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Hello, and welcome to the module, Robot Dynamics. So, before we start, let us quickly look at
the overview of what we are going to cover today and in this module.

So today, we will be discussing robot dynamics. Why it is important, how it is done, various
aspects of robot dynamics, how it is beneficial in robot design, controller design and all. So, I
will also introduce you to forward and inverse dynamics: why they are used and, why they are
important, how they are done. So, a different approach to robot dynamics is the Lagrange-Euler
approach. So, we will start with this today, and potential energy, kinetic energy, and effects of
gravity finally will reach the dynamic equation of motion of an arm. We will also discuss the
Newton-Euler Approach in the next few classes, and there are many other approaches to
dynamic equations of motion. So, that is the recursive formulation and DeNOC-based
approaches that we will not be covering in this module. However, please note, this module is for
academic students, who are basically in UG, PG and PhD, and research students. However,
industry students or students who are from industry can quickly go through this module without
going too much deeper into it if they are not interested in the research aspects of it. But, yes, that
will help you to understand, still, the functioning of a robot controller and why your robot is
performing this way. If at all it is performing badly, why is it so bad? If it is so good, why is it so



good? So, you will be in a position to understand the behaviour of your robots. So, still, that will
be useful. Sometimes, in the advanced applications and complex methods that we follow to
implement our robot algorithms. This may still be very, very useful to the industry students also.

So, yes, let us just quickly start. So, yes, why do we need robot dynamics? First, So it allows us
to analyse motion. Motion, in particular, links the robot due to its weight. How does it behave?
External forces, how does that affect the robot? Motion, External forces or moments, if it is there
from outside And we can closely understand the behaviour of a robot if it is commanded to give
a particular kind of trajectory to follow. How much would that be possible? First. If your robot
has got the sufficient moment of inertia and masses at particular locations, so whole of the link is
fully defined. Now, with that set of moment of inertia and masses and the architecture of your
robot, the whole of the equation of motion will try to derive. So, that is what is done in robot
dynamics also. That we will do, we will begin today also. So, to study the torque and forces that
cause motion in a robot, or if a robot is in motion, what torque and forces are going to come at
the joint level? So that is what is easily understood by dynamics. So, to develop a dynamic
equation of motion that describes the dynamic behaviour of a manipulator. Why is it extracted?
That is, to develop a controller for a robot that works in real hardware or sometimes for
simulation purposes, also even to sometimes design animation or maybe just a cartoon. Also,
nowadays, with advanced features of your cartoon character design software, they use this
dynamic equation of motion for various lumped bodies or sometimes solid bodies if they are
using it. So, that is useful for various other reasons also, not just in robotics over here. So, to
design the links to design bearings, transmission systems and actuator selection. That is very,
very important because it is the actuator that is going to handle everything, ranging from your
torque, for the forces, for external forces, for the payload, for supplementary loads, so everything
is going to come on the actuator. So, this will help you to understand this equation of motion,
what we are going to derive through dynamic algorithms. So, that will be useful to understand
that kind of behaviour of your robot and to select a particular kind of actuator for a given robot
design.



So, what is forward dynamics, and what are inverse dynamics? So first, start with forward
dynamics. So, forward dynamics are required to find out the response of a robot arm
corresponding to applied torque or forces at its joints. If at all you have a robot, you have certain
torque over all the joints. So, how is the end effector going to behave? So, is it going to move
with a certain velocity which is uniform all over, or is it going to have increasing velocity at the
beginning, going at a constant speed, and then decelerating and finally coming to a stop. So,
everything will be defined by the kind of joint torque and forces which are there at the robot
joint. So, that is what is forward dynamics. So, you apply torque and force at the joint, and you
study the effect of end effector motion. So, that is what is forward dynamics. Under any given
joint torque and forces, we compute the resulting motion. So, what are the motions that we do?
We study acceleration, and we study velocity and sometimes, if it is point-to-point motion. We
study also where it is going to stop. So, that is the position characteristics. Also, we can study the
robot as a function of time. This is very, very important. That is as a function of time we are
going to study. It is not that it is going to start today and stop tomorrow. Everything is with
respect to the time we are talking about. So, we are very particular about the kind of acceleration
behaviour or velocity behaviour when, even if it goes from one point to another point. So, it is
primarily used for computer simulation of the robot, which shows how a robot should follow a
given trajectory under given forces and torque. That is at the joint. So, not just for simulation, it
will also help you. It will also help you to understand the behaviour of your real robot if it is
given by same amount of force and torque. So, simulation is nothing but offline visualisation of
your real robot most of the time.



