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So, we sort of did little more of method of characteristics right. So, we were derive some

equations got some you know expressions to play with. Let us sort of go back and revive

there are little bit let us do the discussion that we can have left out yesterday. So, let us

say  so  we  took  we  governing  equation  for  say  2D  irrotational  flow,  for  the  2D

irrotational flow and we got something like we said we could write it like this. And we

said we could solve this on a on a computational grid it right that is the basically the

beginning of compression fluid dynamics, and we could solve this on a grid knowing the

derivatives at you know see location. 

So, this is  say at  a particular  location in the flow field.  Having divided that  domain

having divided you know consider a domain in that flow field which we are discretizing

you know in certain way. However, there is a cache that this will exist only as long as

this is not zero. So, when this becomes indeterminate, when this becomes zero then del u

del x becomes indeterminate. So, what we saw is that which means that u is equal to a.
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So, if in my computational grid, so therefore, if at a particular so if I say have a grid or

say at any point in my flow field, so somewhere at my flow field over here right. So, this

is the stream line direction, this is the velocity effecter. Then it so happens that this is the

u component and this is the vertical component of this and it so happens that this u is

equal to the speed of sound u become sonic. So, therefore, when then if we have a line

right this is this line is part of the grid, so if we have this line, which is making an angle

mu with the streamline direction.

So,  this  is  a  line  which  makes  an  angle  mu with  the  streamline  direction.  And the

velocity component perpendicular to this line is sonic. In that case we were able to see

that the derivatives of u and other properties will become indeterminate and also become

discontinuous  may  become  discontinuous  on  this  particular  line,  and  such  lines  are

basically the characteristic lines. 

So, if I am it do that repetition one more time many if you can so basically this is a line

right which is making an angle mu with the streamline direction with the velocity vector

at say this particular point which is a. And this is basically any arbitrary point in the flow

field; and the velocity component perpendicular to this line is sonic, then the derivatives

of  the  velocity  component  here  u  a  as  going  to  be  indeterminate  and  may  be

discontinuous on this line. And therefore, this line is essentially a characteristic line. And



what we can also see from here is that if you see from here, this is mu. So, sin mu is 1 by

m which essentially means that these are also Mach lines, these are also Mach lines.

(Refer Slide Time: 05:19)

Now, we then we went onto so this is something with a, and then we went onto we

worked with this we forgot an expression to find out say velocity potential. Using the

velocity potential equation and we found out to be say some numerator by denominator

now here to we have to come up with a similar kind of analysis like we did here. Now,

this phi xy, this is the phi xy becomes indeterminate if D is equal to 0. Now, basically in

a phi xy will always exist only, if D is not equal to 0, but say we put D is equal to 0 then

phi xy becomes indeterminate. And what we have seen over here is that the derivatives

become indeterminate on these lines which are characteristic lines.

So, therefore, here if we force this D to be 0, so then the derivatives will basically, so for

these derivatives to become indeterminate we can set D to be 0. And D is 0 means what

we get from here is that the way we choose our dx and dy. Let me sort of write this out

this will make a little more sense than. So, as you can see here so therefore, if I choose

dx and dy in such a way so a particular flow field. So, you know that this is where do

you say for some streamline like that.

So, if I have say a particular at say this particular point say right this particular point this

is my streamline direction, this is my v. Now, I choose a dx dy here. So, I choose a dx

and a dy, I  choose a dx and dy in  such a  way right  that  this  D goes  to 0 then the



derivatives of my flow field are going to disappear I go to become indeterminate and

may also be discontinuous.
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Now, let us look at this now for example, let us say this is a this velocity u. Let us say

this is varying something like this say it you know this is the following. So, I have just

taken an arbitrary fashion something. So, let us say this point is A and this point is B.

Now, if you see from here, so del u del x is 0 right on the x-axis right; on the x-axis this

is also pal to the x-axis, so del u del x is 0 over there as well. And somewhere anywhere

on this curve at some point, so you can see here so somewhere so del u del x is you know

some sort of a constant. So, it will vary you know accorded in this direction.

Now if we have something like this. So, say this is you know at the most it can be a

constant. So, in that case basically then you know we can have say a straight line. So, say

something like this. Now, as you can see as you can see say for example, at this point A

and B; at  A and B, the derivative  is  not uniquely determined right.  So,  in here u is

continuous, here also u is continuous. At points A and B also u is continuous, but del u

del x is not independently determined is not uniquely determined. So, it is discontinuous

at A and B. However, right the value should lie somewhere between this 0 and c, it the

value should be somewhere between 0 and c.

