
Tools in Scientific Computing

Prof. Aditya Bandopadhyay

Department of Mechanical Engineering

Indian Institute of Technology, Kharagpur

Lecture - 42

Balloon problem and viscous fingers

(Refer Slide Time: 00:29)

Hello again, welcome to this next lecture where we going to proceed with the image

processing part. So, so far we have figured out what the thresholded image looks like.

Now, what we are going to do is actually find out the contour on that image; the contour

that before, but before that we have to first detect the edge. So, let us do that. So, we are

going to say edge = cv2.Canny image threshold.

Whatever we thresholded Canny lower limit Canny upper limit and yeah that is it. Then

we will do cv2.imshow("Edges of the image", edge) we will say edges of the image we

are going to plot edge. Let us see what we get.

(Refer Slide Time: 01:26)

So, this is what we obtain as the edge of the image it is quite nice to be honest. And so

what did we start with? We started with an image which had or a frame which had my

hand bunch of other things and thanks to the very first step in which we mixed the modes

or mix the signals or mix the channels rather.

We were able to get rid of all those things we smoothened the image actually even if we

do not smoothen the image nothing much changes, but it is always a good thing to

smooth it ok. For finding out contours and all it is always a good idea to have less

information. Then we have 2 contours, one is the two edges one is the outside thing

another one is the inside thing.

So, the inside thing it comes up because of that reflection of the light nothing else, but

we will see once we detect the contours that it will it will not cause a lot of image a lot of

issues. So, now that we found out the edges of the image we are going to pass the edges

to find out the contours. Well you could have done it directly with the thresholded image

as well, but regardless.

(Refer Slide Time: 02:43)

So, we are going to do contours hierarchy well, you can call them anything you want is

equal to cv2.findContours you are going to pass the image from which you want to find

then you going to say RETURN EXTERNAL and you are going to CHAIN APPROX

NONE. So, the findContours function it requires the image then it requires information

about how you want to return the contour. So, RETR EXTERNAL means in that image.

(Refer Slide Time: 03:28)

So, let me run this. So, when it is going to detect these two contours it is going to give

you only the parent contour because inside that parent contour there is a child contour as

well. So, you are going to remove that contour from the list alright.

So, this is a very important thing you only want the biggest contour or the enclosing

contour if you do not do this it is you are going to get this contour as well or you do not

want that then you do cv2.CHAIN_APPROX_NONE so.

Is the purpose of CHAIN APPROX NONE, if you have for example, a straight line and

you do not want to save all the points on the line we can simply save the two points. So,

if you do CHAIN APPROX simple you are going to save the end points you are going to

interpolate once you start doing something with it, but in in this case we have a

complicated surface. So, we do CHAIN APPROX NONE right.

This helps you obtain the various contours not the various contour, but the largest

contour. So, now, once we know what the contours are we will do cv2.DRAW on oops

cv2.drawContours then we are going to plot the contour on the original image.

So, the original image was this alright. So, drawContours on image we are going to draw

the contours we are going because there is only one contour. So, 0 means, so if you do

minus 1 you going to plot all the contours 0 is the id of the contour.

In this case you have only one contour. So, contour 0 is the equivalent of this, then you

need to specify the color of the contour. So, color will be specified as the tuple like this

and we have to give the line thickness of the contour. So, it is going to overlay the

contour on the image and show it alright.

So, let me save this and let me see what happens where is the original image? So, we

need to show the image again cv2.imshow("image with contour", img) we have to give

the name image with contour image alright.

(Refer Slide Time: 06:17)

(Refer Slide Time: 06:38)

This is great we have detected the contour of the balloon. So, to 0, 255, 0 means b g r.

So, g, so then the color of the contour becomes green. In case you want a red contour

then, we instead of g channel to 255 we are going to set it to this to 255. So, this is going

to make the contour to be red ok.

(Refer Slide Time: 06:46)

It is as simple as that. So, so far what we have done is great we have identified the

contour we have plotted the contour, now we have also want the area of the contour

right. So, what is the area of the contour? So, thankfully we have functions which help us

in finding out the area the perimeter of the contour.

So, its cv2.contourArea(contours[0]). So, this is the main contour in case you have other

contours you have to give different indices like this, but because we have only one

contour it is going to be contour[0].

