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Good morning everybody, welcome to the lecture on lecture 5 on muscle force estimation using

static optimization.
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CONCEPTS COVERED

» Mathematical Modelling: Muscle Force Estimation

» Static Optimization: Lagrange Multiplier Method

In this lecture, we will be discussing mathematical modeling for muscle force estimation and will

primarily focus on static optimization technique based on Lagrange multiplier method.
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Inverse Dynamics and Static Optimization
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The figure presented here is the overview of the muscle force estimation using inverse dynamics
and static optimization. The information on experimental joint kinematics is used to calculate
joint moments and torques, joint moments, or torques and joint forces using the inverse dynamics

method.



Now, joint moments, or torques are the net combined effect of individual muscle forces spanning
the joint. The contribution of each muscle can be calculated using an optimization scheme,
Which we will be focusing on in this lecture. In some procedures, an initial guess of muscle
forces is made on which the joint equilibrium is verified, and changes in joint forces are made if

necessary. The procedure is repeated until an optimal muscle force distribution is achieved.
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Indeterminacy in Muscle Force Estimates
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Now, let us consider indeterminacy in muscle force estimates. The figure presents the major
muscle forces responsible for joint moments in the lower limb, as observed in the side view
presented in the sagittal plane. So, these are the fifteen major muscles that actually contribute to

the moments of forces at the ankle joint, the knee joint, and the hip joint.

So, fifteen major muscles contribute to the joint moments across these three joints in the lower

limb. At the knee, majorly, there are about nine muscles whose forces create the net moment.

Now, the important thing to note here is the line of action of each of these muscles is different
and continuously changes with time. The other point to note is that some muscles like bicep

femoris, for example, may contribute towards moments around the hip joint and the knee joint.
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Indetermqiyr.v in M"fflg Force Est_i‘nﬁjes

* The extensor moment (M j] about any joint (at any time instant, t) can be expressed as
the net algebraic sum of the cross product of all force vectors and moment arm vectors

v o e (e /
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where: N, = number of extensor muscles

————
v N, = number of flexor muscles

b F,; (t) = force of " extensor muscle at time instant t

7 d,, [t) = mement arm of i* extensor muscle at time instant t

Ve Fy(t) = force of ™ flexor muscle at time instant t

\/dh{t] =moment arm of i" flexor muscle at time instant t

We continue with the indeterminacy of the muscle force estimates. We would like to say that to
make valid estimates of the individual muscle forces, it is necessary to consider a detailed

anatomical, or kinematic model with lines of action for each muscle relative to the joint center.

Now, the extensor moment M; about any joint, at any time instant t can be expressed as the net
algebraic sum of the cross products of the all the force vectors and the moment arm vectors. So,
this is mathematically represented here in this equation. So, we can actually write down, the
extensor moment M; equal to the force vector, cross product with the moment arm of the
extensor muscles. And the other part is the same cross product of the flexor muscles with the

momentum of the flexor muscles.

So, the sum of the cross products of all force vectors and the moment arm vectors, extensor in
this case and flexors in this case is represented together. And we calculate the net extensor
moment M ;. Now, in this equation on the right-hand side of the equation, we can see N, is the

number of extensor muscles, whereas N; is the number of flexor muscles.

Now, extension and flexions are just two opposite movements, the force of the i™ extensor
muscle at any time t, is represented by F; and the corresponding moment arm of the extensor

muscle is d,. Similarly, the force in the i™ muscle of the flexor. So, i flexor muscle is



represented by Fy; and the corresponding moment arm of the muscle at any time instant t is given

by d;. So, the moment arm of the i flexor muscle is given by dj.
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Mathematical Modelling: Muscle Force Estimation

The need ......

* Individual muscular forces are diﬁigu_lg to measure accurately and there is no practical
way to estimate muscular forces for a whole or even a part of a system, such as the
upper or lower limb,

—

* Mathematic modelling can be used to predict these desired individual muscle forces,

+ Even though the human body and its muscles are dynamic motors of the
musculoskeletal system, static optimization is often relevant and gives satisfactory
results, depending on desired evaluation and purpose of study.

Now, let us discuss the first important topic on the mathematical modeling of muscle forces, over
the years several mathematical modeling techniques in muscle force estimation have evolved.
Before going into the details of the procedure, the need for such technique is discussed in this
slide. The individual muscle forces are difficult to measure accurately and there is no practical
way to estimate muscular forces for a whole, or even part of a musculoskeletal system, such as

the upper or lower limb.

