Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture — 07

Overview of Jupyter Lab, Octave GUI, Spyder GUI

(Refer Slide Time: 00:27)

w x4
C O locaiostsesa

+ Bt C
]

»/
/ nptel codes / lect3 /

Name
D data_human it

Q

B 1 pufiens

[ Lec 03 Octaveipynb
% . W leck3ipynb

0

*

04 @ Octe|ide

-

Hello everyone to the 7th lecture. This lecture is not going to be about something new, but
rather we are going to discuss some aspects of GNU Octave. Throughout this course so far

we have used Python as the primary language of programming, but this course is not about

= Fle Edt View Run Kemel Tabs

Settings  Help

Show Contextual Help X 1 lec§_octaveipynb X Lec 03 Octaveipynb X | B lecO3ipynb
B +XD 0O » 8 C» Coe

+ Inverse trignometric functions with b, ¢ and d as Input

bi = acos(b); disp(bi);

ci = asin(c); disp(ci);

di = atan(d); disp(di);

disp(["x = : ", num2str(x)]);
200000 1.50000 0.00000 1.57080 3.14159
-1.14159 150000 0.00000 1.57080 ©0.90900
114158 1.50000 ©0.90000 1.57080 -.00000

k=i 15 8 1578  3.416

+ Inverse tan has another function: atan2, which takes appropriate quadrant into consideration

= atan2(-1, 1); disp(e);
= atan2(1, 1); disp(f);
disp(pi/4)

-0.78548
0.78548
0.78500

o Hyperbolic functions: sinh(x) = <SR-

y=[2-,1,2;

ys = sinh((y)); disp(ys);

-3.6269 -1.1752 11752 3.6269

0 x

ax g @

Ocave O

Saving completed Mode: Command @ 112, Col 23 Lec 03 Octaveipynb

just one particular tool in programming.

While, we have used Python extensively one can achieve the same things using GNU Octave.
GNU Octave is sort of a clone of MATLAB; whatever you would write in MATLAB would

run exactly the same or almost exactly the same in GNU Octave.

(Refer Slide Time: 01:18)




< gt 3
€3 C O kot
: file Edit View Run Kemel Tabs Settings Help
n + B t C Show Contextual Help X | [ lec06_octaveipynb X 8 Lec 03 Octaveipynb X | B lecO3ipynb
[ T B+XD0O»mcCw» Cue
1 nptel codes / lec03 / T
o Narne A I
B 0 amionmn Commonly used functions in GNU Octave
8]
. » Create an array x with specified values
11: graphics_toolkit qt;
o error: graphics_toolkit: gt toolkit is not available
error; called from
* graphics_toolkit at line 81 column 5
210 x= [, 1.5, & 1/2'i, pil; disp(["x = : ", num2str(x)]);
xst=2 15 o 1578 3416
 Find out the absolute value of all the elements in array x
©xa = abs(x); disp(["x = ¢ °, numdstr(x), "\nabs(x) = :", num2str(xa)]);
x=:-2 15 e 1578 3416
abs(x) = 2 15 e 1578 5.416
Z
'+ Trignometric operations with element of array X as input
1t b = cos(x); disp(b);
¢ = sin(x); disp(c); 4
OM4® Octave|ide Saving completed Mode:Command ®  (n12,Col 23 Lec 03 Octaveipynb
P seach 0 S )

(Refer Slide Time: 01:26)

Select Kernel

Select kel for: "Lec_ 03 Octaveipynb”
Octave

Start Preferrod Kornel

Use Kernel from Preferred Session
Lec_03_Octave.ipynb
1ec06_octave.jpynb

Use Kernel from Other Session
lec03.pynb
lec0.ipynb

In this particular case, we have used the environment of Jupyter Lab and used the Kernel
Octave, Jupyter Lab allows you to use multiple Kernels. You can program in Python, you can
program in Octave, you can program in Julia. You can in fact program in MATLAB also
using Jupyter Lab. Jupyter Lab provides you a nice way of writing down documentation as

you progress in the program; things like bullet points, things like equations ok.

(Refer Slide Time: 01:53)



[ = G

(Refer Slide Time: 01:54)

04 ® Octaveide

[«

So, it has latex input for typing out equations, you can export this file to whatever you want

ok.

(Refer Slide Time: 02:03)

The python-and octave notebooks can:

< hopetsd + L
C O ocabost (R Y
T Fle Edt View Run Kemel Tabs Settings Help
m Bt C Show Contextual Help X [ lec06_octave.jpynb X [ Lec 03 Octaveipynb X | [ leco3ipynb X
»/ B+X0O0»mcCw» Cde v Octave O
/ nptel_codes / lec03 / T
Name . b = cos(x); disp(b);
¢ = sin(x); disp(c);
B B dita pumante d = tan(x); displd);
D Datafiletxt
-4.16158-01 7.0737e-02 1.00004+00 6.1238a-17 -1.8000e+0
® Lec taveipynb -0.90330 0.99743  ©.00000 9 0.00000
8, 2.1850e+00 1.4101e+01 0.0000e+00 1.6331e+16 -1.2246e-16
8 [ lec3ipynb
# Inverse trignometric functions with b, ¢ and d as input
0
cos(b); disp(bi);
* sin(c); disp(ci);
i = atan(d); disp(di);
dsp(["x = ¢ ", num2str(x)]);
200000 1.50000 ©.00000 1.57080 3.14159
-1.14159 1.50000 ©.00000 1.57080 ©.00000
14159 1.50080 ©.00000 1.57080 -0.00000
x®:-2 15 L] T.57e8 3.1416
o Inverse tan has another function: afan2, which takes appropriate quadrant into consideration.
e = atan2(-1, 1); disp(e);
f = atan2(1, 1); disp(f);
disp(pi/d)
-6.78540 \
0.78548
0.78540
04 ® Octave|ide Saving completed Mode: Command @  Ln 12, Col 23 Lec 03 Octaveipynb

= s ‘B -0 x
C O ahoseee ax @
Z e Edt View Run Kemel Tabs Setings Help
" + t c Show Contextual Help X [ fec0_octaveipynb X [ Lec 03 Octaveipynb X | [ lec03ipynb X
[T B +XD0OB» 8 Cw» Cde v Octave O
/nptel_codes / lec03/ ) =
F 8.78548
i) 0.78540
D data_human.xt
Q
B D oufient o Hyperbolic functions:sinh(x) = <222
A Lec 03 Octaveipynb
% . lect3ipynb y=02 41,2
85 ys = sinh((y)); disp(ys);
o |
I -3.6269 -1.1752 1.1752 3.6269
* yspL = exp(y); ysp2 = exp(-y);

ys2 = 1/2%(ysp1 - ysp2); disp(ys); disp(ys2);

-3.6269 -1.1752
-3.6269 -1.1752

11782
1.1752

3.6269
3.6269

+ finding out the conjugate of a complex number

€=243j;
disp(abs(c));
disp(sqre(2°2 + 3+2));
disp(real(c));
disp(inag(c));
disp(conj(c));

