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In this lecture 1 am going to start discussions on the formulation of dynamics as formulated by
Lagrange.
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Overview

* Hamilton’s principle for dynamical paths

* Lagrange’s equation of motion

We will start with the Hamilton’s principle which is a very important principle, and is the
starting point.

(Refer Slide Time: 00:47)
Hamilton’s principle
* Evolution of a dynamical system in configuration space
* At t=t, the system configuration is completely known (say q,)

* At t=t, the system configuration is completely known (say q,)

Question: Can we determine the path taken by the particle in moving
fromq,to q,?
Answer: Yes! Using Hamilton’s principle.
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Hamilton’s principle

Hamilton’s principle: A system will take that path which extremizes
(minimizes/maximizes) the action.
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Hamilton’s principle is stated above.
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Structure of Lagrangian

c BEsc
Lagrangian is different for different systems B
ky %
Light: £ =1 a= [de (Fermat’ prinple)
t A
* Light travels on the minimum time path
* Homogeneous and isotropic media: minimum
time path = minimum distance path
]
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The idea of Hamilton’s principle as an extremizing principle for dynamical systems is motivated
by Fermat’s principle for light.
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Structure of Lagrangian

Lagrangian is different for different systems

Mechanical systems: E.(En'&rr, t) = T -V
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For a mechanical system, Lagrangian is equal to the kinetic energy minus the potential energy.
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Extremizing a functional
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Impractical approach!

(miﬂimam)

(mo;(i.mufﬂ) !

Now we discuss a little bit about how we extremize a functional, as shown above.
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Extremizing a function
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Let us go back a little bit and look at how we extermize a function. This is discussed in the slide
above.
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Extremizing a functional (Variational approach)
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Now we come back to our problem of extremizing a functional, as discussed above.
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Extremizing a functional (Variational approach)
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We can also visualize variation in the configuration space as shown above.
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Hamilton’s principle (Variational principle)

Hamilton's principle: A system will take that path for which the
variation of the action vanishes

2> 6A=0

Mechanical system: Action is minimized

We come back to Hamilton’s principle once again. It says the system will take that path in the

configuration space for which the variation of the action vanishes.



In the following 2 slides, we discuss the derivation of Lagrange’s equation of motion.
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Lagrange’s equation
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Lagrange's equation
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* Euler-Lagrange equation
* In context of dynamical systems: Lagrange’s equation of m
* Number of equations: F=n



(Refer Slide Time: 35:58)

Example 1:

Equation of motion of a simple pendulum
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As an example, we will look at the pendulum example equation of motion of a simple pendulum,

as presented in the slide above.
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Summary

* Hamilton’s principle for dynamical paths

* Lagrange’s equation of motion



