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Lecture - 38
Gyroscopic Motion - I
With this lecture I am going to start discussions on gyroscopic motions. Gyroscopic motions
are observed in axisymmetric bodies rotating about its axis of symmetry about a fixed point
in inertial space. We will first calculate the gyroscopic forces in spinning axisymmetric

bodies and look at precessional motion of these bodies with and without external moment.
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This is our prototype problem that we have discussed in the past lectures. We have discussed
the setting up of the x-y-z frame which is not a body-fixed frame but ensures that the moment
of inertia tensor is time invariant. The expression of the net angular velocity of the body

represented in the x-y-z frame is presented in the above slide.
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The calculation of the angular momentum about the fixed point O is shown in the above

slide. Finally, using the rotational dynamics equation about O, we obtain the equation of
motion.
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The components of the equation of motion is presented in the slide above.
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For steady precession, we have simplifications as indicated in the slide above.
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Assuming steady precession and spin speed to be much higher compared to the precession
angular speed, we obtain a simple expression of the precession angular speed as shown in the
slide above.
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Next we look at the second simplification which is the steady torque-free precession as
shown above. This leads us to two cases (a) direct/prograde precession (when I,<I), and (b)
retrograde precession (when I<I,). In the former case, the precessional angular velocity
appears in the same direction as the spin angular velocity. These can also be understood

kinematically as rolling of the body cone on the fixed space cone as show in the figures.

We consider the following problem.
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Problem 1: . :
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Two identical discs are rapidly rotating freely on a shaft B
with angular velocities equal in magnitude and opposite ov :
in direction as shown. The shaft in turn is caused to rotate \

slowly about the vertical axis in the sense indicated.
Determine whether the shaft bends as in A or as in B
because of gyroscopic action.

Source: Dynamics, Meriam and Kraige
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The solution is discussed in the above slide.

Consider the next problem as shown below.
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Problem 2:

A spinning projectile moving through the atmosphere with a
velocity v, which makes a small angle 0 with its geometric
axis, is subjected to a resultant aerodynamic force R acting
opposite to v as shown. If R passes through C slightly ahead
of the mass center G on the symmetry axis, determine the
minimum spin velocity p for which the projectile is spin-
stabilized with d0/dt = 0. Take the moment of inertia about the
symmetry axis as I, and about the transverse axes as .

Source: Dynamics, Meriam and Kraige
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First thing we fix up is the coordinate frame based on our previous discussions. This should

be noted carefully. The solution steps are detailed in the slide above.
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Summary

* Gyroscopic forces in spinning axisymmetric bodies
* Precession with and without external moment

* Problems
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The discussions are summarized as shown above.
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