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Wave propagation: Small Perturbation Theory

So, let us sort of continue from that. So, the wave is discussed that waves are basically

produced by a perturbation over ambient conditions.
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So, we said that if you have for example, say if I were a plot say serve this, and say this

is say density right. So, density and say at some at some time say t 1. This is at some

time; this is a picture that you are seeing at say some time t is equal to t 1. So, if I have a

an ambient conditions of say gamma infinity, then at some point which one impulse I

have  a  certain  disturbance  which  is  in  the,  which  is  introduced  into  this  ambient

conditions. And then so, we said delta gamma and we can have the same picture for

pressures, velocities, etcetera.

Now, then what we said also was that if I look at the same plot, I would say at another

time instant which is at an advance time. So, then again what happens is; that is this

disturbance also travels again this is gamma infinite this distance also travels, but now it

looks different as well. So, say, right. It looks different as well. So again, therefore, if I



possibly took a reference frame say here, at the start of this. Say if I took a reference

frame at the point where the disturbance has started. So, I do not take the same thing over

here, right. Then if I have, if I say I take a particle; if I take a particle call that as particle

a. That particle is at a different location at time t is equal to t 2.

So, what we are basically trying to say here; that particles within this disturbance move

differently. So, they also the each particle is moving differently within this disturbance,

all right. Now mathematically what we said that is the governing equations the continuity

conservation of momentum and the energy equation.

So, if I you know if I introduce the perturbations into that. If I say that is the density term

is the total  density is actually  the ambient  density  plus an induced plus and induced

perturbation right. So, that gives me the total  density, because of what I or the local

velocity the local density velocity here is basically due to this perturbation, right. But the

total  velocity  density  is  basically  when  you  add  this  local  velocity  to  the  ambient

conditions, isn’t it? That is what you will see.

So, here this is the delta t isn’t it? So, add this for a for example, this is the perturbation,

or this is the change in the, this is the is density when I consider is just within this just

within this wave, or just within this disturbance. So now, the total density; however, here

is when I add the ambient condition to that. So, therefore, I get den total density of came

infinity plus this. So, similarly we can have you know the and so on and so forth. 

So, in our derivations yesterday in the last lecture what we did is that we said this was

initially at rest. So, we said initially this was at rest. So, therefore, the entire change in

the velocity is happening because of the disturbance of the wave. So now, what we did

was  we  introduced  these.  We  introduced  these  perturbations  into  the  governing

equations, and what we came up with was; well, it  was some slightly a large sort of

equation, but I will go ahead and write that.

So, what I came up with was this. So, we came up this from the continuity equation. And

the and from the momentum conservation and energy equation we came up with this. So,

this is; so, actually essentially have quite an extensive. So, that is enough to confuse us

right. So, we have this. Let us call that a same 1. And so, we said finite waves what a

finite waves when this perturbation is finite. It is not it is not very small. Or it is not



something that you will ignore. So, you do have a finite perturbation. So, you have a

finite wave. 

So, for these picture out here the governing equations in are basically these. So, this is

the continuity, and this is a combination of the momentum and the energy equation. So,

this is what we get. So now, we saw if you look at this. So now, we said this seems to be

too complicated. So, let us do one thing.

Let us consider this to be very weak wave. Like a sound wave, and what we will do there

is we will we will go ahead and say that delta rho all these perturbations etcetera.
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So, for example, is very, very small. So, this is very, very small, then delta u is very, very

small.

So, essentially what we are saying is; that if you have a wave like this, where it is the

finite disturbance and or perturbation, then you have these are the governing equation.

Instead  if  you  have  something  like  this,  and  you  say  you  know  you  have  say  a

disturbance, say you have a disturbance like this. So, as you can see, if you if you say if

you say look at this part here. So, if you say if you look at this part here ok.

So, in here this is my delta rho say. So, you can. So, let us call this as say dash. So, if you

look  at  this  clearly.  So,  this  disturbance  or  perturbation  is  very  small.  So,  for  this



particular case we will just ignore it, and we will say that is they know the perturbation is

really very small. Then what do we do? In that case how does that get taken care of in

here? So, there is the perturbation it is very small. So, therefore, it is a very weak wave,

that is a very weak wave.