So, what is inverse dynamics now? So, it is to find out the actuator, torques and forces that are
required to generate a desired trajectory. So, it is the other way around. So, in the forward
kinematics, you applied the torque at the joint, and you saw the end-effector motion. So, over
here, it is the reverse. So, you are given a particular end-effector velocity, and now you are
supposed to find out the joint torques and forces which are responsible for giving such kind of
motion. So, an efficient inverse dynamics model becomes extremely important for the real time
model based control of the robot. If you are, you are using this kind of algorithm for
model-based control. We will look at control algorithms later in other modules of this course, So
in which we will be using forward and inverse dynamics both. So, where it will be much clearer
to you, it will also help you in the selection of actuators, you see, and other parameters of the
robot. Let us say you want to make your robot with a certain moment of inertia of the link and
masses of your link and external forces. So, now, in order to create a certain kind of trajectory,
which is the applied trajectory you want. So, what kind of actuator should you have that can give
you that? So, the torque behaviour corresponds to the end-effector motion or even the joint
motion. What is the requirement? So, you will understand the requirements over there.
Accordingly, you will select a particular actuator for that particular robot. So, that is what inverse
dynamics is. There are various kinds of algorithms that help you to get through the equation of
motion for a particular robot. A few of them, as I have named earlier, are the Lagrange-Euler
approach and the Newton-Euler approach. So, today, we will start with the Lagrange-Euler
approach first. So, how does that help you to arrive at an equation of motion for a given robot
system?



So, yes, the Lagrange-Euler formulation requires the knowledge of the kinetic and potential
energy of a physical system. So, this is an energy-based approach. So, the Lagrange-Euler
formulation is defined by this equation, the one which is here.

What is it? It is the time derivative of the partial derivative of Lagrangian with respect to the
joint variables. So, what is different? Parameters which are here: L is known as Lagrangian.
What is that? It is kinetic energy minus the potential energy of the system, So that is known as
the Lagrangian which is here. K is kinetic energy, and P is potential energy. So, L is Lagrangian.
Q is the angular or linear displacement of the joint. So, Q is the joint variable and psi i here is a
generalised force or torque. If it is a rotary actuator, you see over here, it is torque. If it is a
prismatic joint, that will become your force for any particular joint. So, this is an equation for the
ith joint. So, you have to repeat the whole of this equation, this Lagrange-Euler formulation, for
each and every joint. Also, we will see by example. So, it is not just this Lagrange-Euler
formulation is not just for robots. It is from any other system; any other mechanical system can
use this.



So, let us begin with the very beginning of our study when we did the spring mass damper
system in physics. So, let us start with a small system with just one mass that can slide over the
platform here, which is perfectly flat and without friction. The mean position is marked by this
dotted line, and this mass is moved by a small displacement, x, along the x-axis of this
coordinate system. Let us say it is having no motion along y, it is making perfect contact with the
surface Sliding on that. K is the stiffness of the spring which is attaching this block over here,
and it is attached to the wall over here. So, this is how it is defined: the whole system is defined.
So, how many degrees of freedom is there for this system? It is just one degree of freedom, So
let us start using the Lagrange-Euler formulation for this. So, for the given displacement x from
the mean position, how much will be the kinetic energy? So, kinetic energy here will be for, let
us say if it is at a displacement, x. So, velocity over there. Let us say it is an x dot. X dot is
nothing but a derivative of x with respect to time. So, kinetic energy will nothing be anything,
but it will be one by 2 m v square. So, it finally becomes one by two v. Is this if I tell so it is one
by 2 m x dot square? So, this is what is kinetic energy at any instant of time.

