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Overview
* Commonly used coordinate systems

* Problems

Here we are going to continue our discussions on the commonly used coordinate systems and
look at some problems.
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Planar curvilinear motion
* Cartesian coordinates
* Tangent-normal coordinates (Path coordinates)

* Plane polar coordinates

In the last lecture I had started with the Cartesian coordinates and in this lecture I am going to
discuss about the tangent normal coordinates which are also known as the path coordinates, and
the plane polar coordinates.
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Tangent-normal coordinates .
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The tangent normal coordinates comprises of, as the name itself suggests, a tangent vector and a
normal vector. Suppose there is a path in the plane on which a particle Q is travelling. I can
define the center of curvature of this path at any point. You know that 3, infinitesimally separated

points on this path uniquely defines a circle, and the center of the circle defines the center of



curvature of the path at that point around which I have taken the 3 infinitesimally separated
points. The center of curvature at the current location of the particle indicated by a red plus
symbol. The point C is the center of curvature and rho is the radius of the curvature. Let the
instantaneous speed of the particle, which is the magnitude of the velocity vector, be v. The
velocity vector is always tangent to the path I have shown and the magnitude is v. Then you can

imagine that this line CQ, where Q is the particle.

The radial line CQ will be rotating as the particle and I can represent the rate of rotation as
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Tangent-normal coordinates
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With this definition we come to the figure now where I start defining my coordinate system. The

unit tangent and normal vectors are defined as
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Now, the velocity vector in this coordinate system is defined by
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For acceleration we differentiate the velocity vector. Now as mentioned the unit vectors are
changing as the particle moves. Therefore, when we differentiate the velocity vector, not only do
we generate the time rate of the change of the speed, but also generate the time rate of the change

of the unit tangent vector to obtain
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The time rate of change of the unit tangent vector is obtained as
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The expressions of acceleration can now be written as
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The second expression of acceleration is very useful in finding out the radius of curvature p of a
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moving particle.



The acceleration terms have some names. The first term is the tangential acceleration which is
obtained by taking dot product of the acceleration vector with the unit tangential vector. And if
you take dot product with the unit normal vector, you get the normal acceleration. The normal

acceleration is related to the radius of curvature of the path.
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In the above example the slotted links move according to this expressions of x and y, where x
and y are in millimeter, and t is in second. The horizontal slot moves vertically and the vertical

slot moves horizontally. At t = 2 second, we have to determine the radius of curvature p of the

path of the constrained pin. We will use the Cartesian coordinates (X, y).

The velocity of the pin is obtained by differentiating the position vector of the pin as
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The acceleration is obtained as
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At time t = 2 second the velocity vector is
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The direction of the unit tangent vector is same as the velocity direction (unit vector along v)
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We complete the tangent-normal coordinate system by defining the unit normal vector. But, we
do not know in which direction the center of the curvature of the path lies. So, we just assume a

certain direction as
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Now the expression of acceleration as determined from the tangent normal system is equated to

the representation of absolute acceleration in the Cartesian frame
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Now, take dot product of both sides of this acceleration with the unit normal vector to obtain
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Next we move on to the plane polar coordinates. Imagine a path as shown on which a particle Q
is travelling. We first arbitrarily fix a point called the pole P and also choose a line known as the
datum line from where we will measure all angles. From the datum line we measure the angle to

the line joining the pole and the particle, which is 6. We define the position vector as

—
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Where the direction of the unit vector is from the pole to the particle in the direction of
increasing r. We also define a unit vector cap in the direction of increasing theta as shown in the

figure. The velocity vector is found by differentiating with respect to time the position vector. We

obtain

Following the rules of differentiation of frame vectors we obtain
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Finally, we obtain the velocity vector as
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Now we obtain the acceleration vector by differentiating the velocity vector
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Again following the rules of differentiation of frame vectors we obtain
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where the names of the different acceleration terms are indicated.
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We consider a problem.



The pin A moves in a semi-circular slot, driven
by a horizontal slot moving upward with a
constant velocity of v,=2 m/s. Calculate the
normal and tangential components of the

acceleration of the pin as it passes the position
with 6=30 deg.
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Next we move to coordinate systems in 3 dimensions.
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This is the Cartesian coordinate system. Again, the unit vectors are fixed with respect to distant
stars. The position, velocity and acceleration vectors are shown. Note that the derivative of the

frame vectors is zero because they are fixed with respect to distance stars.

Let us move to the cylindrical polar coordinates. Imagine a particle A moving in certain way

right now located on a hypothetical cylinder with an axis as shown here by this dashed black

line.
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Cylindrical polar coordinates
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We choose arbitrarily a pole on this axis of the cylinder and I join from the pole to A by a dashed
line then I define a datum line which is perpendicular to the axis of the cylinder in an arbitrary
direction. Then we drop down from A, a line which is parallel to the axis of the cylinder till it
meets the plane of the datum line. Our coordinates here are (r, 8, z) with the corresponding unit

vectors as shown.
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We can define the position, velocity and acceleration vectors as shown, where we use the rules of
time derivative of the unit frame vectors as discussed for plane polar coordinates. Note that the
unit frame vector along the z-coordinate direction is non rotating. Hence, its time derivative
vanishes.
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Problem 3:

The ladder of a fire-truck rotates about the
vertical axis with Q=10 deg/s while the ]
elevation angle of OA changes at a ~<lg5
constant rate dd/dt=7 deg/s, and OA |
extends at a constant rate of 0.5 my/s. At
the instant when 6=30 deg and 0A=15 m,
determine the magnitudes of velocity and
acceleration of the end A of the ladder,

Let us look at the above problem and solve in the cylindrical polar coordinates.
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I will use the cylindrical polar coordinates here. The position vector is given as
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The velocity vector is obtained as
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Similarly, the acceleration vector is obtained as
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summary
+ Cartesian, tangent-normal and polar coordinate systems

' Problems

So to summarize we have discussed the Cartesian tangent normal and the polar coordinate

systems both in 2D and 3D and we have discussed some problems.



