
Tools in Scientific Computing

Prof. Aditya Bandopadhyay

Department of Mechanical Engineering

Indian Institute of Technology, Kharagpur

Lecture - 41

Image processing – preliminaries

Hi, everyone. In this lecture we are going to start with some Image Processing. So, let

me show you a quick video.

(Refer Slide Time: 00:40)

So, this is a video I took with my mobile phone of a deflating balloon.

(Refer Slide Time: 00:51)

So, it is a yellow coloured balloon ignore the light on the right, but essentially I fill the

balloon with air and let it deflate and as trivial as it seems the question is how does the

radius of the balloon change over time. And, I know what you are thinking I mean it is a

very easy problem, but making the computer do this problem for you that is a bit of a

challenge.

I have tried to make the video have a good contrast meaning visually speaking there has

to be a good difference in the background and the foreground. So, obviously, the

foreground consists of a bunch of things. It consists of my hand, it consists the balloon, it

consists the switchboard, it consists the green light, it is a night lamp, but yeah it does

consist of a bunch of things.

And visually we can clearly make out that the balloon is changing shape over time. And,

additionally you can see the reflection of the tube light on the balloon as well over here.

So, with all this the question is how do you make the computer do this? So, you may

think ok I am going to find out the boundary of the balloon, find out the perimeter and do

the thing like that.

But, let us see how we can achieve this using Python. Most likely for this lecture we will

not have something in octave we will just keep things in Python because OpenCV is a

very robust library which helps us in image processing well. OpenCV originally is made

for C++ once you require lot of speed you can start coding in C++, but in the end

whatever you are doing in Python is actually calling the C++ routines or C++ programs

in the backend.

So, it does not make a difference. And, this is just the starting of it I mean here it is a

case of a balloon which is deflating. You could extend the same logic to for example, a

vesicle. So, what is a vesicle? Vesicle is a membrane filled with fluid and if you have a

solution which is hypertonic or hypotonic meaning the concentration of salt inside the in

the fluid inside the membrane is different than the fluid outside.

Then either fluid will rush into the membrane causing it to swell or fluid will leave the

membrane causing it to shrink such kinds of things. Once you observe under the

microscope you can apply this kind of image processing techniques to analyze what their

change of shape is and through this very simple example I will be demonstrating a bunch

of image processing tools and I will leave it on to you to explore further.

And, such kinds of things are quite useful from the point of view of scientific computing

because you know numeric’s and experiments always go hand in hand. So, let me close

this video. In this particular video we are not going to make use of the JupyterLab

notebook environment, but rather we are going to directly write a code in Python.

(Refer Slide Time: 04:28)

Many of you have been wondering whether JupyterLab is required for doing all this. The

answer is no. We can directly do stuff with simple plain text file as well a simple ASCII

encoded file as well.

(Refer Slide Time: 04:44)

So, to create a new file I have navigated to my folder.

(Refer Slide Time: 04:50)

So, I have opened up the command prompt over here and I have navigated to the folder

in which I have all my files.

(Refer Slide Time: 04:58)

I am I am doing a DIR, I will go to cd lec 41 dir ok.

(Refer Slide Time: 05:04)

So, it contains the file under question let me increase the size a bit so that you can ok.

This is the local folder that we are working with alright fair enough. So, on the left I have

opened up a new file. So, let us start writing the code.

(Refer Slide Time: 05:26)

So, let us import cv2.

(Refer Slide Time: 05:30)

So, cv2 is the name of the library. So, let me save it. I am going to save it in our folder

lecture 41 like 41. py.

(Refer Slide Time: 05:39)

So, we are going to save it as .py, which indicates it is a Python py, alright. So, import

cv2. This helps in importing the modules which contain the image processing toolbox.

This is for image processing then we are going to import numpy as numpy as np import

mat well, we do not need my plot living in this particular case. So, never mind that. So,

we are going to just need cv2 and numpy, right.

