point is that when you have a free stream. So, you know we have a free



stream and then suddenly it encounters this wall, which is a wavy wall like this. So, how

does how do we then how does the then the velocity in that flow field change you know,

which was just a free stream and it encounters a wall like this. And in this particular case;

so, the hum the nature of the wall or the contour of the wall is given, right. Which is by

this  expression  here  right.  And so,  we need to  basically  assume that  this  is  a  small

perturbation. So, what would that mean in terms of linearizing the equation that we will

use. So, this is our problem. So, let us go ahead and try to solve this.

(Refer Slide Time: 08:34)

 So, let us write our free stream. So, our free stream is essentially in vector form this is

how it is, right. This is my free stream, and say the local velocity. So, then the local

velocity right. So, local velocity we can call that this is equal to, this is a total  local

velocity.  So,  then  let  us  say  that  the  perturbations  in  the  velocities  are  so.  So,  the

perturbation velocity, you can you can call that that let us say, let us call this is q is say

we going to call that u prime ok.

So, essentially, we have a free stream, right. We have a free stream, which has and we

have a perturbation velocity which looks like this. And we have a local velocity of this,

what is the connection between these? If you if you consider a perturbation theory, as we

talked about earlier. So, the free stream is perturbed by this velocity to get the current

local velocity right. So, if we do that. So, if we essentially do that; which means that,

what we have here in here is that this v is nothing but the, isn’t it? So, this is my local



velocity which is the free stream plus the perturbation, right. Which means that what we

have here is this. What we have is u plus. So, essentially let us say right.

So, this is the so, therefore, this is the local velocity which means were essentially this is

my u, this is my v, this is my w, which is the local velocity. So, I have the free stream

which is perturb using this perturbation velocity, we get the total local velocity. So now,

as you can see that for the if you have a velocity potential like this, you can represent

your local velocity in terms of gradients of that potential. So, similarly we can have a

perturbation potential corresponding to you know this velocity.

So, let us say that the we have a perturbation potential which is say this is corresponding

to a perturbation potential  phi p, and this is corresponding to a perturbation potential

sorry this is corresponding to potential phi. So, which would mean, right, which would

mean if you sort of you know, look at this equation over here. So, essentially, this is the

local velocity which is equal to the perturbation velocities, right. Plus, the free stream

isn’t it? This is what we get. So, this is my local velocity which is corresponding to this

perturbation  potential  corresponding  to  this  potential,  that  is  equal  to  the  perturbed

velocities which is given by the gradient of a perturbation potential, and this perturbation

is applied to the to the free stream right.

So, therefore, this is what you get. So, hence from here we can write if you integrate this

now. So,  therefore,  say phi  is  equal  to phi  p.  So,  essentially, we need to  find out  a

potential  for  our  wavy wall  problem over  here.  You know, we need to  find  out  the

potential  so that  once  you find the potential  we shall  know the flow properties,  the

velocities as well right. So now, what we see over here is that the surface potential for the

wavy wall can be written as a the component, the component of the free stream plus a

perturbation potential. So, as long as we can find the perturbation potential, we should be

now I be able to find the surface potential for this kind of problem.

So now we have this. So, let us say call this as. So, let us say, let us call this equation out

here as 1. And we should call say this equation as 2. So, we can now write. So, therefore,

you see this  is the velocity potential,  and correspondingly this  is a velocity  potential

equation, right. Now we said that using a perturbation theory we are able to write this

potential  as  a  free  stream potential  plus  a  perturbation  potential,  which  is  what  we

derived here in this particular equation.



So now what we will do is we will use this equation into 1 and see what we get. So, this

is going to be well it is almost like a half page equation, but I will write it out. And just to

sort of I am scare you. And then will see what we will do with this. It is important to

write this. So, so if I were to write this.
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 So, essentially, I am, right. I am using the surface potential equation that we got here

into the velocity potential equation. So, it looks like this. This is the left-hand side right.

So, what we get here is on the right-hand side; this is going to take me a while to even

write this.  So, so we have got the second term here,  which will  be well,  there is  of

course, a certain.

