Advanced Dynamics Prof. Anirvan DasGupta Department of Mechanical Engineering Indian Institute of Technology – Kharagpur

Lecture – 55 Systems with Constraints – IV

(Refer Slide Time: 00:17)

Problems with non-holonomic constraints Method of Lagrange multiplier Lagrange's equation of motion

Interpretation of Lagrange multiplier

We will discuss systems with constraints a little further. And in this lecture, I am going to introduce non-holonomic constraints and discuss the derivation of the equation of motion using the method of Lagrange multipliers.

(Refer Slide Time: 00:59)

What are non-holonomic constraints? Constraints that come with derivatives of the coordinates and which we cannot integrate to obtain a constraint relating only the

coordinates. We consider non-holonomic constraints that are linear in the generalized velocities. The above slide shows how non-holonomic constraints relate the variations of the coordinates.

(Refer Slide Time: 10:33)

The variational statement obtained from the Hamilton's principle is presented in the above slide.

(Refer Slide Time: 11:50)

Next, we introduce the non-holonomic relations into the variational statement using the Lagrange multipliers, as shown above.

(Refer Slide Time: 12:50)

Systems with non-holonomic constraints
$$\int_{t_0}^{t_1} \left[\sum_{k=1}^{m} \left(-\frac{d}{d\epsilon} \left(\frac{\partial \mathcal{L}}{\partial \hat{r}_i} \right) + \frac{\partial \mathcal{L}}{\partial r_i} \right) \delta r_i + \sum_{j=1}^{m-n} \lambda_j \sum_{i=1}^{m} A_{jk} \delta r_i \right] d\epsilon = 0$$

$$\Rightarrow \int_{t_0}^{t_1} \sum_{k=1}^{m} \left[-\frac{d}{d\epsilon} \left(\frac{\partial \mathcal{L}}{\partial \hat{r}_i} \right) + \frac{\partial \mathcal{L}}{\partial r_i} + \sum_{j=1}^{m-n} \lambda_j A_{jk} \right] \delta r_i d\epsilon = 0 \qquad -(1)$$

$$\text{Choose } A_j = 1, \dots, m-n \quad \text{s.-k.} \quad -\frac{d}{d\epsilon} \left(\frac{\partial \mathcal{L}}{\partial \hat{r}_i} \right) + \frac{\partial \mathcal{L}}{\partial r_i} + \sum_{j=1}^{m-n} \lambda_j A_{jk} = 0 \quad \text{i.i.} 1, \dots, m-n \quad \text{(m-n. equalizancy)}$$

$$\text{Then integral (i) vanishes for ordinary } \delta r_i = m-n+i, \dots, m \quad \text{when}$$

$$-\frac{d}{d\epsilon} \left(\frac{\partial \mathcal{L}}{\partial \hat{r}_i} \right) + \frac{\partial \mathcal{L}}{\partial r_i} + \sum_{j=1}^{m-n} \lambda_j A_{jk} = 0 \quad \text{i.i.} m-n+i, \dots, m \quad \text{(m. equalizancy)}$$

Using the arguments discussed previously, we obtain the equations of motion as presented in the slide above.

(Refer Slide Time: 16:47)

The complete set of equations involve the obtained equations of motion and the non-holonomic constraints as presented above.

(Refer Slide Time: 20:16)

Systems with non-holonomic constraints

Determination and elimination of Lagrange multiplier:

· Time differentiate constraint once

$$C_{j} = \sum_{i=1}^{m} A_{ji} \hat{r}_{i} + b_{j} = 0 \quad \Rightarrow \sum_{i=1}^{m} A_{ji} \hat{r}_{i} + \sum_{k=1}^{m} \sum_{i=1}^{m} D_{jik} \hat{r}_{i} \hat{r}_{k} + \sum_{k=1}^{m} \frac{ab_{i}}{ar_{k}} \hat{r}_{k} = 0 \quad \forall j$$

- · Eliminate accelerations using equations of motion
- · Solve for Lagrange multiplier
- Eliminate Lagrange multiplier in equations of motion

We eliminate the Lagrange multipliers following the steps outline in the above slide.

(Refer Slide Time: 23:31)

The above slide discusses the setting-up of the initial conditions.

(Refer Slide Time: 25:17)

Now, let us look at this example of the dynamics of a rolling coin.

(Refer Slide Time: 27:03)

(Refer Slide Time: 28:37)

The translational and rotational kinetic energy terms are presented in the 2 slides above.

(Refer Slide Time: 31:35)

The Lagrangian and the 2 non-holonomic constraints are presented in the above slide.

(Refer Slide Time: 32:35)

We can derive the equations of motion but they are nonlinear, coupled and extremely complex.

(Refer Slide Time: 33:35)

The interpretation of the Lagrange multipliers is presented in the above slide.

(Refer Slide Time: 41:04)

In the above slide, we obtain a reduced Lagrangian involving only the orientational coordinates. This is done by using the non-holonomic constraints to eliminate the contact point coordinate rates.

(Refer Slide Time: 42:58)

The equations of motion are now obtained, and the evolution of the contact point is obtained by integrating (numerically) the non-holonomic constraints.

(Refer Slide Time: 43:48)

Snapshots of two simulations are presented in the above slide.

(Refer Slide Time: 47:12)

