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Good morning everybody, welcome to the lecture on lecture 5 on muscle force estimation using

static optimization.
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In this lecture, we will be discussing mathematical modeling for muscle force estimation and will

primarily focus on static optimization technique based on Lagrange multiplier method.
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The figure presented here is the overview of the muscle force estimation using inverse dynamics

and static optimization. The information on experimental joint kinematics is used to calculate

joint moments and torques, joint moments, or torques and joint forces using the inverse dynamics

method.



Now, joint moments, or torques are the net combined effect of individual muscle forces spanning

the joint. The contribution of each muscle can be calculated using an optimization scheme,

Which we will be focusing on in this lecture. In some procedures, an initial guess of muscle

forces is made on which the joint equilibrium is verified, and changes in joint forces are made if

necessary. The procedure is repeated until an optimal muscle force distribution is achieved.



(Refer Slide Time: 2:56)

Now, let us consider indeterminacy in muscle force estimates. The figure presents the major

muscle forces responsible for joint moments in the lower limb, as observed in the side view

presented in the sagittal plane. So, these are the fifteen major muscles that actually contribute to

the moments of forces at the ankle joint, the knee joint, and the hip joint.

So, fifteen major muscles contribute to the joint moments across these three joints in the lower

limb. At the knee, majorly, there are about nine muscles whose forces create the net moment.

Now, the important thing to note here is the line of action of each of these muscles is different

and continuously changes with time. The other point to note is that some muscles like bicep

femoris, for example, may contribute towards moments around the hip joint and the knee joint.



(Refer Slide Time: 4:46)

We continue with the indeterminacy of the muscle force estimates. We would like to say that to

make valid estimates of the individual muscle forces, it is necessary to consider a detailed

anatomical, or kinematic model with lines of action for each muscle relative to the joint center.

Now, the extensor moment Mj about any joint, at any time instant t can be expressed as the net

algebraic sum of the cross products of the all the force vectors and the moment arm vectors. So,

this is mathematically represented here in this equation. So, we can actually write down, the

extensor moment Mj equal to the force vector, cross product with the moment arm of the

extensor muscles. And the other part is the same cross product of the flexor muscles with the

momentum of the flexor muscles.

So, the sum of the cross products of all force vectors and the moment arm vectors, extensor in

this case and flexors in this case is represented together. And we calculate the net extensor

moment M j. Now, in this equation on the right-hand side of the equation, we can see Ne is the

number of extensor muscles, whereas Nf is the number of flexor muscles.

Now, extension and flexions are just two opposite movements, the force of the ith extensor

muscle at any time t, is represented by Fei, and the corresponding moment arm of the extensor

muscle is dei. Similarly, the force in the ith muscle of the flexor. So, ith flexor muscle is



represented by Ffi and the corresponding moment arm of the muscle at any time instant t is given

by dfi. So, the moment arm of the ith flexor muscle is given by dfi.
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Now, let us discuss the first important topic on the mathematical modeling of muscle forces, over

the years several mathematical modeling techniques in muscle force estimation have evolved.

Before going into the details of the procedure, the need for such technique is discussed in this

slide. The individual muscle forces are difficult to measure accurately and there is no practical

way to estimate muscular forces for a whole, or even part of a musculoskeletal system, such as

the upper or lower limb.

Now, mathematical modeling can be used to predict these desired individual muscle forces. Even

though the human body and its muscles are dynamic motors of the musculoskeletal system, static

optimization is often relevant and gives satisfactory results depending on desired evaluation and

purpose of the study. So, it may be noted that the dynamic forces are then considered as static, as

static at every time instant.
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Let us now discuss about mathematical modeling. When modeling the human musculoskeletal

body, a set of force, or moment equilibrium equations in the form of A x equal to b, can be

formulated for the model structure, where x represents the unknown muscular forces. This set of

equilibrium equations, together with limiting values of muscle forces, constrain the system. A is

the coefficient matrix of the variable x, and b is the constant.
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In mathematics, a set of linear equations or a system of polynomial equations is considered

undetermined if there are fewer equations than the unknowns. An undetermined system can be

solved with optimization theory. The optimal solution is an admissible solution x, of the

minimum cost, where a suitable cost function C(x) can be chosen freely.

Since a muscle can only generate positive forces, constraints need to be prescribed on the

system. So this optimization problem is typically formulated as minimizing C(x) subject to h(x)

equal to 0 and g(x) less than equal to 0, where C(x) is the cost function of the unknowns, h(x)

states a set of equality constraints, and g(x) is a set of inequality constraints.
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Now, let us focus on the Lagrange multiplier method in the static optimization technique. The

Lagrange multiplier method is a strategy for finding the local maxima and minima of a function,

subject to equality constraints. This numerical method does not involve any initial guess.