Then so, if we hopefully you are all awake by this time. So, this is what it looks like, if I

incorporate if I incorporate the perturbation potential,  right. Into the surface potential

equation, then the velocity potential equation looks like this. So, this is an exact equation

as you can see over here it is an exact equation. And although the left-hand side out here

which is this is linear, clearly the right-hand side is not, you can see this.
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 So, therefore, what we are going to do over here is bring in the a small perturbation

theory. See if I do that small perturbation theory essentially will mean right. So, this and

hence their squares and you know, higher orders will be you know negligible.

So, this is my small perturbation, this is my small perturbation assumption. So, if I use

the small perturbation assumption here, then what I should be able to do over here? As

you can see if you look at each term over here. So, the all these terms here. So, say let us

look at this. So, we have you dash by v infinity square of that term and we have squares

etcetera, etcetera, etcetera. So now, all of these terms so, these terms can be neglected,

right. Because we are using small perturbation theory and if we do that what we see is

that essentially what we are left out with ah this equation. So, if I call this equation as say

3, if I leave this out all I get from there is, right.

So, this is this is what we get and let us call this equation is 4. This is what we get, and of

course, we can also.  So, we basically have written our velocity potential  equation in

terms this you can see this now reduces if I use a small perturbation theory, this is our

velocity potential equation essentially is in terms of the perturbed velocities right. So, I

can also write this; I can also write this as in terms of the perturbation potential, right.

Perturbation  potential  which  will  be,  right  and  let  me  call  this  as  5.  So,  what  you

basically see over here is that these 2 equations here 4 and 5, right, which we get by

using a small perturbation assumption into the exact non-linear equation surface potential



equation in 3. So, unlike 3,  these 2 are linear  equations using the small  perturbation

theory, right. And in here so now, we are going to you say. So, basically, we have a and

an expression in terms of this.

Now, if.  So  now  basically  we  will  go  ahead  and  try  and  solve  this.  Now  for  this

particular case again let us take the 2D version of this, which would be essentially this

equal to 0. See, if I take that how do I go ahead and solve this.
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 So, let us go ahead and do that, right. So, essentially what we have in 2D, this is what

we have. So, this is what? This is the governing equation now.

So, how do we go ahead and solve this now what we will use here is a method of the

separation  of  variables.  So,  this  is  the mathematics  part  of  it.  So,  this  is  the part  of

calculus if you not you know, if you know she do not remember it I think you should just

go and run yourself through it you know one should be fine. I will walk it through the

whole procedure of this, but I will not go into details of the mathematical you know,

derivations and all of that. But will work will work step by step through the process of it.

So, using the method of separation of variables, the way we will basically, right. To say

right. So, F and G are just functions as so, F is a function of x and G is a function of y.

So, this is separation of variables if I do that right. So, if I do this essentially. So, you

know if you see here. So, essentially what we get is this, isn’t it? Right and therefore, So,



similarly if you look at this del G. So, this is; so, this is what we get from here. Now if I

do this. So, let us now use. So, let us say. So, this is say our equation a so, we have this

expression here and this expression here using a separation of variables. So, if I do this.

So, therefore, I will use p and c into a. So, if I do that what do I get? So, if I do that what

essentially, I get is right. So, delta phi del x 2. So, that is delta phi del x 2. So, which is

plus delta phi del v del Y 2, which is this thing.

So, again now what we can do is divide this whole thing by F G if I divide this whole

thing. So, if I divide by F G. So, this is the relationship that we get and finally, what we

will do is we divide this whole thing again will take. So, finally, we will also we can also

write this as; we will just take this term divided by this term throughout. So, again what

we will get is and let us call this as say d. 
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Now this is a now let us say that x is held constant x is x is held constant. So, F is all say

x is held constant. And so, Y varies so, we will hold say x is constant, right and Y varies

right.

So, which means that; so, this is a constant say and let us call this as so, this is a constant.