Now, mathematical modeling can be used to predict these desired individual muscle forces. Even
though the human body and its muscles are dynamic motors of the musculoskeletal system, static
optimization is often relevant and gives satisfactory results depending on desired evaluation and
purpose of the study. So, it may be noted that the dynamic forces are then considered as static, as

static at every time instant.
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Mathematical Modelling

*  When modelling the musculoskeletal human body, a set of force or moment equilibrium equations,
Ax = b, is formulated for the modelled structure, with x representing the unknown muscular forces.

*+ This set of equilibrium equations, together with limiting values of the muscle forces constrain the
——
system.

;
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Let us now discuss about mathematical modeling. When modeling the human musculoskeletal
body, a set of force, or moment equilibrium equations in the form of A x equal to b, can be
formulated for the model structure, where x represents the unknown muscular forces. This set of
equilibrium equations, together with limiting values of muscle forces, constrain the system. A is

the coefficient matrix of the variable x, and b is the constant.
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Need for Optimization

An underdetermined system can be solved with optimization theory. The optimal solution of a system is an

admissible solution ‘%’ of the minimum cost, where a suitable cost function, C(x), can be chosen rather freely.
<A —

Since a muscle can only generate positive forces, constraints need to prescribed on the system.

This optimization problem is typically formulated as:

Minimi ¥
||1|n1|ief C(x) &
subject to h(x) =0 and g(x) £ 0

where, C[x) is the cost function of the unknowns |
h{x) states a set of equality constraints "
glx) a set of inequality constraints "

In the present context, equilibrium equations give the equalities, whereas the ranges
of possible muscular forces give the inequalities.



In mathematics, a set of linear equations or a system of polynomial equations is considered
undetermined if there are fewer equations than the unknowns. An undetermined system can be
solved with optimization theory. The optimal solution is an admissible solution x, of the

minimum cost, where a suitable cost function C(x) can be chosen freely.

Since a muscle can only generate positive forces, constraints need to be prescribed on the
system. So this optimization problem is typically formulated as minimizing C(x) subject to h(x)
equal to 0 and g(x) less than equal to 0, where C(x) is the cost function of the unknowns, h(x)

states a set of equality constraints, and g(x) is a set of inequality constraints.
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Static Optimization: Lagrange Multiplier Method

A system based on equilibrium equations, Ax = b, together with a cost function, C[x), can be solved with
kel skl
the help of Lagrange multipliers. They convert the constrained minimization of I:[:i into unconstrained
———— vﬂl

minimization.
v

The Lagrangian function is expressed as:
L —

L%, ) =Clx) + " (Ax = b) | \//

where, (Ax - b) represents the residual of the equilibrium equation, and p is a set of
Lagrange multipliers. e

e

= WPTEL

Now, let us focus on the Lagrange multiplier method in the static optimization technique. The
Lagrange multiplier method is a strategy for finding the local maxima and minima of a function,

subject to equality constraints. This numerical method does not involve any initial guess.

So, a system based on equilibrium equations as discussed earlier A(x) equal to b, together with a
cost function C(x), can be solved with the help of Lagrange multipliers. They convert the
constrained minimization of C(x) into unconstrained minimization. The Lagrangian function is
expressed as presented in the slide, where A(x) - b represents the residual of the equilibrium

equation, p is a set of Lagrange multipliers.
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Optimization Scheme: Sample problem

Consider a link segment of length 21 with three muscles, as shown. Find out the expressions for the
muscle forces in terms of the known guantities with the help of the Lagrange multiplier method.

R.g "
Here the known quantities are as follows: A, d,, R, Mg 3
—_——

A, d, are the areas of cross-section and moment arms of the muscles

4

- -
R, and R, are the joint reactions

Mg is the segment weight

f,.f,.f, are the muscle forces
B e ]

Let us consider a sample problem to understand, the optimization scheme. So, we consider a link
segment of length ‘21’ as indicated in the figure with three muscles, f, f,, and f;. We need to find
out the expressions for the muscle forces in terms of known quantities with the help of Lagrange

multiplier method.

So, here in this problem, the known quantities are A;, d;, R, and Mg, A, is the area of cross
section of a muscle, d; is the moment arm of a muscle, R,, R, are the joint reaction forces as
indicated in the figure, R; is known in this problem, and Mg is the link segment weight, f;, f,,
and f; are the muscle forces as indicated in the figure. The two endpoints of the links are A and B
and the angle q is the angle between the axis of the link and the vertical direction. The length L is

the distance of the center of gravity of the link, from the end B.
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Sample problem........