Then what do we do? So, first things first we have video we have a dot mp 4 file. Now,

you could do many things you could use ffmpeg and export each frame of the mp 4 file

to a single image. Yeah, that is the perfectly fine way of going about things. In fact,

when you do high speed imaging that is how you would obtain your raw files. You

would obtain each frame as you go.

You would not obtain a single video file, you will obtain a bunch of files. Those will be

static images, but in Python if you have a mp 4 file you can read it like we had read the

dot wave file in the case of audio processing. So, we have imported cv2, now we will use

the cv2 video capture to load the file. So, we are going to do the vid =

cv2.VideoCapture("balloon.mp4").

.

(Refer Slide Time: 07:31)

So, the name of the file is ok VID, let me do one thing let me call it simply balloon,

right.

(Refer Slide Time: 07:40)

So, I will call this balloon.mp4. Now, once I have this what I need to do is, I need to sort

of read each frame of this object vid. So, how do I do that? I say ret, img = vid.read()

and this will help me acquire each frame. So, actually once I do this it will only read the

first frame.

If I redo the same command over here it will read the second frame. So, it will read a

read image and go to the next frame. Once I call this again it will again read it and go to

the next image. So, each time I do this well now you can imagine you can do this in a

loop to loop over all the frames, but yeah let me do that. Let me first show you how it is

true.

(Refer Slide Time: 08:37)

So, while TRUE meaning while it is True and while one I mean this loop will go on

forever, then what you will do is you will capture the image and now you will display the

image. So, how do you display the image? So, you would do cv2.imshow (i). So, you

need to give it a title balloon deflate and then you will type down the name of the frame.

So, the name of the frame is img.

So, once you execute this you have to do cv2.waitKey 1 which is to ask the computer to

wait for a while 1 millisecond before going to the next. So, let me save this. Let me go

over here. Let me do python lec41. py ok. So, there you go. So, now, you will say that ok

wait there is a there is a error over here. So, why this error? And, the reason is once it

runs out of frame to read the return value will throw an error. So, let us do that.

(Refer Slide Time: 09:54)

Let me print the value of ret.

(Refer Slide Time: 09:59)

So, you will realize that it is true and suddenly it goes false.

(Refer Slide Time: 10:01)

So, then the loop exits that is a very hard way of stopping the loop, but in our case it

checks out. It does not bother us in any way, it is fine ok. So, this is the basic loop that

you will you are going to do. In case you want to increase the delay you can simply make

it 100.

(Refer Slide Time: 10:22)

So, then you will perceive the code running with a larger delay.

(Refer Slide Time: 10:30)

So, let me run this. So, look, that there is a larger delay in the point.

(Refer Slide Time: 10:34)

So, you can stop execution of this file by pressing control C. It sends a keyboard

interrupt to the terminal and it close away. So, let me clear the screen, alright.

(Refer Slide Time: 10:47)

So, we are going to keep it as 1. We are going to keep 1 millisecond delay. Now,

whatever code has to be done is going to be inside this, alright. So, now, before going

into the code section of it, we must sort of understand what an image is, right. So, let me

make this while False, so that we do not go into this loop.

Now, I am going to do this; I am going to do this. So, I am reading one frame and after

reading this frame I am going to print out what actually img is or np.shape (img), so that

we know what this object actually is alright. So, I have saved this file let me execute this

code. So, the shape of img is 720  1280  3 meaning the camera that I have on my

phone and I was recording it at 720p.

So, the frame size is 720  1280 and the 3 actually represent three channels. So, it has

three channels, the three channels are b, g and r; blue, green and red. So, each image is

composed of three stacks. So, one stack is the blue channel, one stack is the green

channel and one stack is the red channel.

(Refer Slide Time: 12:28)

So, if you have a photograph which is dominant in red, then the r channel will show 255.

So, 255 means highest value of saturation. If you have something which is blue, the blue

channel will show high degree of saturation; if you have intermediate colors you will

have some linear combination of this colors, right.

(Refer Slide Time: 12:47)

So, now let me show you what these individual channels look like.