We also have cv2.arcLength(contours[0], True) and we are going to give contours[0]

right. So, these two should give us the area equals %f\t and length equal to %f\n. % we

are going to call this ca and we are going to call this cl. So, then (ca, cl). So, let us see

what happens when we run this let me close all the images. So, the argument is required

ok.

(Refer Slide Time: 08:32)

So, the arcLength also requires another argument which helps in telling whether it is a

closed contour or an open contour. So, if it is a closed contour we have to tell True if it is

an open contour we have to say false. So, the area is this and the arc length is this. Well

great if you divided by 2 you get the projected radius that is fine I am not going to do

that because it is quite trivial to do what we have to do is to wrap all of this inside a for

loop that is it ok.

We have to now wrap all of this inside the for loop and then, we are done sort of ok. Let

me see whether I can invoke my plot lib.

(Refer Slide Time: 09:30)

So, import matplotlib.pyplot as plt and x = np.linspace (0, 1) , 2y x here cannot plot x,

y. So, let me see if it executes this in this because in, but it does not show the plot and

that is ok. We can dump it to a file, we can read the file, later on no harm done ok. Let us

not bother with this if you are using spider or something this will be very easy to do.

So, so far so good we have obtained this. Now we need to wrap everything. So, in order

to wrap everything we will have to wrap all of this inside the appropriate program right.

(Refer Slide Time: 10:39)

So, forget about this. So, we are going to say while True we are going to take all of this

we are going to indent it alright.

(Refer Slide Time: 10:57)

And instead of writing down area and length if we going to simply output the percentage

f I mean the area and the lengths. This waitKey we will make it as 1 and we are going to

only show the last image we do not want to show the edges and all because in the end the

manifestation of all that is through the red contour on the original image. So, the final

image should be showing the balloon with the red contour alright.

(Refer Slide Time: 11:48)

So, let us see what happens amazing. So, you can see that sometimes the internal thing is

also showing. So, we need to find out a way of avoiding that internal thing I mean for the

most of the part it does not really cause an issue perfect. So, for most of the part it does

not cause an issue, but when it does cause an issue how do you get rid of that? Well,

while printing the contour 0s as such you do not face an error ok.

(Refer Slide Time: 12:18)

So, I tell you what, we are going to persist with this. Now how do you dump it to a file I

am going to remove this percentage n.

(Refer Slide Time: 12:34)

(Refer Slide Time: 12:36)

(Refer Slide Time: 12:38)

(Refer Slide Time: 12:39)

(Refer Slide Time: 12:39)

(Refer Slide Time: 12:44)

(Refer Slide Time: 12:52)

I am going to remove this because I do not want to see the image. I just want to look at

the values on the command line ok. Sometimes you do have that small contour appearing

right. So, let us try to fix that let us try to fix that alright this code execute alright. So,

over here we have the contours and the hierarchy now we need to extract the largest

contour ok.

(Refer Slide Time: 13:17)

So, before that let us see some whether we can find some common trend, when we have

the smaller contour the area of that smaller contour is quite small. So, it is like 1372,

1445, 1451 and so on. So, the larger contour is significantly larger than the smaller

contour. So, that gives us a clue on how we can isolate the larger contour ok.

(Refer Slide Time: 13:49)

So, once we have obtained the contours we are going to take the contours and convert it

to a list contours equal to list contours after converting it to a list. Let us take the selected

contour or let us take the 0th contour and assign it to a selectedcontour. So, in the end the

selectedcontour will be the largest contour, but we can assign selectedcontour default as

the 0th contours 0 ok dot copy we going to make a copy of it.

So, now for contour in contours that is it will loop over the different i ds of the contours.

We will say if if cv2.contourArea(contour) > 2000 then selectedcontour = contour

alright. So, it means that if that particular contour is having, so this is basically

initialization of the variable initialization of the variable. It has I mean you could do

without this as well.

Then once you have initialized if you find the contour in the contours list which has an

area larger than 2000 you make it as a related contour. Well 2000 also I mean we could

make it very well as 3000, well towards the end what is the area let us see. We do not

want to discard those towards the end it is 21000. So, we can make it 3000 as well.

So, then it is the selected contour and once we found this, we want to plot only the

selectedcontour. So, contours comma ok as so it turns out when I was using a smaller

kernel for the Gaussian blur that is the smaller area for the Gaussian blur it was giving

me lot of isolated contours as well.

