Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture — 04
Matrix Manipulations Mohr’s circle

Hello everyone, we are in lecture 4. It is going to be a bit of a stressful lecture in the sense
that we are going to study Matrix Manipulations. In particular, we will look at how rotation

of a coordinate system leads to changes in the elements of the stress tensor. So, let us begin.
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import numpy as np

o Find out
u Transpose
s Determinant
8 Inverse of a matrix

A = np.array([[3, 2, 1], [5, 7, 41, [9, 6, 8]1); print(A);
321]

[574]
[968]]

1 http:/ /www.facweh.iitkgp.ac.in/~adityab/lecture_listhtml as a

So, let us first import numpy. So, now, let us first look at some elementary matrix operations
in particular let us find out the transpose of a matrix, let us find out determinant of a matrix.
Let us find out the inverse of a matrix ok. So, let us first define a matrix to work with. So, let

us say A = np.array and we want a 3 * 3 so, there have to be three entries like this.

So, I have made three sets of bracket the first set of bracket is to show that it is an entire
matrix, then we have this set of bracket, this set of bracket and this set of bracket; so, each of
these three brackets stands for rows. So, let me define 3, 2, 1, 5, 7, 4 and 9, 6, 8. So, let us

print what A is also ok. So, A is this 3 X 3 matrix.
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| 1 o 2 21 57 6 6 00 e :
Bs
[[321)
[574]
(9 6 8]

:weh.iitkgp.ac.in/~adityab/lecture_list.html as a quick reference
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import numpy as np

* find out
u Transpose
® Determinant
® Inverse of a matrix
3]: |A = np.array([[3, 2, 1], [5, 7, 4], [9, 6, 8]]); print(A);
B = np.transpose(A); print(B);
CafT;

So, now, let us find out the transpose of A. So, let me go over here B = np.transpose(A). Let

me print what B is. So, if you look at the output in A, the first column was 3, 5, 9 whereas, in

B the first column is the first row rather is 3, 5, 9; so, successfully taken a transpose of the

matrix A.

There is another way of defining the transpose of a matrix. So, C = A.T. So, this is also a way

of transposing the matrix A in the sense that the object A has a method transpose denoted by

T ok.
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Length: 3

File: f:\anaconda\lib\site-packages\numpy\_init_ .py
Docstring: <no docstring>

Class docstring:
ndarray(shape, dtype=float, buffer=None, offset=8,
strides=None, order=None)

An array object represents a multidimensional, homogeneous array

of fixed-size items. An associated data-type object describes the
format of each element in the array (its byte-order, how many bytes it
occupies in memory, whether it is an integer, a floating point number,
or something else, etc.)

Arrays should be constructed using ‘array’, ‘zeros’ or ‘empty’ (refer
to the See Also section below). The parameters given here refer to
a low-level method ('ndarray(...)") for instantiating an array.

For more information, refer to the “numpy’ module and examine the
methods and attributes of an array.

Parameters

(for the _new__ method; see Notes below)

shape : tuple of ints
Shape of created array.
dtype : data-type, optional
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T : ndarray

Transpose of the array.
data : buffer
The array's elements, in memory.
dtype : dtype object
Describes the format of the elements in the array.
flags : dict
Dictionary containing information related to memory use, e.g.,
'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
flat : numpy.flatiter object
Flattened version of the array as an iterator. The iterator
allows assignments, e.g., ~'x.flat = 3" (See "ndarray.flat’ for
assignment examples; TODO).
imag : ndanray
Imaginagy part of the array.
real : ndarray
Real part of the array.
size : int
Number of elements in the array.
itemsize : int
The memory use of each array element in bytes.
nbytes : int
The total number of bytes required to store the array data,
i.e., itemsize * size''.
ndim : int
The array's number of dimensions.
shape : tuple of ints
Shape of the array.
strides : tuple of ints

Tha séan_riea manuinad $a maun Snnm Ana Alamant #a bha mavé in

So, if in fact, if we double click on A and go to the contextual help, it will show some of the

attributes such as A.data, A .dtype.
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lodified | base : ndarray
If the array is a view into another array, that array is its "base’
(unless that array is also a view). The "base’ array is where the

array data is actually stored.