The forces f,, f;, f; are the muscle forces. Only one equilibrium equation can be formulated for the
unknowns, considering the moment equilibrium:

Considering mamentequilit:riumabau@aquation: MglSin(q) - 2R,ISin(q)= - f,d, + f,d, + f,d;

L

iy MglSin(g) - 2R, ISin(q) v

3
Ax=-fd, +fd, +1d, v

where, b: the moment of segment weight (mg) and reaction force (Ri]

Ax reflects unknown muscle forces and their respective moment arms

v A
where: x ={f, f, f,} and d,, d,, d, are the moment arms of
the muscular forces, f,, f;, f;, with their relevant signs.

The forces f), f,, and f; are the muscle forces as already indicated in the earlier slide. Only one
equilibrium equation can be formulated for the unknowns, considering the moment equilibrium.

So, considering the moment equilibrium at B, the equation can be written as shown in the slide.

Now, considering the equilibrium equation, the terms b, and Ax can be separately written as
shown in the slide. So, b is written here, and Ax contains the forces and the moment,

corresponding moment arms are written here in the slide.

So, the b and Ax terms of the Lagrangian function is represented here in the slide, where b
actually contains the moment of the segment weight mg, and the reaction force R1, as you can
see already in the slide, whereas Ax reflects unknown muscle forces and their respective moment
arms. So, X is the set of unknown muscle forces, f|, f,, and f; and d,, d,, and d, are the

corresponding moment arms of the muscular forces f}, f,, and f; with relevant signs.
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Sample Problem...

The cost function for the segment model can then be written as a function of muscle stresses:

L

C=(o?+0l+0d))2

The Lagrangian function can then be formed and the minimum can be sought:

L{x, 1) = Clx) + " (Ax = b)

Now, the cost function for the segment model can be written as a function of muscle stresses, it is
actually written as one half of the sum of the squares of the muscle stresses, as presented in the
slide. The Lagrangian function can then be formed, and the minimum can be sought, based on

the Lagrangian function as presented in this slide.
C=(c +06,°+06")2
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Sample problem...

Lagrangian function can be rewritten as follows:

/

The forces are replaced by the products of the muscle stresses and the physiological cross section areas.
The constrained minimal solution is then predicted by setting the differentials of the Lagranglan function te zere.
—

L= (o} + a3 +03)/24 p(-Ara1dy + Asoads + Agoydy — Mglsin(q) + 2R, lsin(q))
p o —

/d,is the moment arms of the muscles.
R, and R, are the joint reaction forces
+#Mg Is the segment welght

W 1,1, are the muscle forces

A, Ay, A, are the Physiological Cross-sectional Areas (PCA) of muscle



The Lagrangian function can be rewritten as follows, the Lagrangian function is indicated in the
slide. The forces are replaced by the products of muscle stresses and the physiological
cross-sectional area. The constrained minimal solution, please note here very important

statement is then predicted by setting the differentials of the Lagrangian function to 0.

d; is the moment arms of the muscles. R;, R, are the joint reaction forces, Mg is the segment
weight, whereas f|, f,, and f; are the muscle forces and A;, A,, and A, are the physiological

cross-sectional area PCA of the muscle.
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Sample problem...

Taking partial derivative of the Lagrangian function with respect to muscle stress and Lagrange multiplier:

oL oL waL
- = — = = = Aoz =0 —— + pAgdy =10
‘//aa. ay = pAyd; =0 - oy + pAzdy drs T3 + i Agdy
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W
L A

3 = —mAydy + o9 dqdy + oy Agdy — MglSin(q) + 2R 1Sin(g) =0
m

v
Substituting o, and o, (in the highlighted relations) in the above equation, we get ...

Now, taking the partial derivative of the Lagrangian function with respect to muscle stress, with
respect to muscle stress and Lagrangian multiplier. We can write down the following equations.
So, this is with respect to the derivative, partial derivative with respect to muscle stresses, 6, G,
and o; whereas this equation is formed by taking the partial derivative of the Lagrangian

function with respect to Lagrange multiplier and setting it to 0.

So, from the three partial derivatives as indicated here, equating to 0, we can express o,, and G,
in terms of ¢,. And thereafter, substituting o, and o3, in the, from these highlighted relations, in

the above equation as I have indicated, we can find out o ;.
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Sample problem...
Y
W dy Ay dy Ay ‘ . w
—o Aydy - —— oy Agdy — ——a1Agdy — MglSin(q) + 2Ry ISin(q) = 0
ti1.‘-‘|.1 (i1.4.1

M ~MglAidsSin(q) + 2R,1Ard;Sin(q)
= 272 1 A242 L AZ Q2
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|

J&’ o= ~MglA%d, Sin(q) + 2Ryl A%d, Sin(q)
L A2+ AXE + A3

Following similar procedure the stresses o, and o, can be found out.