(Refer Slide Time: 12:47)

So, let me do this. So, b, g, r = cv2.split. So, this cv2 dot split command it splits the

image into the three channels. So, img and astype float and the reason ok let me not do

this first. Let me just do this and let me do cv2.imshow this will be blue channel, this will

be b. cv2.waitKey 0, alright. So, let me execute this.

(Refer Slide Time: 13:29)

So, this is the first frame and this shows the blue channel. So, in the blue channel, the

yellow color appears as black, ok. In the blue channel, the yellow color appears as black

ok.

(Refer Slide Time: 13:42)

(Refer Slide Time: 13:52)

So, let me now print show the red channel. In the red channel the yellow color appears as

white, alright.

(Refer Slide Time: 13:59)

In the green channel, do not bother with the title of the frame. So, I have saved this. I am

going to run this.

(Refer Slide Time: 14:08)

It also appears as white, but notice how the bulb color has changed anyway.

(Refer Slide Time: 14:14)

So, this is how we can split, but now what I want to do is I want to do some arithmetic on

the image. So, what do I mean by doing some arithmetic on the image I will have some

b, g and r. I would like to do some linear combination of b, g and r, so that the balloon is

most prominent, the other things are not that prominent.

This means I am going to mix the channels and create a composite image. For that I must

first export b, g and r as float this will help in doing the arithmetic later on. Now, once I

have split the channels I am going to create a composite image. So, I am going to make

isolated = c1*g + c2*b + c3*r, ok.

I am going to do this. Now, what is the purpose of doing this it will be clear. So, let me

denote c1=1.5, c2 as 0 or I can write this c1 yeah, c1 = 1.5, c2 = 0, and c3 = 0.5. Now,

what it is going to do it is going to take the blue channel amplified by 1.5 times and it is

going to add it to the red channel by taking half of its magnitude.

And now, let us see how it looks. So, cv2.im cv2.imshow mixed channel isolated and in

fact, before we show it as an image, well let us see I think this is going to throw an error.

Yeah, it is not going to show anything and the reason is quite clear because this is. So,

isolated is now of a data type float we must convert it from float to a data type. This is

the data type image or integer.

(Refer Slide Time: 16:41)

So, we must convert it. So, we will say isolate or we can simply say int. Let us see

whether this works ok. So, it is not going to work. So, we have to do it the hard way that

is isolated = isolated.astype(img.dtype). So, it is the data type of an image ok. So, this

particular line means whatever the data type of an image is you typecast isolated back to

it.

(Refer Slide Time: 17:25)

Now, let us see whether it works.

(Refer Slide Time: 17:27)

Perfect, it works. So, now, what have I done? I have removed the green channel

completely and if you remove the green channel completely you are going to see a bunch

of things loose fading out. So, there is no channel over here because this was

predominantly green ok. So, you sort of see how mixing the channels kind of work.

(Refer Slide Time: 17:47)

So, now, let me do this let me do c3 as minus.

(Refer Slide Time: 17:53)

Let me see how it looks. You see that we are slowly getting towards the edge ok. Forget

about all this. The hand has become darker, but this is where the edge detection will

going to work it is going to work really nicely.

(Refer Slide Time: 18:08)

In fact, I have done the trial and error for this and if you do this, it is going to work out

the best and this combination of channels was suggested to me by one of my students

Shriyansh Darshan. He is a very talented person in all these kind of things and he helped

me figure out the different biases of the channels ok.

(Refer Slide Time: 18:37)

So, now let me run this and show you how it will look. So, once you do this, it looks as if

that edge is very distinct, alright.

(Refer Slide Time: 18:49)

So, things are going in the right direction ok, alright.

(Refer Slide Time: 19:05)

So, actually before converting into sorry, from the image what it seemed like there was

some saturation in the image like these areas are saturated.