3.6856

3.6056




C O hcabon ax gl

ZFle | Edt View Run Kemel Tabs Settings Help

" vy X lectb octaveipynb X BlecoiOctaeipmb X | B lect3ipynb X
New Launcher Ctrl+Shift+L » B C » Code 3 s ©
o Open from Path. T

New View for Notebook

BS|  NewConsole for Notebook " ey
roolic functions: sinh(x) =

Close Tab AtsW
% Closeand Shutdown Notebook  CalsshifsQ |1, 1, 2];
Close AllTabs
[} 1((y)); disp(ys);
Save Notebook O
Save Notebook As. Cl+ShifteS Export Notebook to Ascidoc 5
* Export Notebook to HTML
Reload Notebook from Disk Export Notebook to LaTeX
Revert Notebook to Checkpoint Export Notebook to Markdown
Rename Notebook Export Notebook to PDF

Export Notebook to Restructured Text

load
Dsinion Export Notebook to Executable Scrpt
ExportNotebook A, »| Export Notebook to Reveals Sides
Print el H22+32);

e));
Log Out HOM

i)
Shut Down

The python an

OM4® Octave|ide
£ sar

Saving completed

9

You can export the notebook as PDF, Markdown, LaTeX, HTML, Ascii whatever you want.
So, Jupyter Lab provides you this kind of an environment, where you can embed code, you

can embed text.

(Refer Slide Time: 02:24)

G oane -0 x
Pt Doy Wndow Hep Nows

B[] 5 oot J# W

=
e fdt Yew Qe Bn b ans = C:\Users\Adain\octave_files\html\sandbox. htal
ads w02 &eeen . »|

Apart from this, we can program directly in the environment Octave as shown. So, I have
written a small file and this is the GUI for Octave. Octave also has a command line utility a
cli, but we will make use of this GUI. Mind you that whatever we have done so far in Python,
I have also uploaded the same, the corresponding octave file as well on the same website. For
anyone who is interested you can browse through the html which contains the same code

when implemented through Octave.



(Refer Slide Time: 03:09)

e 668 Otug Wdow Hip Noss

]

et
Bl (6t You Dby Bin by
"B Y

i |

al2teecn

[ § fomrarfoeomenie 4 W

=
ans = C;\Users\Adain\octave_files\htal\sandbox.htal

»|

ot ot Wrcow | Ccomerisn | Vi b3 |
5 X e

All the lectures starting from arrays, matrices, transformation of vectors, transformation of

matrix; then fixed point iterations, finding out the roots, Newton’s basins. All these things

what we have done in Python are also available through Octave.

So, those of you are interested in implementing things in Octave do have a look. This lecture

is going to be a quick breezer for someone who is not aware of things in Octave. I will show

you how to work in this particular GUI, but you could very well make use of Jupyter Lab to

write your codes. This is one example of lecture 3.

(Refer Slide Time: 03:54)

9
C O locaiostssss/a

+ B t C
| ]

-/

/nptel_codes / lect3 /
Name
D data_human.tit
Q
B pusiens
% . W leckipynb

0O

*

0@ 4@ Octae|ide
P search

Z e Edt View Run Kemel Tabs

[ Lec 03 Octaveipynb

ax G @

Settings  Help

Show Contextual Help
B+ XOO» 8 CH» Cde v

X [ lec6_octaveipynb X | Blec03Ocaveipmb X B lectipynb X

3.6036
3,606
2
3

2-3
d = [243), 1-1], 44pi*aj]; disp(d);

2.0000 + 3.00001 1.0000 - 1.80001 4.0000 + 3.14161

de = conj(d); disp(de)

2.0000 - 3.00001 1.0000 + 1.09001 4.0000 - 3.1416i

+ The above example shows the use ofinbuit functions of Octave to obtain the corjugate of a complex number,

Plotting

x = linspace(-2, 2, 109);
¥ = cos(2*pi*x);
2 = sin(2'pi*);
figure(1);plot(x, y,'.","markersize”,10);
hold on;
plot(x, 2,"L
plot(x,
xlabel("
ylabel("

+itla("Some

/

nlottad”

Saving completed

Mode: Command @ Ln1, Col 1 Lec_ 03 Octaveipynb

-8 x

Octave O




(Refer Slide Time: 03:35)

View Run Kemel Tabs Settings Help

Edit

Z e

# t C

Show Contextual Help X [ lec06_octaveipynb. X [ Lec 03 Octaveipynb X

»/ o B+XOO»mCw Cde v
/ nptel codes / lect3 /
figure(1);plot(x, y,". ", "markersize",10);

hold on;

plot(x, 2,"linewidth", 5);

plot(x, tan(x),"Linenidth", 5);

xlabel("x", "fontsize", 29, "fontnane", "TimesNewionan"); # Latex rendering
ylabel("y","fontsize",20,"fontname", "TimesNewRoman");

title("Sone functions plotted”, "fontsize”,20,"fontnane”, "TimeshewRonan");
ylin([-1,1]);

xlin(fe, 2]);

h = legend ("cos(x)", "sin(x)", "tan(x)");

legend (h, "location”, "southwest");

set (h, “fontsize", 14,"fontname", “TimesNewRoman");

title("Some functions plotted”,"Fontname", "TinesheRonan”);

set(gea, "fontsize",20,"fontname", "TinesNewRonan")

Name
[ data_humantxt
Q

B pusient

[ Lec 03 Octaveipynb

+ [ lecO3ipynb

]

0O

Some functions plotted

0@ 4@ Octae|ide Saving completed

[

(Refer Slide Time: 04:00)

C O loahats
File Edit View Run Kemel Tabs Settings Help

[ Bt C Show Contextual Help X [ lec05_octave pynb X Lec 03 Octaveipynb %
/- B+XD0O» = C» Cde v

set (h, “fontsize”, 14,"fontnane", "TimesNewRoman");

/nptelcodes / lect3 /
title("Some functions plotted”,"fontnane", "TiseshewRonan");

o

Name &
set(gea, "fontsize",28, "fontname”, "TimesNewRonan")
[ data_umantit
L“ Datafile.txt .
0 beidtet Some functions plotted

%+ [ leckipynb %
m / .
* ‘
s '
* coslx) .
05 H— sy0 *
mm.\.| R
&l L
0 0.5 2

Snecial finetinng in Octave
Saving completed

O 4@ Ocave|ide
H £ seach

 lecO3ipynd X

i

QU x g

Ocave O

/ |

Mode: Command @  Ln1, Col 1 Lec 03 Octavelpynb

ax gl

 lecO3.pynd X

Octave O

/

Mode: Command  ®  Ln1, Col 1 Lec 03 Octaveipynb




(Refer Slide Time: 04:02)

- 8 x

LR Y ]

[}

Z e Edt View Run Kemel Tabs Setings Help

+ B &t C

Show Contextual Help X 1 lec,_octaveipynb X Lec 03 Octaveipynb X | lech3ipynb X
./ B+XD 0O » 8 C» Coe

Octave O
/ nptel_codes /lec03 / ~

Name

+ Plotting the Bessel functions of the first kind using Ociave function besselj
D data_humanxt J

3 i
D Datfletxt % = linspace(s, 16, 109);

Lec 03 Octaveipynb. y = besselj(8,x);

% . W leck3ipynb

Figura(1]
plot( etn, 5);

() xlab 20,"fontnane”, "TimeshewRoman"); ylabel(")_8(x)","fontsize", 20, fontname", "TinesNewRonan")
set(gea, *,20,"fontname" , “TinesNewRonan”)
grid on

1 \
05 \
%
<% 0
K \\/
-0.5
04 ® Octave|lide Saving completed

Mode: Command @  Ln1,Col 1 Lec 03 Octavelpynb
Qrovdnso N0 B

o -

It is how to make a notebook file, you even embedded everything in a single file. But, you

can very well use this GUI, actually the same kind of GUI also exists for Python as well.