kinetic energy K = mẋ21
2

So, in an instance, you have velocity, which is given by an x dot. So, how much is the potential
energy? Potential energy here is only because of the spring extension or compression. If it is on
this side, it becomes compression. So, you know, by basic physics. So, 1 by 2 K is the stiffness of
this spring, and x is the displacement. So, it is given by 1 by 2 K x square. Stiffness is defined by
the force developed by the spring per unit displacement of the spring.

Potential energy P = kx21
2



So, that is how it is defined. So, potential energy is this. So, Lagrangian becomes: L is equal to
kinetic energy minus potential energy.

L = K - P
So, this minus this, this is your Lagrangian. Now, I will apply Lagrangian wave formulation,
which is given by this as, because it is a linear displacement. So, you should see force over here.
So, what earlier was psi, i, which was the generic force and torque? Now, it is confined to force
only, and it is just one degree of freedom. So, i is just 1, and there is no other joint over here. So,
I'll use Lagrangian now. So, talking about the first part of this equation, that is this one.

( ) - = Fi
𝑑
𝑑𝑡

𝛅𝐿
𝛅ẋ𝑖

𝛅𝐿
𝛅𝑥𝑖

So, that is doL by dox dot. So, it is the partial derivative of L with respect to the x dot. That is the
velocity. So, taking derivative of the whole of this now. So, this goes here. So, do by dox dot. So,
applying it to the first term of it. So, that only remains. So, this is equal to 1 by 2, 1 x dot square.
So, the derivative of the x dot square will be 2 times of x dot. So, the second part turns out to be
0. The derivative, partial derivative, of the second part, turns out to be 0 because there is no
velocity over there. It is a partial derivative minus. So, that gives you 0. So, effectively, what you
get here is doL by dox dot is equal to mx dot, so this part is mx dot.

Moving ahead, taking the time derivative of that. So, what? It should give you a d by dt. That is
the time derivative of this. So, it gives you a derivative of mx dot, a time derivative of this. This
gives you this mx double dot. It is mass into acceleration. So, that is the first part of this
Lagrange L that you have obtained. Now, the second part is doL by dox, so doL by dox. So,
again, starting with this, this doesn't have any displacement over here. This has it. So, the second
part will go as 1 by 2. The negative sign will remain 1 by 2 k. that is constant. So, x square, the
derivative of x square, should be 2 times x. So, again, these 2 go. Finally, you are left with a
minus of km. So, finally, you have both the terms in your hand, this term and this term.



So, putting them together, it gives you mx double dot plus km should be equal to the external
force which is applied. So, if at all there is no external force, it becomes mx double dot is equal
to minus of an x. So, that becomes your dynamic equation of motion. So, this is what is known
as the equation of motion, for in this case, it is a spring mass system which has no friction and
there is no damping. So, using Newtonian mechanics also, you can derive it. So, the sum of all
external forces, all the forces should be equal to mx double dot because there is no other body
which is there. This is the only force that you will see, and that is due to the motion of this body.
Only synthesising that for a free body diagram, you can do, and you can get to the same
expression, that is force minus spring force. External force minus spring force should give you
mass into acceleration. If at all there is no external force, you will reach the same point. So, this
is exactly similar to this. So, you can do it with simple physics. So, now the question arises: why
should we use lagrangellar in this case? At least, in this case, you have just one degree of
freedom. You can isolate the body. You can make a free-body diagram. It is quite trivial to do
that, so you can very well follow Newtonian mechanics, the age-old system that you have been
using through your school days. You have been doing it. Simple: force balance can do it. But,
yes, in the case of robotics, when the bodies are lying freely in space, multiple bodies are there
which are connected. So, it becomes very, very difficult to follow this kind of equation to create
using Newtonian mechanics. So, in that case, energy-based techniques like lagrangellar
formulation will help you. So, that is the reason we are doing it all here.