(Refer Slide Time: 16:15)

So, let me show you what I mean let me make it make the kernel size as 9 and let me

show you the edge detected after making the kernel size 9.

(Refer Slide Time: 16:29)

So, let me run this. So, if you look closely I am not sure I will be able to zoom it go

ahead there is a small contour pocket near this which is not actually joined ok and that

gives us a bunch of broken contours which are not helping our cause.

(Refer Slide Time: 16:52)

So, we need to blur it with a larger kernel here in this case its 21 after blurring we will

remove those isolated pockets its more smooth now ok.

(Refer Slide Time: 16:58)

So, let me stop this. So, let me comment out the ok. So, what happens is you have the

selectedcontour initialized in the contourArea is larger than 2000 you make the contour

to be in the selected contour then you cast it to the form of an array and you plot the

contour on top of the image.

(Refer Slide Time: 17:30)

So, this is needed in order to plot the contour which was originally converted to a list.

So, this helps it to convert back to the data structure that the contour is the draw contour

function requires ok. So, once this is done we should be able to plot the largest contour.

 (Refer Slide Time: 17:59)

So, let me run this everything seems to be going as per plan. Wow it is nice silky great

alright. So, now, we are getting a bunch of outputs let us pipe that output to a data file.

So, that later on you can plot it as well. So, in order to do that we will put it to out dot

that. Let me stop plotting all this we do not need to plot once we a certain what needs to

be done.

(Refer Slide Time: 18:56)

So, let me clear this file and let me re run it.

(Refer Slide Time: 19:29)

(Refer Slide Time: 19:30)

(Refer Slide Time: 19:30)

(Refer Slide Time: 19:31)

(Refer Slide Time: 19:32)

(Refer Slide Time: 19:34)

(Refer Slide Time: 19:35)

So, here we have all the areas and the perimeters ok. So, you can now load this file into

python and plot it as well. So, with this in mind we have written a very easy problem.

We have seen various concepts of blurring of isolation of mixing the channels finding

out the edges finding out the contours ok.

The important thing is to smoothen out those edges otherwise then there will be small

pockets of isolated contours which you do not want you want a nice single smooth

contour. So, before concluding this lecture let me show you one more application of this

for viscous fingering.

(Refer Slide Time: 20:29)

So, this is a video discourtesy of Dr. Saurab Mandal of the chemical engineering

department and student Pooja Singh she is a PhD student and so, in this experiment

viscous fluid is being displaced by a less viscous fluid and the less viscous fluid in this

case is water and it is colored pink.

So, as you can imagine the initial channel mixing has to be such that the pink has to be

more prominent than the background. So, let us see I have already encoded it with a bit

of trial and error, the green channel has been biased to -2.12 the blue channel has been

biased to 0.245 and the red channel has been biased to 1.359.

So, with the help of this I am just showing the channel before isolation the mixed

channel. So, I am just showing the mix channel for now ok.

(Refer Slide Time: 21:36)

So, let me run this code ok. So, it takes a bit of time the video takes place after 6

seconds. So, you have to bear with me for with for this. So, let us let us just wait let us

see what happens. So, as you can see the tube is quite prominent because the tube is

carrying the liquid. Now once the liquid is being pushed you see that the front is nice and

clear and once you threshold this it should be absolutely easy to find out the perimeter of

the liquid ok.

The difficulty is this is and this is this has detached from the particular sample actually it

will give you a bunch of contours. So, you have to loop over all contours to find out the

perimeter I am not going to do that in this video, but maybe someone amongst you can

do that anyway.

So, the point is once you find the appropriate bias of the channel, you can easily binarize

the image. Now you can imagine how easy it will be to binarize this image because this

is almost white everything is everything else is almost black ok. In addition to this

because the tube is not moving you can sort of take the initial frame subtract the initial

frame from all the frames to remove the tube, then you can sort of get a clear image of

this fingering setup ok.

I am going to stop this over here. So, with this we end this particular lecture on image

processing I know it is a bit power packed, but I have shown you all the important sort of

workflow there is to most of the image processing problems. And I really hope you will

find all this very useful.

Special thanks to Shreyas Darshan professor Saurab Mandal and Pooja Singh for

contributing to this particular video and the previous one as well. So, with this I take

leave I will see you again next time bye.