So, therefore, for this to be at least you know for my derivatives to be at least finite, it

has to be at least 0, it has to be at least a 0. And to enforce that I have to make n is equal



to zero you know somewhere I am doing here. So, what this what essentially I am trying

to say is that now I am choosing directions which here are the characteristic lines on

which the derivatives become indeterminate it may be discontinuous. So, for which I set

D is equal to 0, but to the for these derivatives we indeterminate, but at least finite the n

also has to be 0 which means that phi x. y which is del u del y is indeterminate are

indeterminate. So, therefore, we found out use of setting D is equal to 0, what this gives

us is how the characteristic lines are located with respect to the flow field; they do not

necessarily have to be straight lines like we had done for the grid here.

Now, so what D is equal to 0 does is essentially tells this how these characteristic lines

are  located  what  is  their  orientation  with  the  local  velocity  vector.  What  N does  is

essentially gives us the relationship of the properties the way they are related to each

other or how the change over these characteristic lines. So, therefore, now what we also

did is that we were able to find write a the equations of the characteristic lines setting D

is equal to 0.

(Refer Slide Time: 13:19)

And we found this out, we were able to find dy by dx is equal to right, and we also said

now this is also equal to equal to this. So, if we have something like this, this is dx and

dy. So, essentially the orientation of the characteristics is given by that and says, this is u

and v. So, we found out this and for. So, this was the relationship we got by setting D is

equal  to  0.  So,  what  this  is  essentially  telling  us  that  we  get  two  lines  right  two



characteristic lines provided M is greater than 1, so which is for supersonic case and

what we get here are hyperbolic PDs.

So,  for  compressible;  so  for  our  cases,  so  our  study  here  what  we  going  to  do  is

essentially consider the case where we have, so m is greater than 1. So, we have basically

two a characteristics. So, at a particular point say at a particular point like we said. So,

say this is say this is some sort of a streamline some sort of a streamline. So, therefore,

my velocity vector here is this, this is my velocity vector. So, what I have over here, it

could be any line you know like that. So, let us to say this is C plus this is the right

running characteristic  and we can have another  one,  so this  is  C minus.  And this  is

making an angle say mu and this is and making an angle mu, note the directions by the

arrows. So, these are basically C plus and C minus.

Now the question to ask here is are these straight lines ask candies ah characteristics be

straight lines. Now, I have just look at this, now for example this is a streamline. Now for

example, at say this particular point now I have say at this particular point this is the

direction of v. So, what we see is direction of v is changing right on this particular stream

line. So, the direction of C plus and C minus will also change at this particular point. So,

they do not necessarily have to be. 

So, they will be differently oriented at say this particular point. So, C plus and C minus

do not necessarily have to be straight lines, they can be a curved line and we will see

that. Now, having then these that is so much as what we done with this now. And we

finally,  came  up  with  the  comp compatibility  equations  what  we  came  up  with  the

compatibility equations by setting n is equal to 0.
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So, let us see what that looks like and let us see what we will do with that. Now, so we

set n is equal to 0 and what we found out was that we were able to these are constants.

So,  this  is  the  Prandtl-Mayer  function  and  theta  is  theta  is  basically  the  streamline

geometry definition here. So, to tan theta is v by u, so that is what we get by theta. So,

now, here this is similar to the Riemann invariance that we did previously. And this is

valid  for  the  see  electronic  characteristic  and  this  is  valid  for  the  right  running

characteristics. So, this is what we have found in terms of the compatibility relationships.

Now, let us see what I mean what sort of a problem we can solve with this, what we will

do with all these information that we have it.
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Now, let us say we have this sort of a problem to do. So, this is the problem that compute

the contours of a 2D for the expansion of air to a design exit Mach number. So, now it

seems that we are kind of at the cross rules. When we started with this course we talked

about  leverage  experiment  and  how  to  get  supersonic  flows  we  need  convergent

divergent nozzles to get flows which are at such high speeds, we need to sort of design

you know the ducts through which it was flowing. So, we seem to come to a point where

we are going to try and design such a duct, depending on what sort of Mach number we

needed the exit.

So, depending on how fast we need our flow to be, we want to design the designer duct

what that is we are going to do. So, do a converging diverging nozzle, so that is what this

is about, but there is something here, which I guess I need to explain. What is this 2D

minimum length nozzle, what does this mean? So, let us see what this means. Now, for

example, what we could basically do is that you know you have flow this is what we

have  done  right  this  is  what  we  have  done,  this  is  this  is  basically  the  converging

diverging nozzle.  Now, you have basically  subsonic flow coming in here,  this  is  the

throat  region  right,  this  is  a  throat  region  the  flow  is  allowed  to  expand,  and  then

basically we should get uniform flow at the exit basically we will get uniform flow at the

exit.



