Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 41
Image processing — preliminaries

rs are 3 useful

Hi, everyone. In this lecture we are going to start with some Image Processing. So, let
me show you a quick video.

(Refer Slide Time: 00:40)

rs are 3 usefd

0 1o them in code sample will work fin for all

So, this is a video | took with my mobile phone of a deflating balloon.

(Refer Slide Time: 00:51)

So, it is a yellow coloured balloon ignore the light on the right, but essentially I fill the
balloon with air and let it deflate and as trivial as it seems the question is how does the
radius of the balloon change over time. And, | know what you are thinking | mean it is a
very easy problem, but making the computer do this problem for you that is a bit of a

challenge.

| have tried to make the video have a good contrast meaning visually speaking there has
to be a good difference in the background and the foreground. So, obviously, the
foreground consists of a bunch of things. It consists of my hand, it consists the balloon, it
consists the switchboard, it consists the green light, it is a night lamp, but yeah it does

consist of a bunch of things.

And visually we can clearly make out that the balloon is changing shape over time. And,
additionally you can see the reflection of the tube light on the balloon as well over here.
So, with all this the question is how do you make the computer do this? So, you may
think ok I am going to find out the boundary of the balloon, find out the perimeter and do
the thing like that.

But, let us see how we can achieve this using Python. Most likely for this lecture we will

not have something in octave we will just keep things in Python because OpenCV is a

very robust library which helps us in image processing well. OpenCV originally is made
for C++ once you require lot of speed you can start coding in C++, but in the end
whatever you are doing in Python is actually calling the C++ routines or C++ programs
in the backend.

So, it does not make a difference. And, this is just the starting of it | mean here it is a
case of a balloon which is deflating. You could extend the same logic to for example, a
vesicle. So, what is a vesicle? Vesicle is a membrane filled with fluid and if you have a
solution which is hypertonic or hypotonic meaning the concentration of salt inside the in
the fluid inside the membrane is different than the fluid outside.

Then either fluid will rush into the membrane causing it to swell or fluid will leave the
membrane causing it to shrink such kinds of things. Once you observe under the
microscope you can apply this kind of image processing techniques to analyze what their
change of shape is and through this very simple example | will be demonstrating a bunch

of image processing tools and I will leave it on to you to explore further.

And, such kinds of things are quite useful from the point of view of scientific computing
because you know numeric’s and experiments always go hand in hand. So, let me close
this video. In this particular video we are not going to make use of the JupyterLab

notebook environment, but rather we are going to directly write a code in Python.

(Refer Slide Time: 04:28)

Many of you have been wondering whether JupyterLab is required for doing all this. The
answer is no. We can directly do stuff with simple plain text file as well a simple ASCII

encoded file as well.

(Refer Slide Time: 04:44)

So, to create a new file | have navigated to my folder.

(Refer Slide Time: 04:50)

So, | have opened up the command prompt over here and | have navigated to the folder

in which | have all my files.

(Refer Slide Time: 04:58)

I am | am doing a DIR, I will go to cd lec 41 dir ok.

(Refer Slide Time: 05:04)

So, it contains the file under question let me increase the size a bit so that you can ok.
This is the local folder that we are working with alright fair enough. So, on the left | have

opened up a new file. So, let us start writing the code.

(Refer Slide Time: 05:26)

So, let us import cv2.

(Refer Slide Time: 05:30)

So, cv2 is the name of the library. So, let me save it. | am going to save it in our folder

lecture 41 like 41. py.

(Refer Slide Time: 05:39)

So, we are going to save it as .py, which indicates it is a Python py, alright. So, import
cv2. This helps in importing the modules which contain the image processing toolbox.
This is for image processing then we are going to import numpy as numpy as np import
mat well, we do not need my plot living in this particular case. So, never mind that. So,

we are going to just need cv2 and numpy, right.

Then what do we do? So, first things first we have video we have a dot mp 4 file. Now,
you could do many things you could use ffmpeg and export each frame of the mp 4 file
to a single image. Yeah, that is the perfectly fine way of going about things. In fact,
when you do high speed imaging that is how you would obtain your raw files. You

would obtain each frame as you go.

