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Overview

* Time as a coordinate
* Cyclic coordinate and conservation
* Hamiltonian

* Integrals of motion

We discuss further on symmetries and the associated conservation laws. The overview of the

lecture is shown above. We will consider now time as a coordinate and discuss the

consequences of time as a cyclic coordinate.
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Time as a coordinate in Hamilton’s principle
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We start with introducing time as a coordinate in Hamilton's principle. Consider the

parameterization of time by another parameter t as shown in the slide above.
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Time as a coordinate in Hamilton’s principle
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Time as a coordinate in Hamilton’s principle
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The Lagrange’s equations of motion are derived in detail in the 2 slides above. We obtain a

new equation corresponding to the coordinate t.
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Momentum conjugate to time: Hamiltonian
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Define H = —PL = FJho.é} - as  Howdlor.on.

* Hamiltonian is the negative of momentum conjugate of time (as a
coordinate)

We concentrate on this new equation, as shown in the slide above and define the Hamiltonian
as negative of the momentum conjugate to the time coordinate.
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Time as a cyclic coordinate
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* Time as a cyclic coordinate

* Lagrangian is not EXPLICITLY time dependent
* Hamiltonian is conserved

Next, we consider the situation where time is a cyclic coordinate. If the system has no

external forcing, and time is a cyclic coordinate, then the momentum conjugate to time, the
Hamiltonian, is conserved.
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Hamiltonian

* No external force, and Lagrangian is not EXPLICITLY time dependent
* Hamiltonian is conserved

An alternative approach presented in the slide above.
(Refer Slide Time: 25:58)

Structure of Lagrangian
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In the above slide, we discuss the structure of the Lagrangian. It is observed that the kinetic
energy term may be decomposed as T=To + T1 + T2, where To, T1, and T2 are, respectively,

terms that are independent, linear and quadratic in the generalized velocities.
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Hamiltonian
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Based on the structure of the Lagrangian, an interpretation of the Hamiltonian is provided in
the above slide.
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Infinitesimal symmetries of the Lagrangian

* Importance of infinitesimal symmetries and conserved quantities: helps us
integrate the equations of motion (order of derivative one less)

* Integrals of motion

Example: Use of linear and angular momentum, and energy conservation,
Central force motion (angular momentum and energy conservation)

The reasons why we are interested in infinitesimal symmetries of the Lagrangian are

presented in the above slide.
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Summary

* Time as a coordinate
+ Cyclic coordinate and conservation
* Hamiltonian

* Integrals of motion

The summary if provided in the slide above.