So, which means that so, again so, if that is true. So, therefore, from d what we get is that

1 by, right. And this is constant right. So, we saying that we would hold x constant and Y

will wary. And so, what we see from d is that this term is we just take this on the right-

hand side which is this is a constant. And let us call this as we just call this as omega



square, you know just to say it is say omega square and if I do that then from here. So,

basically, we get to relationships do not we. So, for example, if you look at one of this.

So, essentially what we get is that this is equal to a constant, and this is also equal to a

constant.

So, we get 2 relations from this. So, which are if you if you just sort of look at this from

this what we get is. So, this is one relationship and let us call that a say e. And the other

one we get from here which is; so, essentially these are my 2 relationships. So, using the

separation of variables F and G being arbitrary functions and what we get from here is to

these relationships, where this F and G arbitrary functions and F and omega here is a

constant.

So now if you can find appropriate values of F G and omega, then we should be able to

sort of solve this equation. Now the reason we write this equations in this stuff in the we

wrote this in this form because this has a readymade solution from us this is from our

calculus right. So, we have a readymade solution for this which will be; so, the solution

to these equations say e and f is given in this form.
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So, then so, G solution is given as again we have constants and Fx has.

So, this is my readymade solution. So, if we can find appropriate values of A 1 A 2 B 1

and B 2, then we should be able to find out F x and G y and hence we will be able to find



a solution for our velocity perturbed velocity potential. Because phi p is equal to Fx into

G y. So, let us see if we can do that. So, usually how we go about this is that we try to see

if  we  have  enough  boundary  conditions,  right.  Then  we  can  see  if  you  can  find

appropriate values for this.

Now, you see of course, phi p. So, even if we have. So, v p is a finite value, right. Which

is the velocity perturbed velocity potential, but add velocity potential out here has a finite

value,  for all  cases of x and y. So, we have nothing here to tell  us that the velocity

potential blows up or becomes indeterminate or discontinuous.

So, therefore, even when Y tends to infinity, right. We have a finite perturbed velocity

potential. Now let us look here. Now when Y tends to infinity, look at G y, now this term

becomes nearly 1, right. So, because this term becomes to the negative infinity. So, this

will this term this exponential over here will tend to nearly 1. Whereas, what happens to

this term here, this tends to infinity as well right. So, therefore, if to keep this as really

finite right. So, in this case v it this means that we have to set A 2 equal to 0. Because

otherwise right. So, therefore, when Y tends to infinity, what we see over here is the Y

tends to infinity G y will tend to infinity if we have A 2. This first term out here. So, this

exponential will tend to nearly 1, but this exponential out here will tend to infinity.

So, therefore, unless and until we have A 2 0 we will not have a finite value for G. So,

therefore, if Y tends to infinity then A 2 out here should be 0 to keep it finite, all right.

So, then now the next thing is; so, we have we have a wall here, right. We have a wall

given overshare and the equation of the wall is also given to us.

Now, we have this flow moving over the wavy wall. So, definitely so, the when the way

say. So, if I take a stream line which is say on the wall itself how will the streamline look

like. So, let me draw some streamline vectors, right. So, this will be my local velocity

vector then this will look like my local velocity vector so on and so forth. 
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So, essentially what I am doing over here, I am just saying that my velocity vector is

tangent at the wall if the velocity vector is tangent to the wall right.

So, therefore, the flow is tangent to it right. So, therefore, another boundary condition is

flow is tangent to it right. So, therefore, now in here if we sort of go back over here. So,

this is my say let us look at for example, this velocity vector over here. Or say let us look

at  this  velocity  vector  over here now. So, this  was the original  this  was the original

streamline, right. How do we get this local velocity? So, we get it with a stray with this

free stream, which has been perturbed by u prime, and this is the v prime in the vertical

direction, right.

So, this is essentially my this is essentially how the velocity profile looks like. So, this is

the local velocity. So, if I am a sort of highlight this a little more. So, this is my this is my

local velocity vector, right. And if I see the components of it the horizontal component is

the  x  component  is  the  free  stream plus  the  perturbed velocity  perturbed  velocity  x

velocity,  and  in  the  Y direction  is  the  perturbed  Y component  of  the  velocity.  So,

therefore, if I have to take the tangent right. So, what does the tangent mean over here?