So, in that case what do we do? What happened in that case was that; we were able to

reduced again these equations or transform these equations in the following way. So, our

continuity equation becomes this. This is from the continuity equation. So, what we have

here is. So, let us say I am going to call this as one dash, because this is what we get

from 2  dash.  So,  this  is  so  essentially  if  I  assume this,  if  I  assume  this  then  I  by

continuity  equation  gets  transformed  accordingly,  and  the  other  equation  gets

transformed in this fashion.

Now these are therefore, because we said it is a very weak wave is it is like a sound

wave.  So,  therefore,  these  are  acoustic  waves.  These  are  acoustic  waves,  and  the

important thing here is that you can see here that I had an extensive you know, non-linear

equation. And I have been able to convert that to a an linear set of equations when I

consider a very weak wave ok.

Now, there is another advantage to this. I think I may have kind of done this last time

probably. I think I have done this right. So, essentially what is we then came up with is

for a solution of this. I came up with a solution for this. Where I said that is you know

now if you make combinations of this and so on and so forth.

So, if I you know combine these 2 equations suitably, then I will get these 2 equations. I

will get basically these 2 equations. And so, if I combine these 2 suitably then I get these

2 equations. These 2 equations mathematically are termed as the wave equations. And

they have a defined solution to them right. So, say in this particular case. So, therefore, if

I have an equation of this form mathematically, say of any say parameter say phi, let us

just call that.



(Refer Slide Time: 12:57)

So, that is so if I have say something like this right. So, this is a wave equation, and this

has a solution of this nature. So, this has a solution of this nature this ok.

So, therefore, what we get from here also is a solution like this right. So, which is the

delta rho is and delta u is again. So, this f all these fs etcetera is are basically arbitrary

functions. So, what I essentially have therefore is that numerically now. If I am I have

basically  solved my governing equations  using  the perturbation  theory, for  small  for

small perturbations, I have been able to linearize these equations. And from there I get a

solution for these equations like this ok.

Now let us just see what this how does that change actually this picture. I have a wave

here, I have a wave like this. So, in this case just thus this perturbation is slightly is very

small. So, for this the governing equations you see the perturbation is this. I was able to

assume that is I was able to basically say that this is a weak wave. So, consider these as

very small. And so therefore, I get a solution for the perturbation in this form. So, how

does that is now based on this solution, how does that change the picture? That we have

been dealing with so far.

Now, let us we do that let us do this. So, for that now let us say first things first, we will

say that is say G is 0. So, let us consider these 2 solutions over here. Let us say so we

will take this; so having taken this.
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So, essentially what we are saying is the delta rho is. So now let us say so therefore, what

we have is; so, if I have that, now let us say this delta rho is also a constant. Now say this

is also a constant. So, let us call that as say delta rho naught, let us call it that. 

So, in that case if that is so, then let us call that as let us call that as C. So, essentially, so

delta rho is a constant. So, in that case this is an arbitrary function. Therefore, this also

becomes constant. Let us call that as C. Now what we see from here is that if you look at

this this term here, now this relationship here was basically giving us the relationship of

the perturbation with respect to space and time. And as we saw in the finite wave, that

this actually the way the particle moves within the within the within the wave is different

at different times. And it changes at different space also which is one dimensional x time

right.

So, essentially this is giving us how the wave is traveling, how a particle within the wave

is traveling. So, what I see over here from this relationship, that is the way the particle

moves within the within the wave is actually a straight line, isn’t it? If you look at this, it

actually  moves like  this.  And if  I  look at  this,  it  moves with a  velocity  which is  Q

infinity; so therefore, if I have an xt diagram. So, let us say x and t. So, this is basically

have equation of a straight line and for various values of C. For various values of C

which corresponds to various values of delta rho naught, isn’t it? Which taken that as a

constant we will essentially have different sets of lines.



Who? So, if I were to draw that on this xt diagram for example, say dx dt is this. So, I

will have a straight line which is like this. And that c is here. So, essentially say let us say

for. So, at t is equal to 0. So, let us see over here. So, say at t is equal to 0. So, x c is

equal to x naught. So, let us say this is x naught. This is my x naught, and the slope of

this line is 1 by Q infinity, isn’t it? Because dx by dt is Q infinity. The slope of this line

by in this plot is actually dt by dx, if you look at this plot.

So, what I have is a line like this. So, again if I take another value of this C which

depending on instead of this being this being say rho naught one for example, So, I will

get one more plot. So, I will actually get one more line. So, let us sort of; so, let us say let

us say we will we will do it over here. So, say this is my this is my slope right. So, in

here this is actually the slope is actually 1 by Q infinity.