So, now let us start with the general system. We'll extend upon that, and finally, we'll reach a
robot. So, this is how a one-link pendulum or an arm is given by this, so it is attached over here.
This is your mass, so make things simple. I have taken a concentrated mass at the end which
looks like a pendulum here, so it is nothing, but this is your reference frame about which this
link: substance and angle theta. It has a mass so that it will have a gravitational pull along the
direction of g. If it is like this, so it is mg which is like this. This angle will also be theta. So, you
have analysed a similar situation quite a number of times earlier. So, this system is very, very
simple for you. So, this will be your perpendicular component. So, that will be given by mg sine
theta. So, this angle is equal to this angle. So, you can project it like this, and the one which is
over here, this force is mg cosine theta. So, that is giving you just the tension in this length. So,
this is a solid link. So, you will see a kind of tension because of this force only. But yes, if it is
moving, it will definitely have other forces, also. So, it should be m, r, omega square. M is the
mass, r instead of r you should see l over here. Omega is the angular velocity, so that is the
centrifugal force. That also will be added to this. So, finally, that will be the tension in this link.
So, we are not concerned about the tension in this link unless we are here to design this link
otherwise in order to study the motion only. So, we are concerned, only with the force which is
creating the motion. So, this is the force which is creating the motion. It is given by mg sine theta
into l. that is effectively the torque that comes over here. So, that is what is creating the motion.
So, let us do it: do the same whole analysis using the Lagrange-Euler technique. So, with this as
a reference frame, which is here, this is your x direction, this is your y direction. So, x should be
equal to if this is l, it is l sine theta. So, displacement of this bob: if it is projected on the x-axis, it
is l sine theta, correct, so that is your x. So, how much is your y if it is totally at the bottom of
this trajectory? So when is it here? So this was l, is it not? So this total length was l. So, when it
goes to this point, it is still here. Now, the projection comes here. So, how much is it from here to
here? So till here, it is l cos theta. So, the total was l. So, you see, it is l minus l cos theta is the



displacement that it has done. So, when it goes from this point to this point, the displacement,
which is there is l minus l cos theta. So, y displacement is given by l 1 minus cos theta. So, this is
how it is derived. So, that is your y, this is your x. So, yes, if you take the derivative of that, you
will get velocity along x velocity along y. Taking a derivative of these two should give you this.
Squaring and adding them should give you the velocity at this point. So, this is your velocity,
which is given by velocity along x square, velocity along y square, so that will be your v square.
So, v square is nothing but squaring and adding these two should give you this: effectively cos
square theta plus sine square. Theta is equal to one. So, effectively you get v square is equal to l
square, theta dot square. So, you can reach us here directly. Also, v is equal to r omega, so our
radius over here is l, and omega is theta dot. So, this is what your v. You can reach directly here.
But I have to follow this way because, if at all, you have multiple links connected in series. So,
this should be the approach you should go for, because. You have other links, also. One of them
supports this direct approach, whereas other links you have to go through this channel. So, that is
the reason to begin with you should begin like this: finally, v square is equal to l square, theta dot
square. So, you can directly write your kinetic energy like this: so it is one by two: m v square.
So, it is m v square. So, v is this. You got the kinetic energy. Now, how much is the potential
energy? It is mg. This was your lift from the bottom-most position to the next position. It is l one
minus cos theta. It is mg is the force. This is your displacement. So, it is your potential energy.
So, you know now kinetic energy, potential energy is here. So, Lagrangian is kinetic energy
minus potential energy. You got the Lagrangian. Once you get the Lagrangian, you can start
doing your stuff.

