Advanced Dynamics Prof. Anirvan Dasgupta Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Lecture - 43 Kinematics of Rotation - III

(Refer Slide Time: 00:17)

Overview

- · Mathematical preliminaries
- · Rotation of a vector about an axis

We are going to continue our discussions on the rotation kinematics of rotation. And in this lecture, I am going to talk about few mathematical preliminaries that will be required to understand our further developments. And I am going to discuss the situation of rotation of a vector about an axis.

(Refer Slide Time: 01:19)

First, I will develop the dot and cross product the standard vector products as matrix products. This is shown in the slide above.

(Refer Slide Time: 04:58)

Now we are going to look at orthogonal decomposition of a vector. This is presented in the above slide.

Mathematical preliminaries

Cayley-Hamilton Theorem

Every square matrix satisfies its characteristic equation

$$[\hat{n}] = \begin{bmatrix} 0 & -n_z & n_y \\ n_z & 0 & -n_z \\ -n_y & n_z & 0 \end{bmatrix}$$

$$\text{Characteristic equation: } \det \left(\lambda \mathbf{I} - [\hat{n}] \right) = 0$$

$$\Rightarrow \lambda^3 + \lambda = 0$$

$$\text{C-H Theorem } \Rightarrow [\hat{n}]^3 + [\hat{n}] = [0]$$

The above slide presents the Cayley-Hamilton theorem.

Next, we determine the rotation matrix involved when we give a rotation about an arbitrary direction. This is presented in the next two slides.

(Refer Slide Time: 13:30)

(Refer Slide Time: 24:36)

(Refer Slide Time: 29:30)

The above slide presents the summary.