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In this lecture we are going to continue our discussions on kinematics on the topic relative

motion. And the overview of today’s lecture is relative motion which we will be discussing for

rotating frames. In the last lecture you saw relative motion in translating frames, here we are

going to discuss relative motion in rotating frames.
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The above figure distinguishes curvilinear translation from general curvilinear motion. In

curvilinear translation, the coordinate system does not change its orientation (non-rotating) as the

frame moves on a general path. Whereas, for a general curvilinear motion, you can have rotation

as well as translation of the frame.
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Let us recall the kinematics in plane polar coordinates as shown above. We defined the time

derivatives of the frame vectors as

This was derived in the previous lecture. Here, we are going to see an alternative way of

representing this. We introduce a new frame unit vector

This vector comes out of the plane of the paper. Now define an omega vector angular velocity

vector as

Then, it can be checked that
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Now using this idea let us now understand the kinematics in the rotating frame. First consider a

vector b shown as a red vector above, which is fixed to a frame xyz which is rotating. There is

another frame XYZ which is fixed with distant stars.

The representation of the b vector is

Let the frame xyz have angular velocity ω. If we take the time derivative of this vector b we have

Now the question is who sees this change who can perceive this change of vector b. Let me give

you an analogy. Suppose you are sitting in a big auditorium and you are watching another person

sitting in the same auditorium and on another seat. If you are asked, what is the rate of the

change of the vector from you to that person, you will obviously say 0. This is because the

person is not moving. That person is seated, and you are also seated in the same auditorium. But

then remember our earth is rotating therefore this vector will change its direction. This change

you cannot perceive being in that frame. But who can perceive who sees the change: the answer

is the inertial observer can see this change. And why we are interested in what the inertial

observer sees? It is because Newtonian mechanics requires the kinematics to be as observed by

an inertial observer. Therefore we should be very careful about finding the rate of change of

vectors as it should be as perceived or as seen or as measured by an inertial observer.

(Refer Slide Time: 09:59)



Next we let us consider of vector b which is a function of time. That means b is changing in the

rotating green frame xyz. Now the components of b is xyz are also functions of time. Therefore

if I differentiate with respect to time then I will have 2 kinds of terms: the local derivative due to

the local change of vector b in the xyz frame, and the terms involving time derivative of the

frame vectors. Hence, we have

In a compact form

This is the convention we will follow now about the local time derivative, and derivative as seen

by an inertial observer this time derivative of any vector now will follow this rule. For example,

the vector could be position vector in a rotating frame velocity vector in a rotating frame linear

or angular momentum in a rotating frame.
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Now consider the position of a moving particle A as observed by 2 observers: one is B in a

rotating frame, and O in the inertial frame.

We can write

Differentiating with respect to time and following the prescription of derivative, we have

This is a vector relation and should be true in any frame. However, all vectors must be

represented in one frame.
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Now if I want to go for acceleration I take time derivative of the velocity vector and follow the

same prescription to obtain
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Let us look at at the above example. The solution is given as follows where we take the x-y

frame attached to the car B so as to capture the observation of the observer in car B. All vectors

are represented in this frame x-y.
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Now, based on what we have discussed, we discuss the representation of kinematics in a

spherical coordinate system. Here I have shown one eight of its sphere. In the case of spherical

coordinates we consider motion on an imaginary sphere

Let us join the center of the sphere to the particle by this blue dashed line and define that as the

radial coordinate. The angular coordinate θ is measured from the x axis to the radial line on the

equator in the equatorial plane. φ is the angle measured from the equatorial plane line to the

radial line. So, we have 3 coordinates: r, θ and φ. Now we define our frame vectors as shown in

the figure above such that

First we represent the angular velocity vector of the frame as the particle moves. This is given by

The position vector is given by



Time differentiating the position vector (following our prescription of derivative) gives the
velocity vector

Differentiating once again with respect to time gives the acceleration vector
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To summarize, we have looked at kinematics in rotating frames which represent non-inertial

observers, and we have seen how to find out time derivative of vectors as seen by an inertial

observer. This is the most important step in this lecture. We have also looked at the kinematics in

spherical coordinate system.


