
Tools in Scientific Computing

Prof. Aditya Bandopadhyay

Department of Mechanical Engineering

Indian Institute of Technology, Kharagpur

Lecture – 08

Interactivity with Python – Ipywidgets

(Refer Slide Time: 00:27)

Hey guys it is me again. In this video we are going to look at some Interactivity in Python

enabled through the IPython console in Jupyter Lab. So, in particular you need to install

NodeJS and IpyWidgets and these are all cross platforms so, you can install them on any

operating system that you are.

In fact, whatever we are doing in this particular course should be possible in all operating

systems. So, once you have installed NodeJS and IpyWidgets you can make use of such

things.

https://mail.google.com/mail/u/5/#m_-8153304748177029390_RANGE!A1

(Refer Slide Time: 01:00)

.

(Refer Slide Time: 01:03)

So, let me open whatever we had done in lecture 6 because we will need these things. So,

first thing is first. Let me copy this because we are going to need all of these. So, we are

going to import numpy and matplotlib. We are going to update the plot parameters and

export format. So, once this is done we can declare. Suppose let us do a very simple

example; x be np dot linspace 0 to 2 times pi and y be sin of x ok. So, let us do a plot of

this, very simple ok.

(Refer Slide Time: 02:01)

So, we have a plot like this. So, now, let me in fact, pass a wave number to this ok. So,

wave number we can pass it like this.

(Refer Slide Time: 02:21)

So, 2 pi times k and then I must define what k is. So, let k be equal to 2 ok. So, basically

what we are doing is trying to plot sin of 2 pi k x, this is what we are trying to plot ok. So,

because k is 2 we have 2 waves in the 2 pi domain.

(Refer Slide Time: 02:50)

.

If I make it 1 then I have only this. So, now, suppose I want to interact with this plot,

suppose I want to change the value of k through a slider that would be very useful for us

to see how the wave changes as k changes ok. So, in that case the first thing that we need

to do is to convert whatever we have written over here which is the core of the code into a

function. So, let me do that.

(Refer Slide Time: 03:19)

So, def plot sin and let it take only an input k. So, because we are taking an input k we can

eliminate this particular line. Let me comment it at this point of time ok. So, I have

commented this line and because we are defining a function we need to indent whatever

we want inside the function with respect to this ok. So, everything is indented whatever is

inside this is therefore, inside this function. So, let us make a function call. Let me run this.

So, it running this simply loads the function it does not run anything per say.

So, let me do this. So, plot sin 1. So, it passes this parameter one into the function and

makes the plot because plotting is a part is executed inside the function. The function has

no return value which is fine. It does not have to have a return value. Function can simply

do something ok. So, now, once we have this we can do the following. Let us import one

more thing.

(Refer Slide Time: 04:30)

So, from ipywidgets import interactive; so, interactive is the sub mode is the module inside

ipywidgets which will help us to make the interactive plots. So, now that we have defined

this let me define an object w and it will be interactive. So, now, I will pass the name of

the function which I want to make interactive. So, it will be plot sin. I will just pass the

function handle.

This is what is passing the function handle and I will tell that k is the parameter which

should be interactive. So, after this I will tell that k can take a value from 0.1 to 10 and it

should do so, in steps of 0.5. After this is done I must output w. So, if I just press w and

enter it will sort of show what w is or I can also do this w; disp is not there.

(Refer Slide Time: 05:36)

.

So, let me just show what w is ok. So, it makes this and we see a bunch of jagged lines

because we have not yet increase the resolution of the x axis.

(Refer Slide Time: 05:50)

Let me make it one 100 that will make things much smoother.

(Refer Slide Time: 05:54)

So, now, when I slide around this, I can see how the plot looks like ok.

(Refer Slide Time: 05:57)

This is how I can study this particular plot in a very easy manner.

(Refer Slide Time: 06:02)

.

(Refer Slide Time: 06:17)

Now, suppose I want to pass this resolution also. So, let me call this r. I want to pass the

resolution of the linspace. Let me create this function. So, now, we have a function which

takes the wavelength or the wave number and the resolution of the line. Now, I have to

now pass.

So, I can set some default parameters over here. I can set k equal to 1 and r equal to 2 for

example, not 2, but 20. So, defining the function in this fashion even if you do not pass

any parameters it will call the function with this default value.