(Refer Slide Time: 04:14)

8 plt.plot(x, y);

And that GUI is called as Spyder. This particular version is Spyder 4 and it is running a
Python kernel 3.8.3 ok. So, let me show you whatever we have written down in the notebook
file, it can execute the same thing over here. So, import numpy as np, import

matplotlib.pyplot as plt x = np.linspace(0,2*np.p1) ,y=np.sin (x) alright plt.plot(x, y).



So, when we press F5 on this, we would have run this entire script ok. So, upon pressing F5
let us see what the GUI of Spyder tells us. So, there is a tab called as Variable explorer and it
shows all the variables that are available to us. So, it says we have 2 variables x and y and

they are of type float64. The size of these things are 50, these are the contents.

(Refer Slide Time: 05:35)

If we double click on it, we can browse through the content.



(Refer Slide Time: 05:41)

nge

numpy 2= np
matplotlib.pyplot a5 plt

o : a1 oo . et o the s
e o et el oyt b s o€ et nth

x = np. linspa 2*np.pi); {8 ot b o o e g M it ot
¥ = np.sin(x) )

[r———
plt.plot(x, y);

There is another tab called as Help. So, let us press control I in place of this.

(Refer Slide Time: 05:49)

EI6C

linspace

numpy o5 np
natplotlib.pyplot plt Defintion

% = np. Linspace(0, 2'np.pi);
¥ = np.sin(x);

plt.plot(x, y):




(Refer Slide Time: 05:53)

numpy 2= np
matplotlib.pyplot o5 plt

5 x = np.Linspace(0, 2%np.pi);
¥ = np.sin(x);

pLt.plot(x, y);

»n
matplotlib.pyplot &5 plt

5 x = np.Uinspace(0, 2%np.pi);:
¥ = np.sin(x);

plt.plot(x, y):

When we press Ctrl 1, it will fetch the documentation for that particular function. It is the

same thing as contextual help that we were using in Jupyter Lab alright.



(Refer Slide Time: 06:02)

There is another tab called as Plots and whatever we have plotted shows up in this particular
tab and the last tab is Files. So, in this particular folder C Users Admin and python files, we
have a file called sandbox.py. So, this is the overall structure, this is called as the command
window or [ mean in MATLARB it is called as command window. In Python it is called as the
IPython console. So, [Python is like an interactive Python console. So, we can run commands

over here as well.

(Refer Slide Time: 06:44)

8 plt.plot(x. y)i




(Refer Slide Time: 06:51)

numpy 25 np
matplotlib.pyplot a5 plt

x = np. Linspace(0, 2%np.pi);
¥ = np.sin(x);

8 pliplot(x, y);

So, let us say we want to fetch the shape of x. So, we can simply say print np.shape(x). So, it
says 50 comma 0. So, this window is like you can execute single commands, but if you want

to execute a string of commands you have to make a script.

(Refer Slide Time: 07:10)

Similarly, in Octave; so, let me clear all this. So, clear all is to clear all the variables; clc is to
clear the command window. So, we have the command window over here, we have the

variable explorer over here. It is the same structure and more or less all the GUIs try to keep



the same structure. We have the files also, additionally we have a command history, a

documentation, a variable editor.

So, let us do this. So, x equal to similar to the numpy linspace, there is an equivalent in
Octave as well. In fact, there is an equivalent in MATLAB as well. So, linspace(0,2*pi, 50),
let us say we have 50 points, y=sin(X); just for completeness; so, sin (x) plot(x,y) . So, when

we press F5, the script will be executed and we will have the plot ok.

(Refer Slide Time: 08:16)

as
& s e
P seach

So, the plot may seem a bit anemic at the moment. We can increase the font size as by
set(gca, ‘fontsize’, 16). Once we execute this, we see that the font size has increased. So,

whatever we have done in a Jupyter Lab, we can execute it equivalently on a script as well.

Do not think that you have to do everything in Jupyter Lab, Jupyter Lab helps me to organize
whatever [ am trying to teach or at least give you a background on. And, whatever codes I am
writing down to supplement that information in a single file; it helps me export an html which

I can upload to my website.

Apart from that actually you can export these scripts also as an html, it takes no extra effort;
there are various functions to do that. So, without further ado let us get into some of the
basics of GNU Octave, some loops, some conditionals. And, hopefully with the help of this
and the uploaded files on the website you will be in a very good position to start making

programs in GNU Octave as well as Python.



(Refer Slide Time: 09:34)

ik 5 g 55704k 7
P search

So, clear all clc. So, let us define scalars. So, comments are written using a hash(#) sign. In
fact, they can be written with the percentage(%) sign as well, does not make a difference. So,

Scalar declaration and operations; so, let us say a=1,b=2, ¢ =-2, d =3.5.

So, then we can define e =a + b; f=c + d; g =c *d; h =a * b/ ¢ and we can print all of them.
So, in Python we use print commands directly, but in GNU Octave or in fact, even in

MATLAB we must use the fprintf command.

So, the fprintf command if you know a bit of C, it is a printing command which prints to a
file; so, instead of printing to a file. So, typically in C what would you do? You would given
a file id, then you would have whatever you want to print and if you have some literals, that

you want to print some placeholders then you would give something like this.

(Refer Slide Time: 10:57)



i 10 2 v e
P Search

But over here if you omit the file id, it will by default print to the command window ok. So,

fprintf, let us print out “%f\t %f \t %f \t %f \n” and here we will print out e, f, g, h.

So, \t means you give a tab, \n means you go to the new line ok. In fact, let us put a \n over
here as well for good measure. So, once we execute this, we would have all the different
values printed as a floating point number in the command window. And, these scalar

operations are as shown over here.

(Refer Slide Time: 12:02)

G oane -0 x
B[4t Oy Wodow Hp s

B[] 5 v cvessmine

Fe Bt Ve Dy Fin W

The variables are available in the workspace editor as well. If we go into the Variable Editor

and if you double click on a, it will show a matrix where you can manipulate the variable as



per your liking; I do not suggest you use all these, but if need be you can use it. So, let us go
to the command window ok. So, this is how you can do a manipulation of scalars and you can

print them out.

