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Prof. Anirvan Dasgupta
Department of Mechanical Engineering
Indian Institute of Technology - Kharaghpur

Module No # 04
Lecture No # 19
Central Force Motion — II1
In this lecture we are going to continue our discussions on central force field motion and we are
going to look at some problems. The theory is first recapitulated in the following slides.
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Central force motion
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In the above slide the equation of motion of a particle in a central force field is presented along

with the solution of the motion.



(Refer Slide Time: 02:10)

Conic sections
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The mathematical representation of conic sections is presented in the above slide. A similarity of

this representation with the structure of solution of a massive particle in a central force field is

clearly observed.

(Refer Slide Time: 02:36)

Circular path
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A comparison between the conic section and the solution is presented above. The characteristics

of a circular trajectory is also shown.
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Elliptic path
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Characteristics of the elliptic path are presented above.

(Refer Slide Time: 03:11)

Parabolic path
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Characteristics of the parabolic path are presented above.
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Hyperbolic path N

|
|
=Cwn + ™M :

L 2 o e et
Y T T s e=h_

! ¥ c s v
Lod(=tr3) A

) €21 (F=0 o d-10d'(-5) : unbounded mobion ) Hyperbol

Characteristics of the hyperbolic path are presented in the slide above.
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Central force motion: Energetics
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The energetics of motion of a massive particle in a central force field is presented in the slide
above. We plotted and discussed the effective potential energy of the particle. We found that, for

bounded trajectories, the effective energy is negative, while for unbounded trajectories it is O or

greater. We also calculated escape velocity etc.
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Problem 1:

A satellite is in a circular earth orbit of radius 2R,
where R is the radius of the earth. What is the min-
imum velocity boost Av necessary to reach point B,
which is a distance 3R from the center of the earth?
At what point in the original circular orbit should (
the velocity increment be added? |

Source: Dynamics, Meriam and Kraige

We consider the above problem. An important consideration is the determination of minimum
velocity boost. This will happen when the satellite will reach B as the furthest point on the new
trajectory. Thus, the new trajectory should be an ellipse with B as the apogee. And therefore the
diametrically opposite point should be the perigee.

(Refer Slide Time: 11:40)
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With these considerations, the solution is presented in the slide above.
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Problem 2:

A satellite is in a circular polar orbit of altitude
300 km. Determine the separation d at the equator
between the ground tracks (shown dashed) associ-
ated with two successive overhead passes of the
satellite.

Source: Dynamics, Meriam and Kraige

The next problem is presented in the slide above.
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The solution is presented in the slide above.
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Problem 3:

A spacecraft in an elliptical orbit has the position - | it
and velocity indicated in the figure at a certain in- ;

stant. Determine the semimajor axis length a of the
orbit and find the acute angle a between the semi-
major axis and the line /. Does the spacecraft even- 4 L
tually strike the earth? 1000 km

Source: Dynamics, Meriam and Kraige

The next problem is shown in the slide above. We have to calculate the trajectory of the space
craft and also check whether it strikes earth or not. It will strike the earth if the minimum

separation for the center of the earth falls below the radius of the earth.
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The solution is presented in the 2 slides above.
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Problem 4:

A satellite is placed in a circular polar orbit a dis-
tance H above the earth. As the satellite goes over
the north pole at A, its retro-rocket is activated to
produce a burst of negative thrust which reduces
its velocity to a value which will ensure an equator-
ial landing. Derive the expression for the required
reduction Av, of velocity at A. Note that A is the
apogee of the elliptical path

Source: Dynamics, Merlam and Kraige

The next problem is presented above. It is to be understood that the path will be elliptic with A as

the apogee.
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The solution is presented in the slide above.
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Overview

* Newton's law of gravitation

* Particle motion under a central force

* Problems

The summary is presented in the slide above.