So, we have substituted the o,, and 6; in terms of o, in the equation as indicated in the earlier
slide. So, we have only one unknown o, in the equation, and we can solve out ¢,. So, when we
multiply o, with the corresponding physiological cross-sectional area of muscle A, we can easily

find the muscle force f), as indicated in the slide.
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Sample problem...
o T

Eventually the other forces, f, ( = A, 0, ) and f;( = A, 0, ) could be found out by multiplying the stresses with

the respective physiological cross section areas.
_..—-——'_-_'

p L
N

_ MglA3d;Sin(q) - 2Ryl A3d;Sin(q) 4 MglA2d, Sin(q) - 2R,1A2d3Sin(q)

AN 4 AR + AN Ald} + Ajd] + AYd]

In the example, if the muscle forces are not allowed to become negative, the constraints f, 2 0
has to be introduced, by including the components T, in terms of x, along with an extra set of

Lagrange multipliers: — =
L{x, p) = C(x) + p" (Ax = b) @

where, g is a slack variable (to incorporate inequality in the Lagrangian function)

—_———




Eventually, the other forces f, and f; could be easily found out by multiplying the stresses with

the respective physiological cross-sectional area. So, f, and f; has been found out as indicated in

the slide.

Now, in the example, if the muscle forces are not allowed to become negative, which is an
important condition, the constraints f;, greater than equal to 0 has to be introduced, by including
the components f; in terms of x; along with an extra set of Lagrange multipliers. This is an
additional set of Lagrange multiplier presented in the slide to include the constraint condition
that forces in the muscle cannot be negative. Now, in this equation, g is a slack variable, which is

used to incorporate inequality in the Lagrangian function.
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Optimization Scheme: Performance Criteria

Various optimization approaches have been used to solve the redundant muscular force system. The

main differences are iow the cost function is set up, and in the choice of solution method.
T ——

Typical performance criterion (function) is the sum of muscular stresses or forces raised to a power:

C(z) = ez} S

where  x is the muscular stresses or force

nisan arbitrary integer > 1

¢ can be used as weighting factors
e —

The following table presents some performance criteria used in optimization.....

Now, in a biomechanical context and with regard to an optimization scheme, the cost functions
are sometimes called performance criteria, to represent the performance, which minimizes the
activation of the muscular system. The assumption is that the body selects muscles for a given

activity according to the performance criteria chosen.

Various optimization approaches have been used over the years to solve the redundant muscle
force, or muscular force system. The main differences are how the cost function is set up and in

the choice of the solution method.



Typical performance criteria or function is the sum of muscular stresses, muscle stresses or
forces raised to a power, as indicated in the slide, where x is the muscle stress or force, n is
arbitrary integer greater than 1 and c can be used as a weighting factor. The table presented in the
following slide will summarize different performance criteria used in different optimization

studies carried out over the years.
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A Performance Criteria

en oot _[souionneiod e [

and solution metheds
Lower Limb /" zxi :m: lagrange  Duletal. (1984) WA/ optimization

) n:’.l Nenlinear Colling (1995)
' programming
Gt Bfi 4+ Z4M;  Simplex method Seireg et al. (1975)

5 fi ); Linear programming  Pedotti et al. (1978)

Fmaai approach
Upper Limb v ) d'? Pseudo-inverse Yamaguchi etal
1 algorithm (1995)

Efji+ fli  simplex method Chadwick et al. (2000)

* xcan be forces or stresses,n=1,20r3.

+ M is thamoment at all the joints included in the system.
+ Vis the volume of each muscle

+  fjare joint contact forces and fi are the ligament forces.

So, here we present a summary of the performance criteria and the solution methods used in the
optimization. So, the system here is lower limb, gait, or upper limb, and we can see that there is a
host of methods simplex, Lagrange method, non-linear programming, pseudoinverse algorithm.

So, the reference of these performance criteria are indicated on the right-hand side of the table.

So, here you can see the criteria expressed in the second column, the x can be forces or stresses
and n can vary from 1, 2, 3; M is the moment of all the joints included in the system, and V is the
volume of each muscle, f; are joint reaction forces or joint contact forces and f are the ligament

forces.
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Static Optimization In Musculoskeletal Modelling: an Overview

-

Musculoskeletal models along with the static optimization method are used to study the muscle
force distribution. S = -
—

-

The computational musculoskeletal models have increasingly been used for the estimation of
joint and muscle forces, due o ethical concerns associated with in vivo measurements.

e —— ———————————
Subject specific models have been used for more accurate estimation of joint loads, for a variety
of daily living activities

e

-

A number of open-source and commercial software are available for musculoskeletal modelling
and simulation. i
—

-

OpenSim (www.simtk.org), Anybody (www.anybodytech.com) are few examples.
——

Now, let us summarize the static optimization used in musculoskeletal modeling, a few important
points. So, we would like to give you an overview of this technique used in musculoskeletal
modeling. The musculoskeletal models, along with the static optimization method, are used to
study the muscle force distribution. The computational musculoskeletal models have
increasingly been used to estimate joint and muscle forces, due to ethical problems associated

with in vivo measurements, of joint contact forces and muscle forces.