You would not obtain a single video file, you will obtain a bunch of files. Those will be
static images, but in Python if you have a mp 4 file you can read it like we had read the
dot wave file in the case of audio processing. So, we have imported cv2, now we will use
the cv2 video capture to load the file. So, we are going to do the vid =

cv2.VideoCapture(“balloon.mp4™).

(Refer Slide Time: 07:31)

So, the name of the file is ok VID, let me do one thing let me call it simply balloon,
right.

(Refer Slide Time: 07:40)

So, I will call this balloon.mp4. Now, once | have this what | need to do is, | need to sort
of read each frame of this object vid. So, how do | do that? | say ret, img = vid.read()
and this will help me acquire each frame. So, actually once | do this it will only read the

first frame.

If | redo the same command over here it will read the second frame. So, it will read a
read image and go to the next frame. Once | call this again it will again read it and go to
the next image. So, each time | do this well now you can imagine you can do this in a
loop to loop over all the frames, but yeah let me do that. Let me first show you how it is

true.

(Refer Slide Time: 08:37)

So, while TRUE meaning while it is True and while one I mean this loop will go on
forever, then what you will do is you will capture the image and now you will display the
image. So, how do you display the image? So, you would do cv2.imshow (i). So, you
need to give it a title balloon deflate and then you will type down the name of the frame.

So, the name of the frame is img.

So, once you execute this you have to do cv2.waitKey 1 which is to ask the computer to
wait for a while 1 millisecond before going to the next. So, let me save this. Let me go
over here. Let me do python lec4l. py ok. So, there you go. So, now, you will say that ok
wait there is a there is a error over here. So, why this error? And, the reason is once it

runs out of frame to read the return value will throw an error. So, let us do that.

(Refer Slide Time: 09:54)

Let me print the value of ret.

(Refer Slide Time: 09:59)

So, you will realize that it is true and suddenly it goes false.

(Refer Slide Time: 10:01)

So, then the loop exits that is a very hard way of stopping the loop, but in our case it
checks out. It does not bother us in any way, it is fine ok. So, this is the basic loop that
you will you are going to do. In case you want to increase the delay you can simply make
it 100.

(Refer Slide Time: 10:22)

So, then you will perceive the code running with a larger delay.

(Refer Slide Time: 10:30)

So, let me run this. So, look, that there is a larger delay in the point.

(Refer Slide Time: 10:34)

So, you can stop execution of this file by pressing control C. It sends a keyboard

interrupt to the terminal and it close away. So, let me clear the screen, alright.

(Refer Slide Time: 10:47)

So, we are going to keep it as 1. We are going to keep 1 millisecond delay. Now,
whatever code has to be done is going to be inside this, alright. So, now, before going
into the code section of it, we must sort of understand what an image is, right. So, let me

make this while False, so that we do not go into this loop.

Now, | am going to do this; I am going to do this. So, | am reading one frame and after
reading this frame | am going to print out what actually img is or np.shape (img), so that
we know what this object actually is alright. So, | have saved this file let me execute this
code. So, the shape of img is 720 x 1280 x 3 meaning the camera that | have on my

phone and | was recording it at 720p.

So, the frame size is 720 x 1280 and the 3 actually represent three channels. So, it has
three channels, the three channels are b, g and r; blue, green and red. So, each image is
composed of three stacks. So, one stack is the blue channel, one stack is the green

channel and one stack is the red channel.

(Refer Slide Time: 12:28)

The pyih

So, if you have a photograph which is dominant in red, then the r channel will show 255.
So, 255 means highest value of saturation. If you have something which is blue, the blue
channel will show high degree of saturation; if you have intermediate colors you will

have some linear combination of this colors, right.

(Refer Slide Time: 12:47)

:://WWW;_fa

So, now let me show you what these individual channels look like.