So this was the expression. I have just transferred it here also. and this is your Lagrangian
formulation. So, going through the derivation of Lagrangian is beyond the scope of this course.
That should be of interest to students who are interested in doing higher studies and doing



advanced studies of robot and multi-body system dynamics. So for them, this should be very,
very useful. But for industrial robotics students that should not be very much of a concern. But
yes, we'll be using this directly now. So, this again will start here so as because this motion was
about a rotary joint, so this time, I'll use torque over here instead of force. Rest, the whole of the
equation remains as it is. So, instead of generic force and torque, this time, it is for this joint.
This joint is one degree of freedom system and rotary joint, so it is psi i become equal to torque.
The same equation can give you force as well as torque, depending on the type of joint. It is so.
Instead of Qi, which was the joint variable over here, so it is theta i. So, in the earlier case, it was
xi. Why? Because it was linear displacement. This time, it is theta i, which is rotary
displacement. So, if it is a rotary displacement or angular displacement, this is your torque. What
it. So, the formulation remains the same. So, let us begin with this Lagrangian, what we have just
derived. So, again the part which is here I am using this as a Lagrangian- taking partial derivative
with respect to theta dot. Only this term has it, and this one doesn't have. Everything will be
treated as constant. So, it is do1 by 2 ml square theta dot square.

( ) = ml2𝑑
𝑑𝑡
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If you take the derivative, it becomes two times theta dot. So, you can strike off two from the
numerator and denominator. Finally, you reach here, is it not? So again, taking time, a derivative
of that, will give you time. Derivative of this should give you ml square theta double dot. So, this
is quite trivial, you know it. So, again the second part, this part. If you take yourself by your
theta, this will be treated as constant. There is no theta over here. Only this part is there. And
even for that, this is a constant. Only this part remains. So, the cosine derivative is sine a, with a
negative sign. So, negative, negative. Finally, it is positive and again, due to cosine, it is
negative. That remains. Here, mg will remain, mg, l will remain. So, this is your second part of
the Lagrangian. So, now, putting them together, you get to this: the first part and the second part.
Negative again over negative here. It becomes positive. So, this is your equation of motion. This
is your equation of motion, got it? So, it is the dynamic equation of motion of a one-link
pendulum or an arm. If it is an arm which has just one degree of freedom, arm one link system, it
is driven by torque, and it can give you a motion. So, in this case, if it is torque, any external
torque is zero. It becomes a simple pendulum. Otherwise, it is a one-link robot. So, that is a
simple pendulum now. So, in k, in that case tau becomes equal to zero. And this is your equation.
You have done it plenty number of times in your high school days also. You will remember it just
now. So, theta double dot is equal to m, goes off, l square and l goes off. So, finally you are
remaining with theta. The double dot is equal to minus g by l, sine theta, for a very small value,
of, theta sine. Theta tends to the theta, and you can write it like this. So, now you can recall. It is
what it is. Simply, omega n is equal to the square root of g by l. What was omega n? It is the
natural frequency of the system. So, this becomes a simple pendulum which can make a simple
harmonic motion without any external torque, so it can keep on oscillating. If there is no friction
and other losses, it will keep on oscillating like this. So, this is how you can arrive at the same
old physics equations using Lagrange-Euler's treatment of a simple pendulum. So, the same can
be obtained using the Newtonian method as well. If you can create a torque balance equation,



draw an isolated free-body diagram of the pendulum, and you can get to the same equation, So
again, because it is single degree of freedom system and one link, you can think of that.
Otherwise, it is very, very difficult. Suppose it is more than one link, Sometimes more than two
links. You can treat as many as two links, maybe.

So, in the next class, we'll treat two link systems using a similar approach, that is, the
Lagrange-Euler approach. So, that's all for today. In the next lecture, we'll be doing a dynamic
equation of motion of a two-link manipulator using the Lagrange-Euler approach. We'll also
study the parts of the general dynamic equation of motion. So, what does each of them signify?
So that is what we'll be doing in the next class. For today, that's all. Thanks a lot.