(Refer Slide Time: 12:26)

=T
3.000000 1.500000
7.000000 1000000
2=

Columns 1 through 18

1.0000 11667 13333 15000 1.6667 1.8333 2.0000 2.1667 2.3333 2.5000 2

Coluans 19 through 25

i 5 0 e
P Search

Now, let us declare some arrays alright. So, a =linspace(1, 5, 25) and let us say we have 25,

points b equal to ok. So, let me just declare this as of now. So, before doing this we can clear
the variable space. So, it sort of clears all the variables that exist up to that point, let me run

this. So, so far because we have cleared all the variables only a should exist.

So, if I go to the command window and type on a, it will give me all the values of a. So, here
is the thing in GNU Octave and in MATLAB as well, if you omit the semicolon in the end;
you end up printing out that value ok, here is how it looks like. You could alternately choose
to print. So, fprintf (“%f \n”,a). So, this will print out all the elements of a with a new line at

the end of each element, let me execute this.

(Refer Slide Time: 13:46)



B[ ] © s ittt Jem

e &% Comminin

Ble fdt Yiew Deboy Bun Hep 2.166667

AR A0%tleeod . S Fl
waeal | 2.666667

i 55 e
P seach

So, this is how all the elements of a can be printed out ok. Apart from this you can simply

write down a over here or you can set this a; this also does the same thing. So, this is how you
can display the elements of a alright. So, with this information, let us do a loop over all the

elements of a.

(Refer Slide Time: 14:19)

i g —r

o~ ===
e [t Yiew Debug Bun Hep 3.000000 1.500000
o 2z 3eecn ' Ui 1900009

Coluans 1 through 18:

a0 |

1.0000 11667 1.3333 15000 16667 18333 20000 2.1667 2.3333 2.5000 2

Coluans 19 through 25

4.0000 4.1667 43333 4.5000 4.6667 4.8333 5.0000

Commanivry __Commad e | Oocmetatn | vttt |
5 x e

b

—e e & '}a’l
/] e

o 7k 35 504 G

P search

So, we know that a contains 25 elements. So, we can do the following for i = 1:25 end; so, it
is a good idea to always match a for and an end. So, in Python you do not need to really end a

for loop, you just remove the indentation and the for loop gets restored.



While, the for loop gets terminated, while in the case of GNU Octave, you have to explicitly
declare that this line is the ending of the for loop. Indentation plays no role in GNU Octave,
this is same in MATLAB ok. In the case of Python, you just remove the indentation to

terminate a loop, it is as simple as that.

So, let us go over here and let us print all the values of a. So, we will do fprintf(*“%f \n”, a(1)).
So, in GNU Octave and MATLAB the indexing starts from 1. So,a 1is 1,a 2 is 1.667 and so
on. While, a 0 if you try to print this out, it will throw an error because subscripts cannot go,

the array subscript cannot go below 1.

Moreover, the last element is a 25, it is equal to 5. In Python it is equal to n minus 1. So, in
Python it would have been something like this, this would have been the last element alright.
So, that is the small difference in indexing. So, Python follows C indexing, while GNU
Octave and MATLAB follow an indexing which starts from 1.

Each has their own minute and limit, but truly speaking if you have an idea in mind, you
should face no difficulty to implement it in either language; that is the; that is the way your
mind thinks about it. It should be clear what you are doing, it should be clear in an abstract
way about what you really want to achieve. And, then it all becomes a matter of semantics
ok. So, we have written down the code, let me execute the code. So, it prints out all the

elements of a; now we can put a conditional on a.

(Refer Slide Time: 16:47)




So, we can say that only if a > 3 ok, if a >3 we want to print out the elements or say we want
let us let us do that first. So, if a(i) >3, then you do this else you say that value less than 3 and

then we end the if else block as well.

So, the if else block has to be also explicitly ended with the end command. Unlike, Python
where if else statements are also dependent on indentations, if you indent a code inside an if
statement, you end up sort of embedding those lines inside the conditional. In the case of
MATLAB and GNU Octave it is just declaring explicitly where you want to end the if else

statement ok.

So, let us run this ok. So, value less than 3 ok, we forgot to put a new carriage \n and because
of not putting a new line, it is printing everything in a single line. We need to explicitly say
that you go to the next line, let me run this again. I press F5 ok. So, we get value less than 3,

then the moment it becomes greater than 3; we get values printed out.

So, let us do this, let us print out the values when we satisfy two conditionals and a(i)<4 ok.
So, essentially we are telling if a(i)> 3 and a(i) <4, you print out these values. Let me run this,

excellent. So, it has only printed me values between 3 and 4.

(Refer Slide Time: 19:00)

Vindon e Nows
(DY ey EEY )
CEg—r

3.000000 1.500000
7.000000 1.000000 1
Not in [3, 4JNot in [3, 4JNot in [3, 4]Not in [3, 4JNot in [3, 4]Not in [3, 4JNot in [3, 4]Not
413.166667
3.3
3.500000
3666667
3.833333
Mot in (3, 4]Not in [3, 4]Not in [3, 4Not in [3, 4]Not in [3, 4]Not in (3, 4ot




(Refer Slide Time: 19:13)

e ="
e [0 You Debuy Bin Hép Not in [3, 4]
3

520 PV XS ] '

n [3,
ot in [3, 4]
Not in (3, 4]
Mot in (3, 4]
Mot in 3, 4]
ot in [3, 4]
Mot in [3, 4]
3.166667
3.3
3.500000
3.666667
383333
Mot in [3, 4]
Mot in [3, 4]
Not in (3, 4]
ot in [3, 4]
Mot in [3, 4]
ot in [3, 4]
Mot in (3, 4]
»

27mwhile (i
28 fprintf("%d\n", i

29 i

So, let us make a meaningful statement, Not in 3 comma 4 ok. So, let me run this again, I
forgot the new line character ok. So, this is how you would print out values which lie in 3 to
4. So, in one shot we have covered how to write a loop or at least a for loop and how to do a

conditional ok.

So, let us do a while loop as well, this is something which will be quite useful in various
contexts. So, while loop is something which executes until a certain criterion is reached. So,
let us do this. So, 1= 1. So, while 1 < 50 end so, again you have to explicitly end a while loop.
In the case of Python you do not need to do that, you just need to remove the indentation to

end the loop.

So, we will do print not print fprintf (“%d \n,i) and let us update i = 2*i+4; just as an
example. So, then what do we expect? As i1 grows there will be a certain point in the loop

where 1 will exceed the value of 50 and once it does that, this loop should terminate.