See Also

array @ Construct an array.

zeros : Create an array, each element of which is zero.

empty : Create an array, but leave its allocated memory unchanged (i.e.,
it contains "garbage").

dtype :iCreate a data-type.

There are two modes of creating an array using **_new_"":

1. If "buffer’ is None, then only "shape’, "dtype’, and "order’
are used.

If "buffer’ is an object exposing the buffer interface, then
all keywords are interpreted.

~

No *'_init_"" method is needed because the array is fully initialized
after the *'_new_" " method.

Examples

These examples illustrate the low-level “ndarray’ constructor. Refer
to the "See Also’ section above for easier ways of constructing an
ndarray.

So, apart from these attributes, it also has that method of finding out the transpose ok.
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import numpy as np

¢ Find out
» Transpose
= Determinant

w |nverse of a matrix

A = np.array([[3, 2, 1], [5, 7, 4], [9, 6, 8]]); print(A);
B = np.transpose(A); print(B);

C = A.T; print(C);

print(np.allclose(8, C));

So, let us go back over here. Let me in fact, print C to convince you that C is in fact, the
transpose of A ok. So, there is another way of checking whether two matrices whether all the

elements are equal.

So, suppose I have done the transpose using the two methods one is np dot transpose and one
is A.T and I want to check whether B and C are equal. So, the way to do that is so, let me just
put it directly in print. So, print(np.allclose(B, C)) and it says true meaning all the elements of

B are identical to the elements of C.
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Matrix Manipulation

import numpy as np

¢ Find out
= Transpose
= Determinant
® |nverse of a matrix

A = np.array([[3, 2, 11, [5, 7, 4], [9, 6, 8]1); print(A);
B = np.transpose(A); print(B);

C = A.T; print(C);

print(np.allclose(s, A));

574 &

In fact, if I do np.allclose(B, A), it says false because; obviously, B is a transpose of A.

Moreover, A.T this should show True ok.
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import numpy as np

¢ Find out
= Transpose
= Determinant
u Inverse of a matrix

A = np.array([[3, 2, 1], [5, 7, 4], [9, 6, 8]]); print(A);
B = np.transpose(A); print(B);

C = A.T; print(C);

print(np.allclose(B, A.T));

21] b
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Matrix Manipulation

import numpy as np

# Find out
= Transpose
= Determinant
s |nverse of a matrix

:|A = np.array([[3, 2, 1], [5, 7, 4], [9, 6, 8]]); print(A);
B = np.transpose(A); print(B);
C = A.T; print(C);
print(np.allclose(B, C)); # To check whether all the elements of B are equal to C.

B21]

So, this is how we can make checks. So, this is to check whether all the elements of B are
equal to C. So, even if one element is not equal, it throws false and the reason why it is called

all close? So, in this case, we are using integers as inputs to the array.

In case, you start using floating point numbers, then precise equation, precisely equating two
floating point numbers is not something which is logical to do rather the fact that a computer
has a finite representation in terms of bits so, that implies that you will always be restricted
by the representation of a number ok. So, often 0.0016 and 0.001599 so, they have to be

interpreted as the same number that is why it is called as all close.

(Refer Slide Time: 05:56)



lodified

Suw LuIEAwar e ~ unuvewpyy -

Docstring:
print(value, ..., sep=' ', endz'\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.stdout.

sep:  string inserted between values, default a space.

end: string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.

Type: builtin_function_or_method

And in fact, in the function allclose, we can specify the tolerances it is not showing it in the

help, but in allclose, you can specify the tolerance. I mean we will look at it later on, we will

encounter this later on as well.
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# |nverse of a matrix

A = np.array([[3, 2, 1], [5, 7, 41, [9, 6, 8]]); print(A);
B = np.transpose(A); print(B);
€ = A.T; print(C);

print(np.allclose(B, C)); # To check whether all the elements of 8 are equal to C.