(Refer Slide Time: 19:08)

So, we can always clip the image to something between 0 and 255. So, typically the

images the integer values are going from 0 to 255 meaning there is 256 levels of

information ok. So, we are going to do that. So, isolated = np.clip(isolated, 0, 255) and

we are going to clip isolated actually we are going to clip it before type casting it to the

data type. So, we are going to clip it between 0 and 255. So, let us see what this gives us

and this should give this gives nothing. I have put in the coefficients incorrectly. So g, b

ok.

(Refer Slide Time: 20:20)

So, let us see.

(Refer Slide Time: 20:24)

Yeah, ok. So, once you mix those channels up this is what you obtain. You obtain an

image where everything is sort of darkened out accepting for the balloon and the small

light shadow of the fluorescent tube onto the image. Well, that is not going to be of a lot

of concern to us because in the end it is going to work out quite well.

So, as you can see in that such a channel mixing gives you a nice sort of binary feel to it.

This is not yet binary because the data type varies from 0 to 255 we have clipped it like

this, but the important thing is once you threshold this image it is going to look much

better.

(Refer Slide Time: 21:22)

So, what I am going to do is I am going to remove this for now or I am going to keep it

over here because we will require it later on. So, I have obtained an image which is

which seems like it can help even a blind person figure out what the two things are. You

can see white and you can see black.

So, that the boundary is the balloon. Now, what you need to do is you need to do two

things first is you need to threshold an image. So, what is thresholding an image? So, let

me (Refer Time: 22:05) show you what thresholding means.

(Refer Slide Time: 22:08)

So, imagine you have and a signal like this ok and you say that this is my threshold

value. So, what it will do is all the values below this it will put to 0, all the values above

this threshold it will put to 1. So, this is effectively binarizing your image. It is going to

convert whatever image you have to either low or high ok.

So, if you have a smooth variation like this, it will convert it into something which is

sharp ok. So, imagine you have an image or earth signal that goes like this and if this is

the threshold value ok, then what will happen? The signal will be looking like this ok

that is what it is. You are going to convert it into binary, alright. So, let us go over here.

(Refer Slide Time: 23:25)

Now, let us do that thresholding. So, we are going to have ret, imgth = cv2.threshold.

Now, you are going to pass isolated to it; the image that on which you want to apply the

thresholding and you are going to give the lower value of the threshold and the where

you want to threshold it to.

So, if I want to threshold it all the way to the top I can do that. I can say any value which

is larger than 50 is going to be thresholded to 255 and the type of thresholding. So, we

can have various kinds of thresholding and the type of thresholding is going to be

THRESH BINARY meaning it is one eventually converted to 0s and 1s.

(Refer Slide Time: 24:16)

So, let me show you how they look.

(Refer Slide Time: 24:21)

So, let me just show you the documentation of this so that it is clear what thresholding

means.

(Refer Slide Time: 24:32)

(Refer Slide Time: 24:53)

So, this is the channel mixing that we spoke about it is called as image blending. So, this

is a bitwise operation we do not need that ok.

(Refer Slide Time: 25:18)

So, this is what we are doing. So, if this is the original image. If you do it as a binary

thresholding, if this is the threshold gray scale then all the gray scales below that will be

put to white and all the gray scales above that will be put to black. This is what is going

on and there is also a mode called binary inverted. So, it is going to take that threshold

and invert it.

So, it is quite, it is quite useful in case you want to make masks or whatever. So, in order

to make masks the useful threshold functions are TRUNC, TOZERO and TOZERO

inverse, meaning if you put TOZERO it will put everything below a certain threshold to

black, but above it is going to leave the image unchanged ok. These are also quite

important in case you want to make masks. Well, so, here we going to convert it to

binary.

(Refer Slide Time: 26:13)

And, let me show you the image after converting it to binary, alright. So, let me execute

the file. Oops I forgot to write the name this should be waitKey, alright.

(Refer Slide Time: 26:45)

So, this is the thresholded image.

(Refer Slide Time: 26:49)

This was the original image.

(Refer Slide Time: 26:52)

In fact, let me remove this, so that the two windows are open side by side.