So, these are the default values with which the function will be called. Now, what I can do

is. So, I can run this straight away, no problem.

(Refer Slide Time: 07:03)

(Refer Slide Time: 07:08)

It will create for me an automatic slider for r in steps of 1 ok. It will create for me an

automatic slider and I do not want that linspace should get something which is less than 2.

So, now, see what happens when I put it to minus 20? Obviously, there is an error because

a linspace cannot be created with minus 20 number of points.

(Refer Slide Time: 07:32)

So, I must ensure that r is the slider for r is going to vary from 20 all the way to 200 and

in steps of 5. Let me run this. So, by default the values are kept at 1 and 20, the slider

values are kept at 1 and 20. Now, I can change the resolution. So, it becomes much

smoother, the plot becomes much smoother. As r is reduced the plot becomes more jagged

alright.

(Refer Slide Time: 08:03)

Let me increase k. So, now, the plot looks very jagged.

(Refer Slide Time: 08:07)

When I increase the resolution the plot smoothens out. So, this is the kind of behavior that

we expect, everything looks fine ok. Let me in fact, open lecture 5 as well.

(Refer Slide Time: 08:19)

(Refer Slide Time: 08:26)

We had done a bunch of fixed point iterations and we had made this plot where different

initial conditions we were trying to see that depending on what initial guess we have, how

does the curve converge to the fixed point. So, this is the solution 3.7 something, if I

remember correctly.

So, now, I am more interested in. So, over here we had swept over a bunch of initial values,

but suppose you do not want to do that. You do not want to sweep over a bunch of initial

values, you want to select a new guess point and then see how it goes.

(Refer Slide Time: 09:09)

So, let us do this. Let us take this entire snippet. Let us take it to this particular file. Let us

try to make that particular plot interactive. So, first things first we need to remove this

loop. See when I run this it will show a bunch of values because we ran the guess values

in a loop.

(Refer Slide Time: 09:24)

So, we do not need to run. We do not need a loop counter for anything. We just need this.

So, this bit of code should be sufficient ok. So, x naught is like the guess, perform iterations

is the function over here and that function calls f x which is over here.

(Refer Slide Time: 09:53)

.

So, all of this code is self contained, but obviously, I have not ok x naught was there from

the previous value.

(Refer Slide Time: 09:59)

So, let x naught be equal to 2 ok.

(Refer Slide Time: 10:03)

So, if x naught starts at 2, it goes over here no problem alright. So, let us now try to wrap

all of these into a single function because we want to interact with this. So, let me remove

Niter and x naught ok. So, we will put all of this inside a function.

(Refer Slide Time: 10:26)

So, def find fixed and the inputs will be x naught equal to say 2 and Niter will be equal to

say 20. So, now all of these is inside a function and the default values if you do not pass

these things it will be 2 and 20 alright. So, with this in mind let us now; let us now just call

the function and see what happens.

So, find fixed and let us say x naught equal to 3 and Niter equal to 10. So, this is what you

get. Let me do it for x naught equal to 50, Niter equal to 50.

(Refer Slide Time: 11:10)

(Refer Slide Time: 11:14)

(Refer Slide Time: 11:16)

So, this is what you get. You get 50 iterations ok. So, basically this function works and

now we want to interact with it.

(Refer Slide Time: 11:24)

So, we will declare an object w and it will be interactive. We will pass the function handle

and we will say that x naught can vary from; x naught can vary from minus 2 all the way

to 5 in steps of 0.05 and Niter can vary from 5 all the way to 50 in steps of 1 that is fine.

I mean this one is redundant. If you do not pass the step it will counted as 1, but for

completeness let me pass 1. Lastly we have to display that object. So, w is actually like a

widget which runs inside your browser. So, then you have to display that widget as well.

(Refer Slide Time: 12:13)

.

So, when I run this is what we have.

(Refer Slide Time: 12:17)

(Refer Slide Time: 12:18)

So, when I change the initial value we get a runtime error because the iterations would not

converge if you have any guess value ok.

(Refer Slide Time: 12:29)

(Refer Slide Time: 12:32)

So, you can see how the shape changes when you change the number of iterations what

happens ok. So, sometimes if you choose very odd values it breaks everything. So, you

need to rerun it.

(Refer Slide Time: 13:01)

So, very few number of iterations it has not yet converged ok. When you change the initial

guess this is how it looks ok. It starts at 3 and take 7 iterations starting from 0 of course.