(Refer Slide Time: 12:47)

So, let me do this. So, b, g, r = cv2.split. So, this cv2 dot split command it splits the
image into the three channels. So, img and astype float and the reason ok let me not do
this first. Let me just do this and let me do cv2.imshow this will be blue channel, this will

be b. cv2.waitKey 0, alright. So, let me execute this.

(Refer Slide Time: 13:29)

So, this is the first frame and this shows the blue channel. So, in the blue channel, the
yellow color appears as black, ok. In the blue channel, the yellow color appears as black
ok.

(Refer Slide Time: 13:42)

(Refer Slide Time: 13:52)

So, let me now print show the red channel. In the red channel the yellow color appears as

white, alright.

(Refer Slide Time: 13:59)

In the green channel, do not bother with the title of the frame. So, | have saved this. | am

going to run this.

(Refer Slide Time: 14:08)

It also appears as white, but notice how the bulb color has changed anyway.

(Refer Slide Time: 14:14)

So, this is how we can split, but now what | want to do is | want to do some arithmetic on
the image. So, what do | mean by doing some arithmetic on the image | will have some
b, g and r. I would like to do some linear combination of b, g and r, so that the balloon is

most prominent, the other things are not that prominent.

This means | am going to mix the channels and create a composite image. For that I must
first export b, g and r as float this will help in doing the arithmetic later on. Now, once |
have split the channels 1 am going to create a composite image. So, | am going to make

isolated = c1*g + c2*b + c3*r, ok.

| am going to do this. Now, what is the purpose of doing this it will be clear. So, let me
denote c1=1.5, c2 as 0 or | can write this c1 yeah, c1 = 1.5, ¢2 =0, and ¢3 = 0.5. Now,
what it is going to do it is going to take the blue channel amplified by 1.5 times and it is

going to add it to the red channel by taking half of its magnitude.

And now, let us see how it looks. So, cv2.im cv2.imshow mixed channel isolated and in
fact, before we show it as an image, well let us see | think this is going to throw an error.
Yeah, it is not going to show anything and the reason is quite clear because this is. So,
isolated is now of a data type float we must convert it from float to a data type. This is

the data type image or integer.

(Refer Slide Time: 16:41)

So, we must convert it. So, we will say isolate or we can simply say int. Let us see
whether this works ok. So, it is not going to work. So, we have to do it the hard way that
is isolated = isolated.astype(img.dtype). So, it is the data type of an image ok. So, this

particular line means whatever the data type of an image is you typecast isolated back to
it.

(Refer Slide Time: 17:25)

Now, let us see whether it works.

(Refer Slide Time: 17:27)

Perfect, it works. So, now, what have | done? | have removed the green channel
completely and if you remove the green channel completely you are going to see a bunch
of things loose fading out. So, there is no channel over here because this was

predominantly green ok. So, you sort of see how mixing the channels kind of work.

(Refer Slide Time: 17:47)

So, now, let me do this let me do ¢3 as minus.

(Refer Slide Time: 17:53)

Let me see how it looks. You see that we are slowly getting towards the edge ok. Forget
about all this. The hand has become darker, but this is where the edge detection will

going to work it is going to work really nicely.

(Refer Slide Time: 18:08)

In fact, | have done the trial and error for this and if you do this, it is going to work out
the best and this combination of channels was suggested to me by one of my students
Shriyansh Darshan. He is a very talented person in all these kind of things and he helped

me figure out the different biases of the channels ok.

(Refer Slide Time: 18:37)

So, now let me run this and show you how it will look. So, once you do this, it looks as if
that edge is very distinct, alright.

(Refer Slide Time: 18:49)

So, things are going in the right direction ok, alright.

(Refer Slide Time: 19:05)

So, actually before converting into sorry, from the image what it seemed like there was

some saturation in the image like these areas are saturated.

(Refer Slide Time: 19:08)

So, we can always clip the image to something between 0 and 255. So, typically the
images the integer values are going from 0 to 255 meaning there is 256 levels of
information ok. So, we are going to do that. So, isolated = np.clip(isolated, 0, 255) and
we are going to clip isolated actually we are going to clip it before type casting it to the

data type. So, we are going to clip it between 0 and 255. So, let us see what this gives us

and this should give this gives nothing. | have put in the coefficients incorrectly. So g, b
ok.