So, at this point therefore, at the wall can I write it as this right. So, this becomes the

tangent.

So, therefore, that is what I am going to do over here. So, tangent to it, so essentially,

what I am saying is that dy by dx right at the wall is yeah, well I use a subscript w for



wall. So, essentially this is the wall velocities here. So, if I do that now what we will do

here is essentially consider small perturbations, right. If we consider small perturbations

what we know here is that that u wall, u prime right. So, which would mean that I can

actually write this adds, right. I can actually write it like this, right. If I can write it like

this,  then  this  I  can  also  write  in  terms  of  the  velocity  potential  perturbed  velocity

potential which will be right.

So, therefore, slope the slope out here is the v w prime this, and then I write v w in terms

of the perturbation potential gradient of the predominant potential in the Y direction at

the wall. So, this is an expression that we get. Now if I do that let us. So, therefore, call

this  expression as label  it  as 1.  Now so,  this  is  from the velocity  component  in  the

velocity consideration. Now the wall the contour of the wall by geometry in terms of x

and Y is also given to us, right. Since that is given to us we can also do this, right. A

since that is given to us.
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So, which is right. So, therefore, if I consider the slope of the wall, right. What I guess is

right. So, this is what we get and let us call at this as 2.

So, this  is  from the geometry consideration  of the physical  wall  itself,  and from the

velocity considerations. So, let me write that again. So, from the velocity considerations

again what we got is that the slope is this, right. And this was 1. So, clearly this is from

the velocity consideration and this is from the geometry consideration.  So, let  us put



these 2 together right. So, basically though therefore, if this is equal to this right. So, if I

you if this is equal to this. So, therefore, what we get from here is that del phi p del y,

right. At the wall is equal to minus 2 pi h, right. Into v infinity sin ok.

So, we have and let us call this as say g. Now if I do this and of course, we have reduced

we our A 2 has basically gone too. So, A 2 has basically now gone to 0. So, there are p

so, we have this expression right. So now, the next thing is that essentially having done

this; so, now we know that phi p is F x and G y. 

(Refer Slide Time: 46:03)

So, how do we write this? So now, Fx is essentially, now G y, G y if you look at this we

said A 2 is equal to 0. So, therefore, we are left with this. So, which is A 1 exponential

right so, we have this.

So now what we will we will do here, now what we will do here is that we will take you

will find out del phi p del Y, is that if I do that from here what I get is this does not

change. So, if I do this what I get is A 1 in to into Y. Now what we will do is; now we

need basically at the wall at the wall, right. Now at the wall now let us come back here.

So, essentially, we need the del phi p del Y at this wall. 

Now we have assumed small perturbation, we which means that h is very small, which

means that. So, if I use a small perturbation theory. So, then we say that h is very small.

Which means that this wall is very close to Y is equal to 0. So, if I take here. So, del phi



p del Y at the wall would also essentially mean that we are saying del phi p del Y for the

Y for the Y direction to be almost 0.

So, if I do that what do I get here? What I get from here is minus A 1 into this. I think I

missed out inter into this. So, let us call this as; that is called this relationship as this is

call this relationship as I. So, essentially now what we have done is; now we have a del

phi del Y relationship which we derived considering the physical slope which was given

to us, and the velocity considerations here and we got an expression for that in terms of

x, right. X here and this expression.

Now, from  here  now  then  again  this  is  from  our  map  that  we  did.  So,  using  this

relationship that a velocity potential, which we are using over here is essentially written

in terms of this F and G we input that in here, and then we wrote an expression for del

phi del Y. Now we need the del phi we have an expression a specific expression for del

phi del Y at the wall. So, using a small perturbation theory we said that this del phi del Y

at the wall for a small perturbation, which means h is nearly 0 which would mean that it

is nearly 0 to the Y ordinate be 0 and we get this expression. So, next step is of course, to

equate these 2. So, we will continue with this in the next lecture. 

Thank you. 