(Refer Slide Time: 20:49)



| cotans 1 through 18:

1.0000 1.1667 1.3333 1.5000 1.6667 1.8333 2.0000 2.1667 2.3333 2.5000 2
Coluans 19 through 25

4.0000 4.1667 4.3333 4.5000 4.6667 4.8333 5.0000
» size(a)

15

» length(a)
ans = 25

So, let me run F5. So,i1is 1 16 1 6 16 36, the next value would have been larger than 50 and
hence the loop terminates. So, inside a while loop we can also put various conditionals; this is

particularly useful if you want to run error loops.

So, you want to check for errors in your iterations for example, you will see examples of a
while loop in the html file of Octave uploaded on my website for lecture 4 in which were
dealing with fixed point iterations. So, there you will see that when the error becomes less

than a certain threshold, the loop has to end ok. So, this is particularly useful for all that.

Apart from this we can query the size of a. So, let me go to the command window, I do not
want to write this in the main script because there is something which may not be useful at
this particular moment. So, let me do this. So, we have we already have a, this is a. So, let me

say size (a), it is 1 row and 25 columns. It means ask for length (a), it is 25.

(Refer Slide Time: 22:11)



Fie (6t Doy Wodow Hep News

[] 6 ormoarfoesimeonte 4 B

alZleeced

| cotons 1 thrugh 18:

1.0000 1.1667 1.3333 1.5000 1.6667 1.8333 2.0000 2.1667 2.3333 2.5000 2
Coluans 19 through 25:

40000 40667 43333 45000 4.6667 4.8333 5.0000

» size(a)
ans =

15

» length(a)

ans = 25

»|

4

oy Gt | T ] tetie ]

o

So, instead of hard coding this loop, we could have alternately done this for i=1:length(a).
Meaning, I would naturally go from 1 to 25, we do not need to worry about what value we
define over here. I could very well define it to be 50 and the loop would have automatically

adjusted its length to go from 1 to 50. I do not need to hardcode the value of the for loop ok.

So, this is quite useful in order to execute loops in a very structured fashion. Let us continue
with some more relevant things that you should know about arrays and arrays multiplication,

element wise multiplication in matrices and all these things.

(Refer Slide Time: 22:59)

Swestpe OameFla ()

< ot

i 1 k1l 150 sk CRLF

P Search

So, let me create a new file. Let us save this and let me call it matrix manipulations alright.



(Refer Slide Time: 23:12)

G oame
i O Voo 1 o
B [ ool 4 B

e
Bl (6t Yor Dey Bin by

B2 allZlteecn

i 4~ ok 3o 750 sk CRUF

P search

So, suppose you create a random array A of size 3 x 3 and you create a random vector b of

size 3 x 1, let me run this. So, let us see what A and b are alright. So, now, we can perform ¢

8 % Commitindon

A

T
> matrix sanipulations

»A

0.66238  0.583633  0.069466

0.366869  0.316220  0.281951
0632759 0.073849  0.198881

=A *b. So, essentially this is a multiplication of a matrix with an array.

So, the first element of ¢ will be this row multiplying this column. So, this multiplied by this
plus this multiplied by this plus this multiplied by this, that will be the first element of c. The

second element of ¢ will be this row rather this row multiplying this column and so on. So, let

me run this, let me see what ¢ is as well. So, ¢ is valid ok.

(Refer Slide Time: 24:16)

e oy Voo i o
B[ & oo 4 B

e
e Gt Yo By B
Y ) allZzliseecon

v s ] |

i 7 ok i 750 sk R

P seaen

"

> matrix_ sanipulations

ans =

| 0.361528  0.425550 0.424289
0.345540 0051262 0.050480
024152 0.281122  0.180795

» ans
ans

0361528 0.425550  0.424289
0.345540 0051262 0.050480
0241532 0.281122  0.180795

»» matrix_ sanipulations

error: matrix aanipulations: operator *: nonconforaant argunents (opl is 3x1, 0p2 is 3x3)
or:

matrix manipulations at Line 7 column 2




But, if I were to make another random array C=rand(3,3) and if I wanted to multiply each
element of A with each element of b; meaning I do not really want a matrix multiplication in

the classical sense. But, I want each element to multiply with the corresponding element of C.

Let me show you what exactly I mean. So, let me print out A and C. So, suppose | write
E=A .* C versus F =A *C. So, E would contain the first element of E would be; so, (1,1)
would be this multiplied by this that is it. Then the second, the first row second column of E
would be this multiplied by this, then the first row third column will be this multiplied by this

and so on.

But, F which is A times C is going to do the entire matrix multiplication. So, the first element
of F, now the first row first column will be this multiplied by this. Then the first row second

column will be this multiplied by this and so on.

So, this is how you can achieve element wise operations. This particularly important because,
you do not want to end up doing a bunch of incorrect calculations; because you thought that it
would do element wise multiplication, but instead it did matrix multiplication. In fact,

element wise operation of A and b would be forbidden.

So, A .*b; what is A .* b? Well, it does do something, but ideally you want to avoid all these
because b and A are not of the same size, b *A would be forbidden because the yeah. So, it is
non conformant arguments, because the size of b. So, the size( b) is 3x1 and you cannot

multiply 3x1 array with a 3x3 matrix.

You can multiply a 3x3 matrix with a 3x1 vector that is perfectly fine alright. So, this is how
you would go around doing it and all the same rules apply for division and typically

operations such as exponentiation, they are broadcast over all the elements.



(Refer Slide Time: 27:13)

B [ § oot 4 B
79 &
ans

sz eeen

0.361528  0.425550  0.424289
0.345540  0.051262  0.050480
0.24152  0.281122  0.180795

» ans
ans =

0361528 0.425550  0.424289
0.345540 0.051262 0.050480
024152 0.281122  0.180795

» matrix sanipulations

error: matrix sanipulations: operator *: nonconforaant argusents (opl is 3x1, op2 is 3)
ron
matrix_sanipulations at line 7 colum 2
3 matrix_sanipulations

i
H
5
4

EERREEREF

WEiliE

i k2 o 550 s R

Bl 2 search

So, let me say A =linspace, let me call c=linspace(-2, 2), then d =exp (c). So, all the elements
of ¢ are exponentiated and it is assigned to d ok, we can plot(c,d). Let me run this ok. There

you go this is the plot of exponential of x ok.

So, now let me wrap up this particular lecture with a quick demonstration of fixed point
iterations. I mean all the codes are available on the website as such you can have a look over
there. We have discussed in detail about what we are trying to achieve in Python, but

remember you can apply the same logic in Octave as well.

(Refer Slide Time: 28:05)

cccccc 0 x
e 62 kg W e Mo
B [ § omrfremr ¢ W
=T
e (6 You Dy Bt » matrix sanipulations
Y v s oh '
5232 a02|i/e e » matrix_sanipulations Ol
[, 1.916870
1, 1505506
5
o X
Jine 5 cok 0 encoding: SYSTEM | ok R i 2




So, what do we have? We have suppose we want to we want to solve exp (x)- 3*x”2 =0; this
is the equation that we want to solve. So, let me Cast it in the form x=exp (x/2) /square root

of 3. So, you want to cast it in this form.