(Refer Slide Time: 20:20)

So, let us see.

(Refer Slide Time: 20:24)

Yeah, ok. So, once you mix those channels up this is what you obtain. You obtain an
image where everything is sort of darkened out accepting for the balloon and the small
light shadow of the fluorescent tube onto the image. Well, that is not going to be of a lot

of concern to us because in the end it is going to work out quite well.

So, as you can see in that such a channel mixing gives you a nice sort of binary feel to it.
This is not yet binary because the data type varies from 0 to 255 we have clipped it like
this, but the important thing is once you threshold this image it is going to look much
better.

(Refer Slide Time: 21:22)

>

So, what I am going to do is | am going to remove this for now or | am going to keep it
over here because we will require it later on. So, | have obtained an image which is
which seems like it can help even a blind person figure out what the two things are. You

can see white and you can see black.

So, that the boundary is the balloon. Now, what you need to do is you need to do two
things first is you need to threshold an image. So, what is thresholding an image? So, let

me (Refer Time: 22:05) show you what thresholding means.

(Refer Slide Time: 22:08)

So, imagine you have and a signal like this ok and you say that this is my threshold
value. So, what it will do is all the values below this it will put to 0, all the values above
this threshold it will put to 1. So, this is effectively binarizing your image. It is going to

convert whatever image you have to either low or high ok.

So, if you have a smooth variation like this, it will convert it into something which is
sharp ok. So, imagine you have an image or earth signal that goes like this and if this is
the threshold value ok, then what will happen? The signal will be looking like this ok

that is what it is. You are going to convert it into binary, alright. So, let us go over here.

(Refer Slide Time: 23:25)

Now, let us do that thresholding. So, we are going to have ret, imgth = cv2.threshold.
Now, you are going to pass isolated to it; the image that on which you want to apply the
thresholding and you are going to give the lower value of the threshold and the where

you want to threshold it to.

So, if I want to threshold it all the way to the top I can do that. I can say any value which
is larger than 50 is going to be thresholded to 255 and the type of thresholding. So, we
can have various kinds of thresholding and the type of thresholding is going to be

THRESH BINARY meaning it is one eventually converted to Os and 1s.

(Refer Slide Time: 24:16)

€209 04 cwais B ~8¢ nDo¢tSES =

Contours : Getting Started

Goal

+ Understand what contours ae.
+ Leam to ind coniours, daw contours et
. cufindContoursi),

What are contours?

< 253 cunve foining orintensty. The !
ool for shape analysis and object detection and recogrition.

+ For beser aocuracy, y images. apply reshokd or canny ecge
+ Since OpenCV 32, {) n0 longer

+ InOpency, backgound. So remember, obje
should be biack.

Lefs see how o find contours o 3 binary image:

in = cv.faresd("test. iog')

. COLOR_BGR2ERAY)
, 127, 255, 9)
(thresh, cv.RETR_TREE, cv.CHAIN APPRCK SILE)

ia2, contours, hierarchy =

See,t g , refrieval mode, #ird approim
mehod. And it outputs 2 modified image, the contours and hierarchy.contours s 2 Pyhon st of all the contours in the image. Each individual contouris 2
Numpy amay o x.y) coordinales of boundary poins ofthe object.

Note

g rph foe forall

So, let me show you how they look.

(Refer Slide Time: 24:21)

€206 0 on -9 nDo*OES =

+ Introduction to OpencV

Leam how to setup OpenC\-Python on your computer
+ Gui Features in OpenCV

Here you willear how bo dispiay and save images and videos, conirol mouse events and Greate rackbar.
* Core Operstions

In this secton you wil | tools et

+ Image Processing in OpenCV
10 his section you willeam dfierent image processing funcions nside OpenC.
« Feature Detection and Description
In his secton you wil learn aboutfeature deteciors and descriptors
+ Video analysis (video module)
Inthis secton you wil learn different techniques to work with videos ke object ¥acking elc.
+ Camera Cailbration and 30 Reconstruction
10 this secion we wilieam about camera caibraton, tered imaging el
« Machine Learning
n his secton you willeam diflerent image processing funcions nside OpenCY.

