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Overview

* Mathematical preliminaries

* Rotation of a vector about an axis

We are going to continue our discussions on the rotation kinematics of rotation. And in this
lecture, I am going to talk about few mathematical preliminaries that will be required to
understand our further developments. And I am going to discuss the situation of rotation of a

vector about an axis.

(Refer Slide Time: 01:19)

Mathematical preliminaries

i

Dot and cross products as matrix products




First, I will develop the dot and cross product the standard vector products as matrix

products. This is shown in the slide above.
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Orthogonal decomposition of a vector
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Now we are going to look at orthogonal decomposition of a vector. This is presented in the

above slide.
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Cayley-Hamilton Theorem

Every square matrix satisfies its characteristic equation

Chonactenskic  eguation < det (AT~ [_?\]) =0

= ?\3-1'/)\:0

C-H Theorem = |[A]%+ [A) = L]

The above slide presents the Cayley-Hamilton theorem.



Next, we determine the rotation matrix involved when we give a rotation about an arbitrary

direction. This is presented in the next two slides.

(Refer Slide Time: 13:30)

e e
Rotation of a vector about an axis :
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Rotation of a vector about an axis .
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Summary

* Mathematical preliminaries

* Rotation of a vector about an axis

The above slide presents the summary.