[321]

print(A);
d = np.linalg.det(A);
print(d);

[1321]

[574]

(96 8]}
55.000000000000014

Python3 Q

So, let us continue let us find out the |A|. So, in order to find out the determinant, we must let

me create a new cell. So, let me print out A real quick ok. So, in order to find out the

determinant, we must make use of the linalg sub-module of numpy. So, let us call it d =

np.linalg.det(A). So,

let me print d as well.



So, the determinant is equal to 55.000014 and you can do it by hand, you can do it by hand,
and you will see that the determinant is actually 55 ok. If you take out the determinant of this,
you will find out it is not 55.0000014, but it is rather 55 and this is what I just spoke about. It
is because of the finite accuracy and representation of a number in a computer ok, it is stored

in bits and thus, there will always be these small errors ok.
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A = np.array([[3, 2, 1], [5, 7, 4], [9, 6, 8]]); print(A);

B = np.transpose(A); print(B);

C = A.T; print(C);

print(np.allclose(B, C)); # To check whether all the elements of B are equal to C.

[(321]
[574]
[968]]

[[359]
[276]
[148]]

[[359]

[276]

[148]]

True

print(A);

d = np.linalg.det(A);
print(d);

[(321]

[574]

[968]]
55.8000908000008014

I Let's see whether $|\mathbf{A}\cdot \mathbf{B}| = |\mathbf{A}|\cdot |\mathbf B‘B

b

So, let us look at a very important property of two matrices. So, let us see whether

| A-BI=[A]"[B|
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55.000000000000014

Let's see whether |A - B| = |A| - [B|

A = np.random.randint(1, 16, size=(3,3));
8 = np.random.randint(1, 10, size=(3,3));
print(A, B)

[[145)]
[742]
[573]][[996]
[186]
[975]]




So, let us look whether this holds true or not. So, let us initialize two random matrices. So, A
= np.random.randint() and say we want to sample randint from 1 to 10 and the size let us
declare it as 3 * 3. Similarly, B will be the same thing and the fact that you are calling it

twice; it will generate a new random array. So in fact, let me print both A and B.
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Let's see whether [A - B| = [A| - |B|

A = np.random.randint(1, 10, size=(3,3));
B = np.random.randint(1, 10, size=(3,3));
print(A); print(B);

[[8 48]
[674]
[261]] [
1267
[176]
[6 9 6])
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55.000000000000014

Let's see whether [A - B| = [A] - |B|

A = np.random.randint(1, 10, size=(3,3));
8 = np.random.randint(1, 10, size=(3,3));
print(np.allclose(A, B));

False k

So, A and B are obviously, different and another way, another professional way to check

whether it is different is this should be false and it is false. So, it means A and B are distinct.
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Let's see whether [A - B| = [A| - |B|

A = np.random.randint(1, 18, size=(3,3));
B = np.random.randint(1, 10, size=(3,3));
C = np.dot(A, B); # Matrix multiplication
d = np.linalg.det(C);

e = np.linalg.det(A)*np.linalg.det(B);
print("LHS:%f\n"%d);

print("RHS:%f\b"%e);

print(np.isclose(d, e, rtol=le-5));

LHS:-36765. 000000

RHS:: -36765. 00000
True

So, let us do the following. Let us define C = np.dot(A, B). So, this is a way to do matrix
multiplication. So, the way to do matrix multiplication is the row of A multiplies the first row
of B and so on. It is the proper matrix multiplication, it is not an element wise operation, it is
what we have learned in school alright. So, let me call d as the determinant of C and let me

call e as the determinant of sorry A times this. Now, let me simply check np dot is close.