+ Computational Photography

In this secton

+ Object Detection (objdetect module)

So, let me just show you the documentation of this so that it is clear what thresholding

means.

(Refer Slide Time: 24:32)

GOOpenCV e

| Open Source Computer Vision

MainPage RelatedPages Modules | Namespaces+ Classes+ Files~ Examples Java documentasion @ S
Opencroyen Tecoas :

Core Operations

» Basic Operations on mages

Leam o ead and et el vakie, worig i g RON ard e basc operaons
« Arithmetic Operations on images

Perlonm arthmesc operations on images
+ Performance Measurement and Improvement Techniques

(Geting 2 solubonis mportant. But geting It inthe fastest way s more impartant. Leam to check the speed of your coce, opimize the code .

(Refer Slide Time: 24:53)

€2ce B ~9¢ nDOoetSES =
This il be more visble wh functions, becacse they wl resut
Image Blending
Thisis also image addition, e of blending or transparency. imag perthe
equation beiow:

o(z)=(1-a)fe(z) + afy(z)

Byvaryingatrom 0 — 1.

Here| 1o bend fogether. The frst weight of 07 and gven 03,
equation o e image:

dst=a-imgl + B-im@2+7 1

Here s taken 25 210

ingl = ('al.pog’)

ing2 = co.invead("opencv-logo.pog’)
dst

Check e result below:

So, this is the channel mixing that we spoke about it is called as image blending. So, this

is a bitwise operation we do not need that ok.

(Refer Slide Time: 25:18)

plt.show

Note
To plot mutple images, we have used the pit subplot() uncion. Please checkout the matpictib docs for more detals.

The code yields s resut

Adaptive Thresholding

In he previous secton, we used one global vaue 35 2 hreshoid. But s might not be good i alcases, eg.f n image has iferen ighing condiions in
diierent areas. In that case, adaptive threshokling can help. Here, the aigorithen detesmines the threshoid for a pixel based on a small region around t. So we:
get different hreshalds for difieren regons of the same image which gives befer resuls forimages with varying iumination.

In addifon to he parameders described above, e method cv.adaptive Threshold takes e input parameters:

The adaptiveMethod decides how the threshold value is calcuiated:

So, this is what we are doing. So, if this is the original image. If you do it as a binary
thresholding, if this is the threshold gray scale then all the gray scales below that will be
put to white and all the gray scales above that will be put to black. This is what is going
on and there is also a mode called binary inverted. So, it is going to take that threshold

and invert it.

So, it is quite, it is quite useful in case you want to make masks or whatever. So, in order
to make masks the useful threshold functions are TRUNC, TOZERO and TOZERO
inverse, meaning if you put TOZERO it will put everything below a certain threshold to
black, but above it is going to leave the image unchanged ok. These are also quite
important in case you want to make masks. Well, so, here we going to convert it to

binary.

(Refer Slide Time: 26:13)

And, let me show you the image after converting it to binary, alright. So, let me execute
the file. Oops I forgot to write the name this should be waitKey, alright.

(Refer Slide Time: 26:45)

So, this is the thresholded image.

(Refer Slide Time: 26:49)

This was the original image.

(Refer Slide Time: 26:52)

In fact, let me remove this, so that the two windows are open side by side.

(Refer Slide Time: 26:57)

So, this is the mixed channel thing and this is when it is converted into binary, alright.

(Refer Slide Time: 27:06)

So, let me close the two windows. Let me in-fact, show you what the value of image
threshold will be or the maximum value. So, let us say print np.max imgth. So, let me

run this.

(Refer Slide Time: 27:21)

So, it is 255. So, it is converted it to max and taken the other thing to 0. It is binary
because there is only two levels that is 0 or 255 great.