So, let us say x_guess or x0=2.5 or 2.4 for i=1:Niter. So, Niter would be equal to say 25, let

us end the for loop. Then over here we will do x=exp (x0/2) / square root of 3.

In fact, we can just do x0 over here, it makes no difference. Then we can print a fprintf x0.
Let us in fact, print the iteration number and the value of x0 as it is updated from the initial

value of 2.4 ok. So, let us see what this output gives us ok.

(Refer Slide Time: 30:01)

B Gt
9, 0.913267

19, 0.911492

11, 0.910683 - |
12, 0.910315

2|13, 0.910147

14, 0.910071

15, 0.910037

16, 0.910021

17, 0.910014

13, 0.910010

19, 0.910009

20, 0.910008

21, 0910008

2, 0.910008

23, 0.910008

24, 0.910008

25, 0.910008

»

So, the first after the first iteration we have this and slowly we converse towards this root ok.
So, this is how you would achieve fixed point iterations, if we were to implement this as a
while loop. So, we will do error =1, err threshold=1le-5 and we will say while

error>err_threshold and count<Nitermax.

So, like we have discussed in the Python lecture that while loop can run infinitely long. So,
we want to terminate the while loop if we have reached a certain number of thresholds, if you
are never going to reach the threshold; the loop will keep on going infinitely long. So, you
say that I have done the calculation so many times, that is Nitermax, after that I do not want

to calculate this anymore. I will say iterations are failed, end of story.



So, we will say Nitermax = 100, count = 1 ok, we will end the loop; then we will put in
whatever we want to do. So, we will do x = exp (x0/2) /square root of 3. We will define x0

again because, we are doing a different method over here.

So, this updates the value of x, let us find out error; relative error will be absolute 1 — x0/x or
it can be x /x0, it depends on how you define the relative error. So, this is the value of error,
then we will update the value of x0. Then, so this is Finding out the new value, this is

updating the value of x0 after calculating the error ok.

We will increment count alright. So, let us print out as well print again it is just switching
between different programming languages, sometimes its gets you get used to some language
ok. So, % d, we will also require %f for the error and %f for the root. So, we will print count,
actually this has to be afterwards ok. So, we will print count, then we will be we will print the

error, then we will print x0 ok.

(Refer Slide Time: 33:10)

R
Bl s J&N
e

Doy o 7, 0.019551, 0.925663
B 8, 0009187, 0.917159
28 algteeod ' 9, 0.004263, 0.913267
10, 0.001984, 0911452
)11, 0.000887, 0.510683 b
12, 0.000404, 0.910315
13, 0.000184, 0.910147
14, 0.000084, 0.910071
15, 0.000038, 0.510037
16, 0.000017, 0.910021
17, 0.000008, 0.910014
16, 0.000004, 0510010
19, 0.000002, 0.910009
20, 0.000001, 0.910008
21, 0.000000, 0.910008
22, 0.000000, 0.910008
23, 0.000000, 0.510008
24, 0.000000, 0.910008
25, 0.000000, 0.910008
26, 0.000000, 0.910008
»

Kl | |
Commariviry o edo | Oocmertaton | Vbt |
5 x e

s

o 2 g 55T ok GF

Bl P searcn

So, let us run this ok. So, let me comment out this part, we do not need this. So, I just select a
bunch of lines and press the shortcut ctrl+r, that comments everything ok. So, let me run only
this part. So, these are the iteration numbers. So, after 17 iterations, we have reached the

threshold of 10°(-5). The relative error is less than 10”(-5) after 17 iterations



In fact, if we make this 107(-8), it took 26 iterations ok. Let me improve the number of digits
in printing. So, 3.16f means 3 digits on the left of the decimal, 16 digits on the right of the

decimal.

(Refer Slide Time: 34:03)

G oane -8 x
P Edt Doy Wndow Hep News

B [ 8 bmirfotomre & W
o DEr—

=
e Gt o 0oy Bt 19, 0.0000016341595149, 0.9100088140347362

158 P 20, 0.0000007435507138, 0.9100081373970276
~O%/Gleeod y 21, 0.0000003383187979, 0.9100078295241693
2, 0.0000081539364175, 0.9100076834408241
1123, 0.0000000700416700, 0.9100076257023658
24, 0.0000000318692286, 0.9100075967011247
25, 0.0000000145006205, 0.9100075835054500
26, 0.0000000065978374, 0.9100075775013680
27, 0.0000000030020409, 0.9100075747694879
28, 0.0000000013659399, 0,9100075735264722
29, 0.0000000006215080, 0.9100075729608953
30, 0.0000000002827885, 0.9100075727035557

31, 0.0000000001286699, 0.9100075725864651
32, 0.0000000000585454, 0.9100075725331884
33, 0.0000000000266382, 0.9100075725089474
34, 0.0000000000121205, 0.9100075724979176
35, 0.0000000000055143, 0,9100075724926991
36, 0.0000000000025093, 0.9100075724906156
37, 0.0000000000011419, 0.9100075724895765
m,‘ 0.0000000000005195, 0.9100075724891038
»

i o

Communditory __Comeard Wi | Documeiston | Vet Edtr |

So, let me execute this ok. So, this gives a better picture, you see that the error is really small.

Let us see what happens when we push it further, it took 38 iterations to reach a relative error

107(-12) ok.

So, we could have defined this as a function as well ok. So, we had done this in Python

already. So, ideally let me cut this, you just want f fx(x0) ok, but what is fx(f0)?



(Refer Slide Time: 34:44)

I

B [ 6 ommarfooome 4 B
9

5 Comitin

19, 0.0000016341595149, 0.9100088140347362
e ' 20, 0.0000007435507198, 0.9100081373970276
abglle aod ! 21, 0.0000003383187970, 0.9100078295241693
22, 0.0000001539364175, 0.9100076894408241
23, 0.0000006700416700, 0.9100076257023658
24, 0.0000000315692286, 0.9100075967011247
25, 0.0000000145006205, 0.9100075835054500
26, 0.0000000065978374, 0.9100075775013680
27, 0.0000000030020409, 0.9100075747694879
28, 0.0000000013659399, 0.9100075735264722
29, 0.0000000006215080, 0.9100075729608953
30, 0.0000000002627885, 0.9100075727035557
31, 0.0000000001286659, 0.9100075725864651
32, 0.0000000000585454, 0.9100075725331884
33, 0.0000000000266382, 0.9100075725089474
34, 0.0000000000121205, 0.9100075724979176.

ine 2 ok B8 i 515k G

So, for this we have to create a new file. In this new file we will create the function, function
return value will be y=fx and the input will be x. So, fx is the name of the function, input is x,
the output is y and we have to return this. So, y is this. We do not have to explicitly mention

return y because, the return argument is already mentioned in the function itself.

So, function if fx and y is the return variable; remember that x or y and whatever we are
defining in this particular file is strictly local to this file. It does not have a global sense, it
does not have a global scope. So, these are created locally and terminated once y has been
returned to the main file. So, the function file has to be named exactly equal to this function

name. So, we have to create a file fx.