(Refer Slide Time: 26:57)

So, this is the mixed channel thing and this is when it is converted into binary, alright.

(Refer Slide Time: 27:06)

So, let me close the two windows. Let me in-fact, show you what the value of image

threshold will be or the maximum value. So, let us say print np.max imgth. So, let me

run this.

(Refer Slide Time: 27:21)

So, it is 255. So, it is converted it to max and taken the other thing to 0. It is binary

because there is only two levels that is 0 or 255 great.

(Refer Slide Time: 27:36)

(Refer Slide Time: 27:42)

So, well there is a small thing I would like you to look over here is this little hazy

boundary. We do not; we do not want that hazy boundary; we want it to be nice and

smooth. So, in case you want to do that you must do what is called as a blurring

operation on the image ok.

(Refer Slide Time: 27:59)

So, let me keep it like this, let me blur the image, alright. So, this is the thresholded

image. Before thresholding we are going to apply a median blur where there is various

kinds of blurs that exist. There is a Gaussian blur, there is a median blur. So, let me show

you all the functions.

(Refer Slide Time: 28:27)

So, I am showing it through this because it is easier to show all the functions.

(Refer Slide Time: 28:30)

(Refer Slide Time: 28:31)

So, if this is the original image the blurring will cause it to become like this.

(Refer Slide Time: 28:39)

 I am trying to show you the workflow how you go around doing it.

(Refer Slide Time: 28:43)

So, Gaussian blur is a very popular way of doing it and it takes a Gaussian kernel and

does the blurring for you, ok.

(Refer Slide Time: 28:54)

So, we are going to say imgblur = cv2.GaussianBlur. We are going to pass the image, we

are going to pass the kernel size. So, what all things you need to pass? You need to pass

the image on which you want to do it, you want to also do the GaussianBlur the kernel

the size of the blur ok.

(Refer Slide Time: 29:17)

So, the parameters. So, this is the C++ version of it.

(Refer Slide Time: 29:24)

But, the C version also works in a similar fashion ok, alright. So, based on the kernel size

it is going to figure out what the standard deviations are going to be and typically we

keep it 0 to keep everything normalized, alright.

(Refer Slide Time: 29:52)

So, isolated, (5,5), 0. So, once it is done we going to well we can show the blurred image

also. So, let me do that. So, let me say cv2.imshow("After blurring", imgblur). Let me

take this over here makes channel before blurring this is after blurring, this is after

threshold. Now, a threshold will be actually applied on imgblur, alright. So, let me go

over here. This g should be a capital G ok, yeah.

(Refer Slide Time: 30:43)

So, look at the two images. So, this is before blurring and this is after blurring. So, the

edges seem to have smoothened out.

(Refer Slide Time: 30:58)

In fact, let me increase the size of the kernel to 10  10. So, you have a larger area of

blurring I have to close the windows you need to give it an odd number.

(Refer Slide Time: 31:22)

So, you need to give it an odd number, you cannot give it an even number because it is

going to center and so, if it is 1 it is centered, if it is 3, then the nearest neighbours are

taken if it is 5 then two on this side, two on this side, two above, two below ok that is

why it needs to be an odd number ok.

(Refer Slide Time: 31:41)

So, this is the original image, this is the blurred image. So, all those freckles on the

boundary because of the bad lighting sort of smoothened out.

(Refer Slide Time: 31:52)

Once it is smoothened out you get a nice contour well there are some things going on,

but anyway you can actually do a medium blur and get rid of that as well but, we do not

bother so much about that. We will get a good answer regardless ok.

(Refer Slide Time: 32:03)

So, so far we have seen the following. We have seen this is the channel mixing, once we

have mixed the channels we have performed a gaussian blur. After doing a gaussian blur,

we have thresholded the image.

These are the three basic things we have done. In the next video, we are going to move

ahead on this and we are going to combine all this in the form of a continuous evaluation

of all the frames. So, with this I end this particular lecture, I will see you next time. Bye.