(Refer Slide Time: 27:36)

(Refer Slide Time: 27:42)

So, well there is a small thing I would like you to look over here is this little hazy
boundary. We do not; we do not want that hazy boundary; we want it to be nice and
smooth. So, in case you want to do that you must do what is called as a blurring

operation on the image ok.

(Refer Slide Time: 27:59)

So, let me keep it like this, let me blur the image, alright. So, this is the thresholded

image. Before thresholding we are going to apply a median blur where there is various

kinds of blurs that exist. There is a Gaussian blur, there is a median blur. So, let me show

you all the functions.

(Refer Slide Time: 28:27)

csce G0 o 0 [~ 9%

Googe S

00 OpenCV s
Open Source Computer Vision

MainPage RelatedPages Modues Namespaces~ Classes~ Fies+ Examples Javadocumentasion Q-

Image Processing in OpenCV

+ Changing Colorspaces

spaces. Pls leam to Yack navideo
+ Geometric Transformations of images
m to apply transiation etc.
« image Threshoiding
1o binary images using Adzpive hreshaiding, Ofsu

+ Smoothing kmages
Leam o b the inages, e e nages Wi cusom kel .

+ Morphological Transformations
Leam about morphological Fansiormations ke Erosion, Diaton, Opering, Ciosing et

+ image Gradients

Leam to fnd image gradient, edges etz

So, | am showing it through this because it is easier to show all the functions.

(Refer Slide Time: 28:30)

Google

00 OpenCV s

Open Source Computer Vision — .

OperCPytren Toras | Image Processing n OpenCY

Smoothing Images

Goals
Leam to:

+ B images with various low pass fiters
« Apply cusiom-made fites to images (20 comvoluson)

2D Convolution (Image Filtering)

As In one-dimensional signals, images also can be ftered with various low-pass iters (LPF), igh-pass fiters (HPF), ek LPF heips in removing noise,
etc. HPF nimages.

Asan exampl, we wil try an averaging fiter 0 2n image. A 515 averaging iter

Kemel wil look like the below:

(Refer Slide Time: 28:31)

Note

er(). Pass an argument nommaiize=Faise fo e funcion

So, if this is the original image the blurring will cause it to become like this.

(Refer Slide Time: 28:39)

Note
Myou dont wank 0 use a nomaiized box iter, use cv.boxFiler). Pass an argument nommalize=Faise fo e funcion

Check a sample demo below with a kemel of 515 size:

| am trying to show you the workflow how you go around doing it.

(Refer Slide Time: 28:43)

e funcsion, cv.GaussianSlurf). We shoud specty the wicth and height of the
Inthe X and Y direcsns, sigmaX and sigma respecth
they are cakuated from the kemel sze. Gaussian bluring s highly

The above code can be modified for Gaussian bluring
blur = (isg, (5,5),9

Resut

3. Median Blurring

So, Gaussian blur is a very popular way of doing it and it takes a Gaussian kernel and
does the blurring for you, ok.

(Refer Slide Time: 28:54)

So, we are going to say imgblur = cv2.GaussianBlur. We are going to pass the image, we
are going to pass the kernel size. So, what all things you need to pass? You need to pass
the image on which you want to do it, you want to also do the GaussianBlur the kernel

the size of the blur ok.

(Refer Slide Time: 29:17)

€-=ce & Bom ~8¢ nDOo*OES =
+ GaussianBlur()
void ov:GaussianBlur { InputArray src,
OutputAmay dst,
sz sz,
duble sigmaX.
duble signa¥=e
nt borderType = 0028 DEFAULT
)
Python:
dst= v GaussianBlur{ rc, ksize, sigmaX], dsq|, sigma], borderTypell)
binclude Copencid/ingoroc.bop>
Biurs an image using 2 Gaussian iter
In-place fitering is supporied.
Parameters
sre inputimage; the image can have any nannels, which bt /80,
(GV_16U, CV_16S, GV_32F or CV_64F.
dst '+ outputimage of the same size and type as stc
ksize Gaussian keme! size. ksize width and ksize height can diflerbutthey both must be posiive and odd. O, hey can be 2er's and then
they are computed from sigma.
sigmaX Gaussian keme! standard deviation in X direction.
sigma¥ Gaussian keme! standard deviatonn Y irecion: sigma is zem, s set o be equal 0 sigmaX, both sigmas are zeros, they are:
computed from ksize width ight respectively detais) o uly
possbie ft 10 specit all of ksize, sigmaX, and signay.
borderType pixel exrapoiation method, see Border Types. BORDER_WRAP s not supported.
Loadeg MahJas)eensonsManZoom s See also