(Refer Slide Time: 35:48)

5 % Commitindon
31, 0.0000000001286699, 0,9100075725864651

x ! 32, 0.0000000000585454, 0.9100075725331884
~Og[He eod . 33, 0.0000000000266382, 0.9100075725089474
34, 0.0090000000121205, 0.9100075724979176
35, 0.0000000000055148, 0,9100075724928991
36, 0.0000000000025093, 0.910075724906156
0,0000000000011419, 0.9100075724895765
0.0000000000005195, 0.9100075724891038

»a
2= 0.95189

»b
b= 0.90609
»c

c = 2.596
»

So, let me do this, let fx(1). So, it passes 1 to this function, it evaluates the function and
returns me value of y. If I had multiple outputs, if I had multiple outputs; I would simply do

this. So, this is how multiple outputs can be obtained.

So, if I let me save this file. So, if I make m = fx(1). So, m will actually; so, I need to yeah.
So, I have to supply this a, b, c. So, now a is this, b is this, c is this. So, these are the 3 return
values that fx has return to me ok. I must appropriately in the main wherever I am going to

use this function, I must have these 3 variables waiting for accepting the output of fx.

So, let me remove this, we do not need this from now; we just need a single scalar output of
this function. So, I am going to remove this, I am going to go to this. So, I am going to run
this again, we get the same output. So, this is how you can abstract your tasks to a different
file, you can make a function, you can create a different file. In Python you could make the

whole thing in a single script that is more convenient.

But, sometimes it is more efficient to keep files separately and you would see this in bunch of
programs you keep separate files separately and then you compile everything in one go. So,
we have done this apart from doing fixed point iterations, there are a bunch of inbuilt

functions as well. The most common function to solve is called as fsolve.



(Refer Slide Time: 38:10)

G oame
e 0 Oy e 1 o

B, [ & ormeorcum[camemamscen e J¢+m

i 7ok 1o 550 sk B

P search

5 % i "
20, 0.0000007435507198, 0.9100081373970276 5
21, 0.0000003383187970, 0.9100078295241693

22, 0.0000001539364175, 0.9100076894405241

23, 0.0000000700416700, 0.9100076257023658

24, 0.0000000318692286, 0.9100075967011247

25, 0.0000000145006205, 0,9100075835054500

26, 0.0000000065978374, 0.9100075775013680 |
27, 0.0000000030020409, 0.9100075747634879

28, 0.0000000013659399, 0.9100075735264722

29, 0.0000000006215080, 0.9100075729608953

30, 0.0000000002827885, 0.9100075727035557

31, 0.0000000001286699, 0.9100075725864651

32, 0.0000000000585454, 0.9100075725331884

33, 0.0000000000266382, 0.9100075725089474

34, 0.0000000000121205, 0.9100075724979176

35, 0.0000000000055148, 0.9100075724926991

36, 0.0000000000025093, 0.9100075724906156

37, 0.0000000000011419, 0,9100075724895765

38, 0.0000000000005195, 0.910007572489103%

»> help fsolve

o | .
Commanivtry e Wedo | Oocmertain | Vbt |

b sk

So, if you are ever confused. So, we will just go to help fsolve.

(Refer Slide Time: 38:16)

JC oame
e (44 Oy Wodow Hp ows

B[ oo cemmiane s EEN

Fe Gt Ve Dy Fun W

L B a~0%Beeey

smrovivr= (] | 6a0) |

oo STSTOM sk GBS

£ seach

-0 x
if (all (x == savd.x)) g
sav = savd;
endif

## maybe output iteration status, etc.
endif
endfunction
..
fsolve (guser_func, ¥0, optimset (“Outputfen®, user func, ...)) il
See also: f2ero, optisset.
additional help for built-in functions and operators is
available in the online version of the manual. Use the command
*doc <topic>" to search the manual index.
Welp and inforaation about Octave is also available on the W

at https: //wes.octave.org and via the helpgoctave.org
mailing list.




(Refer Slide Time: 38:17)

G oune -0 x
e (60 Oty oo 1t
B s AN
e =T oF
i 6 Ve D i b £ evaluation call 2
B.m v Lelash - if (nargout == 1)
LAL L L ~Ciliz|e e savd.x = x; # mark saved vector
22 calculate fval, save results to sav.
elsei (nargout == 2)
# calculate i uging sav
endi '
else
£ outputen call.
if (a1l (x == sav0.x) |
sav = 53v0;
endif
£ saybe output iteration status, etc.
endif
endfunction
..
fsolve (guser._func, x0, optiaset (*Outputfen”, Guser_func, ...))
see also: faero, optimset.
o | o]
T ey gy
- 2 % o
eyl
[ Jon  Jommm o Jeww H
i S5 ot

P search

o
94 Oty Wiodow L ows

B[]0 oo [cumamiane s EEN

e G i Dt B b residual calculation in Jacobian calculation are significant, the
. v best strategy is to esploy ‘Outputhcn’: After 3 vector is evaluated

LA ~0%Boeod " for residuals, if "Outputfen’ is called with that vector, then the
| intermediate results should be saved for future Jacobian
evaluation, and should be kept until a Jacobian evaluation is
requested or until ‘OutputFen’ is called with a different vector,
in which case they should be dropped in favor of this most recent
vector. A short exasple how this can be achieved follows:

function [fval, iag] = user_func (x, optimvalues, state) =
persistent sav = []; savd = [];
if (nargin == 1)
#% evaluation call
if (nargout == 1)
savd.x = x; # mark saved vector
# calculate fual, save results to savd.
elseif (nargout
# calculate fjac using sav.
endif
else
22 outputfen call.

oty G vt | G | Vet |

o SYSTOM st CHE

£ seach



(Refer Slide Time: 38:18)

G oane -8 x
e f6t 0wy Window Hip o

B[ 6 ommarfooeomn 4 B

e 6 i Dy B Hep
Bad 0BG eeen . ::bxhna\ output FIAC contains the value of the Jacobian evaluated

5 % Commitindn 5%

it peritona | a0 |

Note: T you only have a single nonlinear equation of one variable,
using "frero’ is usually a much better idea.

Hote about user-supplied Jacobians: As an inherent property of the
algoriths, a Jacobian is aluays requested for a solution vector
whose residual vector isalready known, and it is the last accepted
successful step. Often This will be one of the last two calls, but
not aluays. If the savings by reusing intersediate results fron
residual calculation in Jacobian calculation are significant, the
best strategy is to employ ‘Outputfcn’: After a vector is evaluated
for residuals, if ‘Outputfcn’ is called with that vector, then the
intersediate results should be saved for future Jacobian
evaluation, and should be kept until a Jacobian evaluation is
requested or until "OutputFcn’ is called with a different vector,
in which case they should be dropped in favor of this most recent
vector. A short example how this can be achieved follows:

il | o
T e )
Fiebrowaer (]

|Omerien_[ve
[

Bl A seoreh

It will give you what all you have to do ok.