So, a system based on equilibrium equations as discussed earlier A(x) equal to b, together with a

cost function C(x), can be solved with the help of Lagrange multipliers. They convert the

constrained minimization of C(x) into unconstrained minimization. The Lagrangian function is

expressed as presented in the slide, where A(x) - b represents the residual of the equilibrium

equation, μ  is a set of Lagrange multipliers.
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Let us consider a sample problem to understand, the optimization scheme. So, we consider a link

segment of length ‘2l’ as indicated in the figure with three muscles, f1, f2, and f3. We need to find

out the expressions for the muscle forces in terms of known quantities with the help of Lagrange

multiplier method.

So, here in this problem, the known quantities are Ai, di, R1 and Mg, Ai is the area of cross

section of a muscle, di is the moment arm of a muscle, R1, R2 are the joint reaction forces as

indicated in the figure, R1 is known in this problem, and Mg is the link segment weight, f1, f2,

and f3 are the muscle forces as indicated in the figure. The two endpoints of the links are A and B

and the angle q is the angle between the axis of the link and the vertical direction. The length L is

the distance of the center of gravity of the link, from the end B.
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The forces f1, f2, and f3 are the muscle forces as already indicated in the earlier slide. Only one

equilibrium equation can be formulated for the unknowns, considering the moment equilibrium.

So, considering the moment equilibrium at B, the equation can be written as shown in the slide.

Now, considering the equilibrium equation, the terms b, and Ax can be separately written as

shown in the slide. So, b is written here, and Ax contains the forces and the moment,

corresponding moment arms are written here in the slide.

So, the b and Ax terms of the Lagrangian function is represented here in the slide, where b

actually contains the moment of the segment weight mg, and the reaction force R1, as you can

see already in the slide, whereas Ax reflects unknown muscle forces and their respective moment

arms. So, x is the set of unknown muscle forces, f1, f2, and f3 and d1, d2, and d3 are the

corresponding moment arms of the muscular forces f1, f2, and f3 with relevant signs.
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Now, the cost function for the segment model can be written as a function of muscle stresses, it is

actually written as one half of the sum of the squares of the muscle stresses, as presented in the

slide. The Lagrangian function can then be formed, and the minimum can be sought, based on

the Lagrangian function as presented in this slide.

C = (σ1
2 + σ2

2 + σ3
2 )/2
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The Lagrangian function can be rewritten as follows, the Lagrangian function is indicated in the

slide. The forces are replaced by the products of muscle stresses and the physiological

cross-sectional area. The constrained minimal solution, please note here very important

statement is then predicted by setting the differentials of the Lagrangian function to 0.

di is the moment arms of the muscles. R1, R2 are the joint reaction forces, Mg is the segment

weight, whereas f1, f2, and f3 are the muscle forces and A1, A2, and A3 are the physiological

cross-sectional area PCA of the muscle.
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Now, taking the partial derivative of the Lagrangian function with respect to muscle stress, with

respect to muscle stress and Lagrangian multiplier. We can write down the following equations.

So, this is with respect to the derivative, partial derivative with respect to muscle stresses, σ1, σ2

and σ3, whereas this equation is formed by taking the partial derivative of the Lagrangian

function with respect to Lagrange multiplier and setting it to 0.

So, from the three partial derivatives as indicated here, equating to 0, we can express σ2, and σ3,

in terms of σ1. And thereafter, substituting σ2 and σ3 , in the, from these highlighted relations, in

the above equation as I have indicated, we can find out σ 1.
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So, we have substituted the σ2, and σ3 in terms of σ1 in the equation as indicated in the earlier

slide. So, we have only one unknown σ1 in the equation, and we can solve out σ1. So, when we

multiply σ1 with the corresponding physiological cross-sectional area of muscle A1, we can easily

find the muscle force f1, as indicated in the slide.
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Eventually, the other forces f2 and f3 could be easily found out by multiplying the stresses with

the respective physiological cross-sectional area. So, f2 and f3 has been found out as indicated in

the slide.

Now, in the example, if the muscle forces are not allowed to become negative, which is an

important condition, the constraints fi, greater than equal to 0 has to be introduced, by including

the components fi in terms of xi along with an extra set of Lagrange multipliers. This is an

additional set of Lagrange multiplier presented in the slide to include the constraint condition

that forces in the muscle cannot be negative. Now, in this equation, g is a slack variable, which is

used to incorporate inequality in the Lagrangian function.
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Now, in a biomechanical context and with regard to an optimization scheme, the cost functions

are sometimes called performance criteria, to represent the performance, which minimizes the

activation of the muscular system. The assumption is that the body selects muscles for a given

activity according to the performance criteria chosen.