So, the parameters. So, this is the C++ version of it.

(Refer Slide Time: 29:24)

€sce 04 8 = A nDoe*OES =
Python
dst'= ov.GaussianBlur{ stc ksize, sSigmaX], dsq, sigma¥T, borderTypel])
Sinclude Copenced/iogproc.bop>
Burs an image using 2 Gaussian iter
age In-place iterng i supporied
Parameters
st input image; the image can have any number of channeis, which are processed independent, but the depth shoukd be CV_8U,
GV_16U, CV_16S, GV_32F or CV_64F.
dst output image of the same size and type as s1c.
ksize Gaussian kemel size.ksize widh and ksize height can difler butthey both must be posiive and odd. O, hey can be 2er's and then
they are computed from sigma.

sigmaX Gaussian keme! standard deviation in X direction.

sigma¥ Gaussian keme! standard deviaton'n Y direcion: sigmaY is 26, s set to b equal 0 igmaX, both sigmas are zeros, they are:
computed Sght respectively detais) o fuly
possie fu this semanics, & 10 specity all of ksize, sigmaX, and signay.

borderType pixel exrapoiation method, see Border Types. BORDER_WRAP s not supported

Seeaiso
sepFilter2D, fter2D, biur, boxFilter, bilateralFiter, medianBiur

Examples:

/Sobel_Demo.cpp.

+getDerivKemels()

void o geiDerhemes (Outputrray b

[< R

But, the C version also works in a similar fashion ok, alright. So, based on the kernel size
it is going to figure out what the standard deviations are going to be and typically we

keep it 0 to keep everything normalized, alright.

(Refer Slide Time: 29:52)

So, isolated, (5,5), 0. So, once it is done we going to well we can show the blurred image
also. So, let me do that. So, let me say cv2.imshow("After blurring”, imgblur). Let me
take this over here makes channel before blurring this is after blurring, this is after
threshold. Now, a threshold will be actually applied on imgblur, alright. So, let me go

over here. This g should be a capital G ok, yeah.

(Refer Slide Time: 30:43)

So, look at the two images. So, this is before blurring and this is after blurring. So, the

edges seem to have smoothened out.

(Refer Slide Time: 30:58)

In fact, let me increase the size of the kernel to 10 x 10. So, you have a larger area of

blurring 1 have to close the windows you need to give it an odd number.

(Refer Slide Time: 31:22)

So, you need to give it an odd number, you cannot give it an even number because it is
going to center and so, if it is 1 it is centered, if it is 3, then the nearest neighbours are

taken if it is 5 then two on this side, two on this side, two above, two below ok that is

why it needs to be an odd number ok.

(Refer Slide Time: 31:41)

So, this is the original image, this is the blurred image. So, all those freckles on the
boundary because of the bad lighting sort of smoothened out.

(Refer Slide Time: 31:52)

Once it is smoothened out you get a nice contour well there are some things going on,
but anyway you can actually do a medium blur and get rid of that as well but, we do not

bother so much about that. We will get a good answer regardless ok.

(Refer Slide Time: 32:03)

So, so far we have seen the following. We have seen this is the channel mixing, once we
have mixed the channels we have performed a gaussian blur. After doing a gaussian blur,

we have thresholded the image.

These are the three basic things we have done. In the next video, we are going to move
ahead on this and we are going to combine all this in the form of a continuous evaluation

of all the frames. So, with this I end this particular lecture, 1 will see you next time. Bye.