When you increase the number of iterations this is what you get ok. So, this is a very nice

way of quickly discerning what is going on in your problem.

If you want to analyze a bunch of parameter space of course, you can avoid doing all these,

you can make functions, you can loop over all the initial conditions, but this gives you a

very raw feel of what is going on. It gives you can play around with the values ok. Let us

go back to our old file and let us see whether we can wrap something else something

interesting ok.

(Refer Slide Time: 14:00)

(Refer Slide Time: 14:08)

So, this was the case where the iterations were converging at this point. Let us take this bit

of code and let us try to wrap it around another function. So, let me run this. Let us see

whether it. So, we have this plot no problem. Now, let us see how the initial condition

converges to that particular solution ok. So, number of iterations are fixed x guess. So, this

is the parameter that we want to vary and see.

(Refer Slide Time: 14:36)

(Refer Slide Time: 14:38)

So, for example, I can make it 2, let me run this. So, when you start at 2 this is how it

converges, but I want to play around with the initial value ok. I want to play around with

the initial value. So, let us do it. So, let us remove this particular line and we will wrap

everything inside a function.

(Refer Slide Time: 14:54)

So, we will call it define. So, let us call it cobweb and the input will be x naught and let us

say the input default is 0.2. So, because we are defining a function whatever goes inside

the function has to be indented; it is very important in Python.

In octave and all you just need to I mean first of all iterative interactive plots are not

possible in octave as far as I know, but commercial software such as Mathematica, Maple

they do allow you to do such kinds of interactive things and that is the whole charm of it.

You can do you can play around with various values ok. So, we have done this is the code

ok. Let us quickly see whether the code runs or not whether we have broken something.

(Refer Slide Time: 15:49)

So, cobweb let me call cobweb with 3 as the initial guess, oh xj unreferenced ok. Let us

see what we have broken ok.

(Refer Slide Time: 16:06)

So, x naught would be I think it was xg, let us see. Yeah it was xg. So, we need to remember

whatever you pass is sort of the xg that you are using over here ok. It is that same variable

name that you are using you cannot define x naught over here and xg over here. So, xj is

this. So, fine.

(Refer Slide Time: 16:27)

Let me now run this and we do have a plot which shows this convergence fine.

(Refer Slide Time: 16:37)

.

So, now let me pass this to an interactive function. So, w equal to interactive then cobweb

xg equal to let us choose a range from say 0.5 all the way to 5 and say the step is 0.1. Let

me run this. We need to display w as well just ok.

(Refer Slide Time: 17:09)

(Refer Slide Time: 17:11)

(Refer Slide Time: 17:12)

So, see how we can see the convergence of the root ok. So, for guess values on this side

there is obviously, something bad that happens ok, it flies off to the other side. So, that

shows you that you need to guess between those two points you cannot guess beyond that

point ok, excellent.

(Refer Slide Time: 17:30)

.

Let me also change the number of iterations. So, Niter let me remove it and call it inside

the function itself.

(Refer Slide Time: 17:39)

(Refer Slide Time: 17:45)

Let me have by default 5 iterations. This will say go from 2 to 20 ok in steps of 1, alright.

(Refer Slide Time: 17:54)

(Refer Slide Time: 17:58)

So, if I reduce the number of iterations you see that you are slowly converging toward the

root ok. So, this is your guess value and you are slowly converging toward the root.

(Refer Slide Time: 18:08)

Let me change the guess value. Let me slide the guess value over here and let me see how

this is how the convergence looks like ok.

(Refer Slide Time: 18:26)

.

So, it is quite an interesting way of quickly assessing what is going on and in our later

studies of dynamical systems and all for understanding how parameter changes can bring

about bifurcations for example, so, it will be very useful for us to study that. We can simply

change the value of a parameter with the help of a slider and then understand what is

actually going on with the various other parameters that we will see.

I mean in the next class were going to start with dynamical systems, but I thought it is very

instructive to cover how to make an interactive widget in Jupyter Lab. And this will be

very useful for research scholars who are studying multi parameter systems when your

advisor comes in and he says can you change this value and show me you can simply move

a slider and you can show on the fly how everything looks like, provided of course, your

function runs quite fast ok.

So, with this positive note I end this particular lecture and see you again next time when

we will start dynamical systems. Bye.