Various optimization approaches have been used over the years to solve the redundant muscle

force, or muscular force system. The main differences are how the cost function is set up and in

the choice of the solution method.



Typical performance criteria or function is the sum of muscular stresses, muscle stresses or

forces raised to a power, as indicated in the slide, where x is the muscle stress or force, n is

arbitrary integer greater than 1 and c can be used as a weighting factor. The table presented in the

following slide will summarize different performance criteria used in different optimization

studies carried out over the years.

(Refer Slide Time: 27:22)

So, here we present a summary of the performance criteria and the solution methods used in the

optimization. So, the system here is lower limb, gait, or upper limb, and we can see that there is a

host of methods simplex, Lagrange method, non-linear programming, pseudoinverse algorithm.

So, the reference of these performance criteria are indicated on the right-hand side of the table.

So, here you can see the criteria expressed in the second column, the x can be forces or stresses

and n can vary from 1, 2, 3; M is the moment of all the joints included in the system, and V is the

volume of each muscle, fj are joint reaction forces or joint contact forces and fl are the ligament

forces.
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Now, let us summarize the static optimization used in musculoskeletal modeling, a few important

points. So, we would like to give you an overview of this technique used in musculoskeletal

modeling. The musculoskeletal models, along with the static optimization method, are used to

study the muscle force distribution. The computational musculoskeletal models have

increasingly been used to estimate joint and muscle forces, due to ethical problems associated

with in vivo measurements, of joint contact forces and muscle forces.

Subject-specific models have been used for more accurate estimation of joint loads for various

daily activities. A number of open source and commercial software are available for

musculoskeletal modeling and simulation. Eminent open-source software is OpenSim and a

commercial software is anybody for examples.
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In this slide an overview of the joint force estimation has been presented, the schematic gives an

overview of the joint force estimation using the musculoskeletal model. First, a generic validated

musculoskeletal model was scaled to the subjects, dimensions and masses. Once the subject

specific parameters are included in the model as you can see here, inverse kinematics or inverse

dynamics method can be utilized to obtain kinematic information of segments from marker data

as explained to you earlier.

As you can see here, ground reaction force data and kinematic information joint forces and

moments can be calculated using the inverse dynamics approach. Thereafter, a static

optimization procedure can be employed to estimate the individual muscle forces. Considering

the joint equilibrium, the joint reaction forces can be recalculated as indicated in this schematic

overview.

Now, this is a study by one of my PhD students (32:26) named Mathai and the study has been

published in journal of engineering in medicine. Now, in this study, we evaluated the efficacy of

few eminent musculoskeletal models regarding estimation of the hip joint reaction force.
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The results of one of the musculoskeletal models, the London Lower Limb Model, is presented

in this slide. In this slide, the joint forces were estimated for various activities like a normal

walking, stair up, stair down, standing up from a chair, and sitting down during the stride cycle,

as indicated in the figures presented here.

Now, the broken blue line, represents the variation of the joint reaction force during different

activities, and this result corresponds to the London Lower Limb Model, whereas the pink line

corresponds to the in vivo measured data of the Hip 98 database. So, we are actually comparing

the London Lower Limb Model results and the measured in vivo data.

So, the figure compares the hip joint forces estimated from the musculoskeletal model and the in

vivo measured data of Hip 98. So, it is observed from the figures presented in the slide, that the

hip joint force estimated using the musculoskeletal model London Lower Limb Model is very

well compared to the in vivo measured force at the hip joint of Hip 98 database. Please refer to

the results presented in the paper as indicated in the slide for more details on joint reaction forces

and muscle forces for different activities.
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Let us now, state the limitations of this muscle force estimation method. So, muscle force

estimation using musculoskeletal models and static optimization techniques have the following

limitations. The generic anatomy of the human body should be represented accurately, as far

possible.

Objective function has no proven relationship between the actual distribution of muscle forces.

The direct validation of individual muscle forces could not be achieved, EMG and in vivo joint

reaction forces could be used for validation, however generally the data availability is very

limited. Inherent complexity associated with the mechanical properties of musculoskeletal

systems is difficult to represent completely.
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Let us come to the conclusions of the study. When modeling the human musculoskeletal body, a

set of force or moment equilibrium equations in the form Ax = b can be formulated for the model

structure, with x representing the unknown muscular forces.

In biomechanical context and with regard to optimization technique, the cost functions are

sometimes called performance criteria, to represent the performance, which minimizes the

activation of the muscular system.
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The references are listed here in two slides, based on which the lecture was prepared. Thank you

for listening.