So, now what happens here is that now you allow this, you allow this thing to expand

over a certain length. So, what we are going to basically have here is that if the flow is

going to expand. So, in this particular case, so say we going to have this. So, we have go

to  have  say  several.  So,  this  is  an  expansion  fan.  So,  I  am going  to  represent  this

expansion fan like this. So, what happens is now it hits the wall over here, hits the wall

over there, reflects from there. And when it reaches say this particular point over here, so

let us I am going to call this say it does not reflect any more, it stay stays parallel and it is

you know parallel and what we get is uniform flow in this region.

Now, similarly what happens here is that it goes over there, and that is it does not reflect

anymore then we have this does, not reflect anymore. Now, we can do the same thing

over here. So, there you have this flow expanding over here, we could have the same

flow generating from here as well. Let me do it this way, let me do this by dotted lines.

Now, for example, this now that comes out here. So, this goes, so this goes then does not

reflect anymore. So, similarly we have for this, and then again we will have say.

So, what essentially is happening is that there is a lot of reflection. So, we have this flow

which is sort of expanding it this region right it expands in this region. So, the flows

expanding from here it gets reflected in its expands from here gets reflected from this

wall it hits here and finally, it reaches a section where it does not reflect anymore and it

moves it is just sort of becomes parallel. And we get uniform parallel flow and the from

this duct. 

So, similarly you have flow which is expanding from here, it reflects from here, it goes

here reflects from there, and finally it does not reflect anymore and it goes past this. How

are we representing this, we are representing this essentially when I have these lines, if

you remember the shock tube right, we represented this as a as an expansion wave. The

expansion wave right that is what we are doing over here as well these lines essentially

mean so now these are basically characteristic lines or Mach lines right this is series of

Mach waves traveling.

So, now, we are doing this. So, you can see that this will need sort of long sort of a you

know it will need a long duct when you allow this to sort of I know expand over the sort

of this region. And finally, you have and you can see this you can see the difference in

the region my artwork is not very good it is not at all symmetric, it should be actually,



but it is not very symmetric. But you try to get you know with the point here. Now, you

can see that this area out here is all intersection of various characteristics; you have right

running  characteristics  and  left  running  characteristics.  So,  these  are  all  sort  of

interacting with each other. So, therefore, these lines when they interact with each other,

now these are going to be curved except now once you come to here, so if you come to

say this region you have only say in the right running characteristics and only one type of

characteristic. So, this becomes a simple region. Whereas, something like this where you

have an intermingling of lot of both types of characteristics this is a non-simple region

and here the lines are curved. You know here, however, it becomes a straight lines and

beyond this point of course, we have we have flow which is parallel and that is at the exit

Mach number.

Now, therefore, you have supersonic wind tunnels which are going to be very long when

you know allow for this gradual expansion, but you want to decrease the you know if

you want to decrease the length of width the size of with you want to use it in rocket a

fast moving aircraft then what you do. Then what we can do is essentially decrease sort

of this expansion region, we want to decrease this expansion region, basically the non-

simple region. So, in this non simple region we can decrease that to a certain point. So,

that these become not just a spread out expansion fan like that, but a centered expansion

fan it will expand only at a particular point. So, when you have that then let us see what

it looks like. Let us do that.

(Refer Slide Time: 29:08)



So, let us do this here. So, for example, for other thing is so essentially ok. Now, see the

artwork is not good, because it just becomes straight after a point; I am sort of curving it

in, so that is it and let us put a center line here. So, if we have this, now this is the throat

region this is the throat region. Now, as you can see that you know we do not have like

we have essentially a multi-dimensional flow coming in over here. So, it for all practical

purposes,  this  is  not  going to  be  a  straight  line,  this  sonic  region  because  it  is  not

expected that it becomes sonic exactly along this straight line, it is going to be a curved

line, but for our practical purposes we will just take there as a straight line.

So, let us call this as say A, B, and this is essentially the sonic throughout region. So,

then unlike in this particular case, when we allowed it to expand over a region, we are

going to reduce that region. So, but this particular diagram basically, so ac this length is

your  expansion  length  and  after  this  it  because  this  is  a  straightening  portion  is

straightens out, so that sort of deals beyond say C, D is the simple region. So, here what

we will do is that this is you know we will decrease that l to completely we will reduce

that l to completely 0, the expansion region to completely we will get just get rid of that,

so that we do not give it any region to expand, it has to expand at a particular point.