(Refer Slide Time: 38:24)

G oane -0 x
e (44 Oty Wodow Hp Nows

B[] ommoten oy s 14 m

i Gt Vo D o » help fsolve £
.. .)4 ¥ 4 D % Sleeen . "fsolve' is a function from the file F:\octave\Octave-5.2.0\mingw6d\share\octave\S.2.0\m\optin

mproimrsn | a0 |

- fsolve (FCH, X0)
]| - fsolve (FCN, X0, OPTIONS)
-- [X, FVAL, INFO, OUTPUT, FIAC] = fsolve (...)
Solve a systes of nonlinear equations defined by the function FCN.

FON should accept a vector (array) defining the unknom variables,
and return a vector of left-hand sides of the equations.

Right-hand sides are defined to be zeros. In other words, this
function attespts to determine a vector X such that 'FON (X)' gives
(approxiately) all zeros.

X0 is an initial guess for the solution. The shape of X0 is
preserved in all calls to FCN, but otherwise is treated as a colusn
vector.

OPTIONS is a structure specifying additional paraseters which
control the algoritha. Currently, ‘fsolve’ recognizes these
options: "AutoScaling”, “Complextqn’, "FinDiffType”, "FurValCheck",
d o
Comire Gt | e | et

i 7k 1o 55T s B

P seach

So, fsolve is a non-linear solver, it takes as an input the function and the initial guess and the
output can be X, FVAL, INFO, OUTPUT. So, let us just take one output. So, if there are

multiple outputs coming in and if you only define one variable call.

So, if I do X= fsolve, it will X will only store this first value, if I give X ,y =fsolve then y will
contain FVAL, where FVAL its defined; the documentation is a bit wonky anyway. So, we

all we care about is X at this moment.



(Refer Slide Time: 39:24)

C oame o x
e 1 0t Wden 1t tos
B [ omosmfumenocs 4 B
7 CEr=—T"~
e 6 i Dy B W *doc <topic>" to search the manual index.
A2 %z seeeh ]

Help and information about Octave is also available on the WM
o priirs= 0 | a1 | at https: //wes.octave.org and via the helpgoctave.org

=] mailing list.

»» matrix sanipulations

So, x equal to fsolve, now in Python we had to give the function handle, the same thing we
have to do over here. So, passing a function handle is done with the help of the at the rate(@)

sign. So now, if we do this and give an initial guess; so 2.4, let us see what happens.

Let me execute this, let me press F5 ok. So, x is so, this is not the function that we want, we
actually have to give the actual function that we are trying to solve for; that is this function,

this function ok.

(Refer Slide Time: 40:19)

G oame -0 x
B [ Detug indon by ows
IO rrvrrermysy By
e =
Fe Gt Ve Oy Bin Mo *doc <topics’ to search the manual index.

a3 al%/eeon '

n about Octave is also available on the W
ve.org and via the helpgoctave.org

Help and i
ot woitorsn ()6l |

X'y, only square matrix argusents are permitted and one argusent must be scalar. U

J o
iy i | D | et ]
2 % e

et




So, let me replace this alright. So, this has to be 3 *x.”2. So, I am giving x.*2 with an
impending hope, that in case I pass an array of x to this function; it should be able to do the

proper array raising to the power 2.

So, what I mean is had I not written this, if I just do fx of 1, it will give me the correct
answer, no problem. But, if I define x=linspace(0,5) and y=fx(x), it would throw an error.
Because, I am passing an array into the function and that array is to be squared, each element

of array has to be squared.

But over here I am I have not written it in that way, this raised 2 means it is a matrix squaring
process and you cannot square a vector; you can square a matrix, but you cannot. So, you can
square a square matrix, you cannot square any other matrix. So, this has to be an element
wise raise to 2. Now, once we save this, once I call this again; now it can give me the

function ok.

(Refer Slide Time: 41:39)

G oane -8 x
e £t Oty Wdow Hip Noss

[ 6 fomnarooomene 4 W

i
Columns 61 through 72

-6.8447039  -6.6981432  -6.5113300  -6.2813861 -6.0052847  -5.6798417  -5.3017084
1 cotns 73 through s4:

L7150 0859920  0.065  LLSSA 2007710 3.482000  4.8309741
Columns 85 through %6:

IS.SRETL 17,8093 209751666 23.006097 25.093985 28909936 297661 |
Columns 97 through 100:

57.0235744  62.1538958  67.6111807  73.4131591
» matrix sanigulations

0.91001
»

“F
3

i
13

i

2

FREREERE

p F

So, that is why with the impending notion that you can pass arrays to this function, you need
to appropriately put the element wise operator in this. So now, over here I have passed the
function handle, I have given an initial guess. Let me display x as well; once I press F5 it

gives me 0.91.



(Refer Slide Time: 42:06)

e C62 Ockg Wden He Nt
8 [ & jormomrfcmeomsern e Jem
e ¥ oo 5
e 6 Yor Dy B tip wlusndd51 through 72: “ woa
o

Y 0% & en L] 3
WA allz/iz/oe dans 73t -6,6981432

e | 67D Tl P TTTTTTT e e
5| Colums 73 through 841" “.wB36wiS  LLF 4 2.60710 O ABGNET A0 CN
6.8458439  -6.85935c0  0.0bs00:5 w11 aacros! -t er0 0741

v e L"fﬁﬂ z.ﬁinmr 3.4862000 omﬂm
olusoB1f2throi7. 96%96. 0. 51 2 N6 25 n 2.94993%6 3 77
-1.71°9990  -0.81903

(olumns 974 1 bghugadins

¢

matrix manioulations 58 67.6111807  73.4131591

» matrix_sanipulations

FEEE|

i

3
3

EE

BE

43

i 7 ok o 750 sk R

Bl P search

JC oame

e £t Oy Wdow Hap Nows

W[ ammsen ey S 4l

alzseecy ALTISM90 -0.9593520  0.08%675  LUGSA 22507710 3.4962000  4.8309741

Coluans 85 through 96:
| ssmen v womies somer s s 2256
Coluans 97 through 100:

STLONSTA 6215958 67.6111807  73.4131591
»» matrix_ sanipulations

9.91001
»» matrix sanipulations

3.7331
» matrix_sanipulations

04589
»|
il
Comiti Gt | G | veeti |
o X wo

Let me give a different guess value, it gives us the other root. Let me give a different guess
value, it gives us the third root, excellent. So, this is how you can quickly get things done

with the help of GNU Octave.

I hope I have given you a very quick intro to some of the functions; I will link some more
videos that I have done as a part of my SWAYAM course. And, it will help you get started in

case you are coming at it from a fluid mechanics view point. I had done all this related to



fluid mechanics. So, with this I am closing this lecture over here. We are done with week 1; I

will see you again next time with stuff on non-linear dynamics.

Its goodbye from me, have a good day. Bye.