So, then what we get over here is a series of line, right. And each of the a here and the

slope is the slope is same. The slope is same for all these lines, isn’t it? Is just that this

value is changing, that depends on this rho the delta row actually ok.

So, what we see is that the solution. The solution that we got from here in for the finite

wave is; we see that it basically emerges into several lines, several straight lines, right.

Which means, that on every on every line the particles, right. On each wave the all the

particles are traveling with the same velocity, isn’t it? Dx by dt, so on every line here the

velocity is same. Now this is different from what we saw for our actually finite wave

right.

So, what we saw over here was; that the particles in the wave all travel differently. On

one particular wave the particles are traveling differently, they change with x as well as

with time. At all the particles are traveling differently, but if you look at the solution

here, which we numerical solution that we got is that all the particles in a particular line

are traveling with the same velocity, which is Q (Refer Time: 22:09). So, that is basically

the difference between; the finite wave and the linear perturbation theory acoustic waves

here ok.
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So now this is the picture. So, let us sort of redraw this picture this way. So, let me sort

of redraw this that is for a reason. So now so let us this is say x and t. So, I essentially

have a series of waves like that. So, they all have the same slope. So, let me just say draw

the slope over here which is 1 by Q infinity. And say this is x naught. Now we what we

have taken is; G is equal to 0. So now, in this case what we what we call this x. So, we

will we will we will come to that later on. 

So, we said G is equal to 0. So, instead of G now we can also we will do the other way

around we will say that f is equal to 0. So, what we will do is; we will do the same thing

and say that f is equal to 0. So, we will give we will basically get the same you know,

procedure to do this and then what we will get for the solution for f is equal to 0. So, if

you see, so essentially what we will get is that x is equal to this is equal to a constant. So,

let us that we say c dash ok.

So, what we get over here therefore, our solution is; so, therefore, what we actually get

over here. I am trying to get basically the same picture out here. So, what I get from there

is this that this and this. So, let us just say this is negative x naught and the slope of this

is nothing but that is all ok.

So, therefore, what we have what we see over here is essentially that this is moving this

is moving just the direction is opposite. So, what we if you look from here in the xtt



diagram? Therefore, this is actually called a right running wave this is a right running

wave which is has which is moving with this Q infinity velocity, and this is a left running

wave. This is a left running wave which moves with a negative velocity the negative is

basically the direction. So, the solution that we get from the linear perturbation theory is

essentially this.

So now so which is Q infinity. So now, let us do something else now we know. So, we

know, that is now you if you look at this, that Q infinity the wave we defined it was del p

del rho right. So, in this case we now we also define this as velocity of sound, isn’t it?

Because in this case we said we have assumed that our perturbations are very small. So,

which means that that we are really talking about very weak waves, weak disturbances or

we  are  basically  saying  that  we  are  causing  the  disturbance  by  sound  waves.  And

therefore, we can say that this Q infinity is basically speed of sound, because that is how

we define this is also the expression for speed of sound.

Therefore,  we can say that  all  these waves are essentially  moving with the speed of

sound. And the solution gives us this picture. The difference between the finite wave and

this is that here particles in a particular wave are all moving in the same velocity unlike

in the final wave picture.

So now, so let us let us do some little bit more on this, and then we will kind of move to

other questions. So, having done this now let us say the. So, we can do the same thing

for. So, we did all of this for say delta rho, isn’t it? We got this solution we understood

this for say delta rho, but we can do the same thing for the perturbation and the velocity

as well. 

Now let us see let us sort of just you know check that and see the relationship therefore,

between  the  velocity  change  and  the  density  change.  So,  if  that  gives  us  any  more

information now. So, therefore, we will do a little more math here.
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So, we basically said that delta u is f. So, anyway I am I am going to write Q infinity, but

this is actually the speed of sound, this right.

So now again let us say that; I will say G is equal to 0, right. If I say that and then, so

then we will just say right. So, we will say del del u is that, and also delta t. So, delta t is

minus Q infinity f dash; therefore, if I incorporate that here. So, this is equal to minus Q

infinity. So, that is essentially what I am sort of looking for here. That, so del so let us

sort of write it in this way. So, this is equal to; so, this is the tale of that. 