Subject-specific models have been used for more accurate estimation of joint loads for various
daily activities. A number of open source and commercial software are available for
musculoskeletal modeling and simulation. Eminent open-source software is OpenSim and a

commercial software is anybody for examples.
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Overview of joint force estimation
Ref: Mathal and Gupta (2019)
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In this slide an overview of the joint force estimation has been presented, the schematic gives an
overview of the joint force estimation using the musculoskeletal model. First, a generic validated
musculoskeletal model was scaled to the subjects, dimensions and masses. Once the subject
specific parameters are included in the model as you can see here, inverse kinematics or inverse
dynamics method can be utilized to obtain kinematic information of segments from marker data

as explained to you earlier.

As you can see here, ground reaction force data and kinematic information joint forces and
moments can be calculated using the inverse dynamics approach. Thereafter, a static
optimization procedure can be employed to estimate the individual muscle forces. Considering
the joint equilibrium, the joint reaction forces can be recalculated as indicated in this schematic

overview.

Now, this is a study by one of my PhD students (32:26) named Mathai and the study has been
published in journal of engineering in medicine. Now, in this study, we evaluated the efficacy of

few eminent musculoskeletal models regarding estimation of the hip joint reaction force.
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Hip Joint Contact Force Esﬂmatmbr‘t,_
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LLLM: London Lower Limb Maodel

The results of one of the musculoskeletal models, the London Lower Limb Model, is presented
in this slide. In this slide, the joint forces were estimated for various activities like a normal
walking, stair up, stair down, standing up from a chair, and sitting down during the stride cycle,

as indicated in the figures presented here.

Now, the broken blue line, represents the variation of the joint reaction force during different
activities, and this result corresponds to the London Lower Limb Model, whereas the pink line
corresponds to the in vivo measured data of the Hip 98 database. So, we are actually comparing

the London Lower Limb Model results and the measured in vivo data.

So, the figure compares the hip joint forces estimated from the musculoskeletal model and the in
vivo measured data of Hip 98. So, it is observed from the figures presented in the slide, that the
hip joint force estimated using the musculoskeletal model London Lower Limb Model is very
well compared to the in vivo measured force at the hip joint of Hip 98 database. Please refer to
the results presented in the paper as indicated in the slide for more details on joint reaction forces

and muscle forces for different activities.
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Limitations: Muscle Force Estimation

*  Muscle force estimation using musculoskeletal models and static optimization technique have following
limitations: ———

e

Generic anatomy of the human body should be represented accurately,

s
Objective function has no proven relationship between actual distribution of muscle forces,

The direct validation of individual muscle forces could not be achieved; EMG and in-vivo joint
reaction force (IRF) could bETZed. However, the data availability is limited.

—

Inherent complexity associated with the mechanical properties of musculoskeletal
systems is difficult to represent completely,

Let us now, state the limitations of this muscle force estimation method. So, muscle force
estimation using musculoskeletal models and static optimization techniques have the following
limitations. The generic anatomy of the human body should be represented accurately, as far

possible.

Objective function has no proven relationship between the actual distribution of muscle forces.
The direct validation of individual muscle forces could not be achieved, EMG and in vivo joint
reaction forces could be used for validation, however generally the data availability is very
limited. Inherent complexity associated with the mechanical properties of musculoskeletal

systems is difficult to represent completely.
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* When modelling the musculoskeletal human body, a set of force or moment equilibrium equations,
Ax = b, is formulated for the modelled structure, with x representing the unknown muscular forces.

_——

* In a biomechanical context and with regard to optimization scheme, the cost functions are sometimes
———— e
called performance criteria, to represent the performance which minimizes the activation of the
muscular system,

Let us come to the conclusions of the study. When modeling the human musculoskeletal body, a
set of force or moment equilibrium equations in the form Ax =b can be formulated for the model

structure, with x representing the unknown muscular forces.

In biomechanical context and with regard to optimization technique, the cost functions are
sometimes called performance criteria, to represent the performance, which minimizes the

activation of the muscular system.
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The references are listed here in two slides, based on which the lecture was prepared. Thank you

for listening.