So, to do that, so let us say we will so essentially this is the wall right. So, let us do this.

So, let us say you know write it like this. So, I have basically expansion for now what is

going to happen here is that this is not going to reflect it is once it reaches this wall here

it will directly just flow out parallel that is the difference when we reduce the expansion

region. So, similarly we have so that is it that is pretty much what you can see, now as

you can see over here that this region out here becomes non simple is not it. Now, these

are all like interacting with each other this region becomes non-simple. So, and rest you

can consider there us straight lines. So, therefore, this is what we do when we have a

minimum length nozzle. So, you can see that now we have basically centered expansion

wave it is a centered expansion wave and the middle portion here, it also likes it is like a

surface or a dividing line and you can see that see from here the symmetry of this.

So, during our calculations as long as so what we are asked do here is that if I have a

flow, then my exit Mach number here. So, now, when the flow comes here, I will get a

uniform flow like this and this Mach number is 2.4. So, what I need to do now is to

design this wall basically design this wall.  So, design this minimum lake nozzle. So,

what we will just sort of do that here now as you can see now this one lets sort of say. So,



let me define some geometry. So, what we are going you do here is essentially use the

symmetry. So, what now we will basically design just the top part of it. So, we going to

get not look at this part. So, let us just say erase that, let us just say get rid of that we are

going to deal only with this.

(Refer Slide Time: 33:56)

Now, and let us see what happens. So, this is what we have. So, this is what we have and

let us see how we going to go ahead and do this. So, let me call this as some number. So,

M Mach number is, so let me call this as Mach number at the exit, which is M e. And

here Mach number, so here actually Mach number is one this is the sonic region. So, we

have this. So, this is the minimum length nozzle and then let us call this as say this point

is a, small a. So, now, if we have this and let us say call this point as c, we will call this

as c. I get rid of that.

So, now, if we sort of do this over here, so you can see that these are the right running

characteristics and these are the left running characteristics. Now, here design wise say

design wise, so this is essentially this is say theta max and you can clearly see here that

here at this point of course, theta is equal to 0, so that is our geometry. Now, let us use c

compatibility equations. Now, what we had was that theta is equal to a constant; this is

on the left running characteristics like it on the left running characteristics and theta on

the right running characteristics. So, based on that what we can say here is say along this



characteristic.  So,  along this characteristic,  so what we would this  is  a right  running

characteristic.

(Refer Slide Time: 36:23)

So,  let  us  write  it  here.  So,  say  let  us  see.  So,  on  ca  this  is  the  right  running

characteristics.  So,  we can write  say at  theta c.  So, theta  c you think that is ok. So,

essentially what we what we are looking at is this characteristic, we looking at ca which

is a right running characteristic, and therefore we using the compatibility equation which

is which is this right. So, therefore, theta c minus and nu c is equal to theta a minus nu a.

Now, here now what is theta over here, theta over here is also 0. So, theta a is also 0. So,

theta a is 0 and theta c is also 0. So, what we get from here is the theta, so that what we

get from here is essentially mu a is equal to mu c, we get that.

So, we get this and also now we also know that this mu a right this mu a which is equal

to mu c is also equal to the mu which corresponds to the exit Mach number is not it. So,

therefore, this also we can write as this is corresponds to the exit Mach number. So, this

is as much as we know from here. Now, let us look at for example, now let us look at say

AC, which is a left running characteristic. 

If I look at AC, so and again apply the comparability equation here. So, what we get is

theta a plus nu a is equal to theta c right plus nu c. So, now what we are looking at you

see when we took see A when I wrote this equation I am using this C here, I am also

using  c  here.  What  I  am  doing  here  is  that  I  am  considering  the  right  running



characteristic hence we are getting this from there and here we are using a left running

characteristic between A and C. And therefore, this is what we are getting now what we

did just now is that theta C is 0, theta C is 0 and theta A is of course, theta max right is

theta max.

Now, theta C let us sort of look at this over here. Now, this mu A now mu A is essentially

for a Mach number, which is M is equal to 1. And if you remember the Prandtl-Meyer

equation is right. So, I can write this as theta max is equal to say mu A minus mu A and

this is minus mu 1, which is 0 right. So, mu A is also equal to theta max. So, mu A is also

equal to theta max, which means and now this mu C is of course, equal to the Prandtl-

Meyer function corresponding to the exit Mach number. So, this again is mu exit Mach

number.