So, this is what we get, right; now we have this linearized continuity equation where is

that  go. So, we have the linearized continuity equation over here right.  So, we have

basically we are trying to sees that if there is a perturbation in the velocity, right which is

how accurate the wave, what happens to the density what is the connection, how are

these 2 related if at all. So, what we did just now is we found an expression for this delta

this delta u del x in terms of delta d. So, if I use that into this acoustic equation. So, then

what we get is this.

So, what we get? So, this essentially; so I am not rewriting the equation. So, I will just

straight away. So, put in for del delta u del x, I will put in this which gives me. So, if I

get this then. So, what essentially, I will get from here is that I can write it delta rho

minus, right. This is what we get. So, what this means. So, in in a in essence what this



means is that if I do this what this means is that delta rho minus rho infinity by Q infinity

delta u is equal to 0, or delta rho is equal to rho infinity by Q infinity delta u.

So, this is essentially the relationship. This is essentially the, relationship now again. So,

delta p delta rho is equal to a infinity square, right. Now if I then incorporate this into

this then what I get is I will leave you to do the detailed or you know simple math now.

So, essentially what I am going to do is incorporate this into this.

So, what I get now is delta u is delta p by rho infinity a infinity. So, I get this this. So, let

us just we remind as us. So, what we did was; we took we took the delta this solution.

We took this solution and did the same thing as we did for this. So, at first, we said let gb

equal to 0 which is what we did and then we sort of worked with this and incorporated

this  term  into  the  continuity  equation,  the  linear  perturbation  3  theory  continent

continuity equation. And what we will combined this expression for the speed of sound

and we came up with this relationship.

Now, we can do the same treatise by saying that this goes to 0. We can do the same thing

with that and what will up with for say you know, f is equal to 0 what we come up with

there is essentially I can write this as. So, in here so basically let me sort of write this

totally. So, say delta u is this and again this is equal to; so, what we see over here is

actually, for a disturbance or a perturbation in the velocity of delta u the connection of

that, what the connection of that with the kind of pressure perturbation and the kind of

density perturbation. And so, if there is a if you disturb the flow velocity in this fashion.

It will create a disturbance it will create a perturbation in the pressure and density in this

fashion. So, therefore, what we can see over here? So now, plus if the if the velocity if

delta u is plus. So that means, it  is a right running wave. If it is negative it is a left

running wave. So, in here delta  u is  positive this  is  positive.  And in here delta  u is

negative. So, therefore, delta u is essentially for a right running wave.

So, let us just tried understand what this information that we got here what is this mean

to us ok.
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So, essentially what we are saying is; if delta u is positive then it means a right running

wave. And if this is negative then it is a left it is a left running it is a left running wave.

So, essentially what we are saying is that delta u is the perturbation. So, therefore when it

is the right running wave in this case, ok.

Now, if this is positive it essentially means that the perturbation is in the direction is in

the direction of the wave. Delta u is actually in the direction of the wave. And if it is

negative essentially means if the direction is opposite to the wave. So, in here, so say

delta u is positive. So, then I have a positive delta p, and I have a positive delta rho. Now

what does that mean in here? So, say delta rho and say; so, delta rho so, it is greater than

0. So, we have a perturbation in the density and pressure which is positive.  But this

means is that there is a condensation. And if it is negative, if it is negative then it is called

rarefaction. Just think about this. Just think about this. So, I have a I have a certain wave

right. So, I have a certain wave ok.

So, say this is a fluid which is which is moving, right. Now I perturb this. I perturb this; I

apply  by  a  velocity  which  is  positive.  By  a  velocity  which  is  positive.  So,  the

perturbation is such that, this say this is the velocity with which is moving, because of

the perturbation suddenly the velocity you know pushes it this way because the plus u is

in the direction of the wave, right. If this was moving this way and then I perturb it. So, it



moves in this way, what this does is condenses it. The pressure and the density of the

fluid now increases from what it was when it was moving like this ok.

Let us do that again. So, you have a fluid moving like this. You perturb it. So, you see it

condenses,  because  the  pressure  and  the  density  increases.  Instead  now the  fluid  is

moving this way. You now the fluid is moving this way. And if it is move you apply a

delta u v in a direction which is opposite to that of the wave. So, I have a fluid moving

this way and I have applied this  way, what did I do; so it  kind of fans out,  right. It

spreads  out  little  more;  therefore,  the  density  and  the  pressure  actually.  So,  the

perturbation actually decreases. It decreases it is negative from the ambient ok

Therefore, if I have a wave which is say moving this way, and I have a delta u like this.

So, what that we end up in rarefying. So, this is your rarefaction. So, this is how a wave

actually travels. This is how a wave actually travels and this is what we see from our

right running wave and left running wave and so and so forth. So now, basically we have

enough information about say weak wave which is our sound wave. 

Now, what we have done essentially so far is that, we set out trying to study waves how

waves  travel  and  so  on  and so  forth.  So,  then  we said  you know we are  going  to

incorporate small perturbations into it. And we were able to do that. And then we assume

that the perturbations are very small. So, that the wave is that of very weak sound wave

and we have certain information, you know regarding the numerical solution and all that.

Now, then next thing to do; however, is to is to check who is to see that  if  we can

actually go ahead and solve the governing equations for a finite wave. You know, where

we do not assume that these are very small. When we assume these to be very small then

we said it is found waves and we have gone ahead and done this whole treatise which is

interesting. Having said that though what if you do not assume this I will be still able to

solve this equations, we will be able to sort of get more information out of it, yes.

So, what now what we will do is not assume this. We will not assume this. And we will

deal with this instead of this. So, we will deal definitely with a finite wave. So, this is my

finite wave. So, I think we will just sort of begin this and can take it you know take it

forward in the next lecture. So, let us see how we can go forward with this. So, we will



go back again to our basically our governing equations, right. We will go right back to

our governing equations.
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And so, what happens here is that, delta rho is not you know is not, this is not true is not

less than rho infinity. And delta u is not less than this. So, what we get now is essentially,

finite waves what we get now is finite waves. So now, let us go back to our continuity

equation, which says and then we also said like in in the last lecture we will represent a

thermodynamic variable. And using this we also got and this is isentropic. So, the change

in density is 0. So, therefore, ds dt is 0 ok.

So, what we got from here was. So, we got this. So, therefore; so, what we will write

some over here, is that now when I ge get from here actually. What I get from here is that

dp here if I look at this. And the other term and the other term which is del p del s into d

s now that basically this will go to 0, isn’t it? Because we have because this goes to this

is an isentropic process.

So, basically, we are left with this and we know that del p del rho is 1 by a square. So, we

can incorporate that here. So, this can be incorporate like that. So, therefore, what we

have is this that dp is 1 by a square d rho. This is what we have. So, therefore, I can write

it like this. Dp dt is or what I say why d rho dp; does not matter. So, I can I can write it

like this as well. 



So now if I. So, basically, I can write this in the similar way now. Instead of p k instead

of p written in terms this is what we had done earlier. So, we can also, right. Say a

density, right. We can also write density in terms of p and s. We can also write the same

thing same treatise, then in that case we can also write as say d rho dt is actually in that

case it will become a square, right. So, this is a square dp dt. So, we will just they use

that  because  this  is  what  we  need,  here  is  the  same  treatise  we  can  write  one

thermodynamic  variable  in  terms  of  the  other  2  state  variables.  In  this  case  the  ds

isentropic. So, ds is 0. So, therefore, we can write this d rho dt is this.

So now if you look at this equation here, basically I have an expression, this d rho dt I

can write in this form, isn’t it? So, if I do that. So, what we will get is this. So, we are

going to basically introduce that this expression into the continuity equations and see

what we get. 
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So, essentially what we will get is, right plus this is what we get. And let us write this for

a one dimensional one, one dimensional case if I do that what I will get is this, right. So,

this is what we get from here, if I write this for a non-dimensional for one dimensional

case. Let us call this as 1.

Now, I can again you see I have this momentum equation. Now from the momentum

equation what we get is that; this is what we get from the momentum equation and we



will write this again in terms of if were for an for a one-dimensional case. So, again what

I get here is. So, I will rearrange this. I will write this for a 1 d case. And rearrange this.

So, what I get here is essentially this. So, this is what I get from the momentum equation.

So, this is essentially it is.

Now, what we will do in the next lecture is take these 2 equations. All I have done here.

All I have done here; is just taken the governing equations. And I have written them in a

form that is I am going to use and it is going to give me some more information. So, all I

will do now is take this and this equation and sort of work with this I want start from

here.

So, what we will do is essentially this is actually the step where we introduce the method

of characteristics. A method of catalysis is a very strong tool in how we solve problems

in especially compressible flows, right. And we will see if we will be able to get some

make some headway into getting us a solution for the finite waves. So, we will continue

this in the next lecture.

Thank you.