So, therefore, what we get from here is theta max is equal to of the exit Mach number by

2. Now, this is very interesting. So, now, you can see that if I have to design my, so at

just let us take it step back and look at this. So, what we have found out here using the

compatibility equations that given the exit Mach number, this is all that we are given that

is all we are given. So, how do we start out to design you know this nozzle. So, what we

found out is that theta max which is here right is equal to half the Prandtl-Meyer function

based on the exit Mach number.

Now, so  essentially  what  we  saying  here  is  now  if  you  have  a  length  you  need  a

minimum length  of this.  So,  you can start  from theta  max and gradually  go up and

straighten  it  up.  So,  you  know  you  need  this  minimum  theta  max;  you  need  this

minimum theta max. And if you decrease the length below this then it will not be shock

free, then you will have shocks. So, to have shock free parallel flow here based on this

Mach number, this is the minimum length you need. So, this is the length that we shall be

needing. So, now, let us sort of do this do this problem and let us see how we will sort of

go about this. it is the same thing.

So, our specific problem here, so let me sort of you know draw this save one more time

or shall we do it over here. So, let us sort of do this over here itself because this is what

we are looking at.  So, having found this  out how do we go about designing for our

particular case. Now, let us say in this particular case, where I have done is said taken

and say 7 - 1, 2, 3, 4, 6, 7, 8 lines.
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So, say 1, 2, 3, 4, 5, 6, 7, 8. So, now we have this and yeah. So, what is happening here

what I have done here is and you can see I am just representing the expansion wave, you

know now this is a numerical method right. So, now the more number of characteristics

that you take you will get you know better estimation of the properties within that region.

So, in this case so obviously, when you write a computer program you can actually do it

with you know more accuracy when you have more and more curves. So, I am sort of

this giving an example out here.

So, similarly we will have say this will go out and we go out, basically how we will go

about solving this problem. So, we will have things like, this is my essentially my region.

So, what we will do here is, so this is my theta max. So, how do we number this? So,

what we are going to do is we are going to number this whole thing. So, we are call that

as A. So, we will call this point as 1. So, this you can see here this is we have actually

created a grid, we have created a grid in a very different way, our grid looks different

because it consists of Mach waves, these are characteristic lines.

So, this is 1, this is 2, this is 3, this is 4, 5, 6, 7, 8, 9 I am sorry it looks it looks a little

congested, but you know I am afraid you know you really cannot do too much about this

here. So, this is how I am numbering it. So, what I do is on each first line from here, so I

said 1 and 2, 3, 4, I go along to the wall. Again I come over here or did I ok, so I guess I

took one more extra line does matter. So, I can sort of this to maybe decrease one more



say if I say do that it will give me some more space actually if I do that. So, let us say I

decrease that.

So, therefore, you can you can really take as many lines you know as if you want and

that is basically going to give us a better estimation of things. So, if you have that. So,

then this is 6, and this is 7, and say this point is 8. So, then we come here this becomes 9,

this is 10, this is 11, this is 12, 13, 14 yeah and so on and so forth. So, then you come

here this becomes 16, 17, 18 and so on and so forth. 

So, this is what we get now. So, and I note my exit Mach number my exit Mach number

is and that is all I am given. So, my exit Mach number 2.4. So, therefore, I can find out

my theta max. So, my theta max right is corresponding is right and what I get from here

is essentially. So, what I get from here is at this, so having found this out, so theta max is

essentially 18.35. Now what we are doing? So, essentially this is my theta max and you

can see that these characteristics the way I have you know inclined them. So, this is

really up to the user as to how that person does that.

So, now let us say that this angle let us take that you know that A 1, so that makes an

angle 0.375 degrees. So, then therefore, each of these are then looking at then basically

that angle is divided into remaining 18 degrees divided into 6 – 6 divisions right. So,

therefore, A 1 is this, then say A 9 the theta is 0.375 plus yeah so therefore, my delta theta

becomes 18 by 6 which is  3 degrees.  So,  it  is  three.  Then A say 16 right A 16 that

becomes 0.375 plus 2 into 3 and so on and so forth, and so on and so forth.

So, what we shall do here is again use the compatibility equations and properties, and we

will complete this you know problem. So, basically using the and see if how were to

locate, so what you have to understand here is that we do not have this profile at this

point of time, we do not have that. All we have is we are asked to design this. So, we

need to locate where 8, 15, 21 is with respect to A, we do not know that here; all we

know is this based on that we were able to find theta max. 

Now, we been able to you know orient these Mach lines, which are in the expansion

wave. Now, let us see how we will design where these points are located and only then

we will be able to you know design this point design this. So, we will complete this in

the next lecture.



Thank you.