So, if we are trying to compare two scalar floating-point numbers instead of using all close,
we can use isclose. So, isclose is typically used for comparing two scalars. So, we want to
compare d and e and we give it a relative tolerance of le” for example, let me directly print
this. So, it says True. So, it is close, it gives true. Let me in fact, print so, let us say LHS:

%3.16f\n"%d and print RHS:%3.16£\b"%e ok. So, there you go.
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Let's see whether [A - B| = [A| - |B|

A = np.random.randint(1, 10, size=(3,3));
B = np.random.randint(1, 10, size=(3,3));
C = np.dot(A, B); # Matrix multiplication
d = np.linalg.det(C);

e = np.linalg.det(A)*np.linalg.det(B);
print("LHS:%3.16f\n"%d);
print("RHS:%3.16F\b"%e);
print(np.isclose(d, e, rtol=le-5));
print("Relerr:%3.16F"%(np.abs(1-d/e)));
LHS: -3485.9999999399977263

RHS : -3485.999999999999090

True
Relerr:@.2000000000000004

These are the two in fact, let me increase the number of digits it will print ok. So, in this
particular case, they are equal to a very large degree, let me run it again ok. Over here look at
this, it is 1440.0000 whatever and in this case, it is 1439.99999, but the relative error between

these two numbers is less than 107.

In fact, let us print out what the relative error between them is and the relative error will be
np.abs(1-d/e)). So, relative error is quite small in fact, its all the way and the last digit
becomes 4. So, because the relative error between these two numbers are quite small, for all

practical purposes in our calculation, we can consider these to be equal alright.
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lodified print("LHS:%3.16f\n"%d);
m print("RHS:%3.16F\b"%e);
print(np.isclose(d, e, rtol=le-5));
print("Relerr:%3.16f"%(np.abs(1-d/e)));

LHS: -3485.9999999999977263

RHS : -3405.999999999999090
True
Relerr:8.0800800880200004

Finding out the inverse

print(A);

[[114])
(468

[323])
i

a = np.linalg.det(R); print(a);

-26.0090000000000004

8 = np.linalg.inv(A); print(B);

[[-e.07692308 -0.1923769 ©.61538462]
[-8.46153846 ©.34615385 -8.30769231]
[ 8.38461538 -8.83846154 -0.87692388]]

So, we have so far considered the determinant, we have so far considered the transpose, let us
now proceed to find out the inverse of a matrix. So, alright. So, let me define let us define a
random [ mean we have already defined a random array so, let me print out that array. So,
this is the not the array, the matrix ok. This is the matrix A. Let us now try to find out the

inverse of this matrix.

So, an important property in order to find out the inverse is that the determinant must be non-
zero. If the determinant is 0, then we cannot find out the inverse. So, let us do a quick check
whether the determinant is 0 or not. So, let us say ¢ = np.linalg in fact, let me call it a =
np.linalg.det(A), print a. So, |A| is obviously, not equal to 0. So, in that case, we can find out
the inverse. So, let me call it B so, B = np.linalg.inv(A), let me print what B is. So, B is this

particular matrix.
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lodified print("LHS:%3.16f\n"%d);
print("RHS:%3.16F\b"%e) ;
) print(np.isclose(d, e, rtol=le-5));
print("Relerr:%3.16f"%(np.abs(1-d/e)));

LHS: -3405.9999999999977263

RHS : -3485.999999999999099
True
Relerr:8.8080800808080804

Finding out the inverse

print(A);
[[114]
{468]
[323]]
)
a = np.linalg.det(A); print(a);

-26.000000000000004

= np.linalg.inv(A); print(B);

[[-0.07692308 -0.1923769 @.61538462]
[-8.46153846 ©.34615385 -8.30769231]
[ ©.38461538 -0.83846154 -0.87692308]]

I Quickly check whether $A\cdot B = I

And let us do a Quick check whether A times B is equal to the identity matrix or not.
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a = np.linalg.det(A); print(a);

-26.000000000000004

B = np.linalg.inv(A); print(B);

[[-0.87692368 -0.19230769 ©.61538462]

.
[-0.46153846 0.34615385 -0.30769231]
[ ©.38461538 -0.03846154 -0.07692308]]

Quickly check whether A - B = [

I 24]: |C = np.dot(A, B); print(f);
| [[ 1.89000000e+00 2.775557568-17 -5.55111512¢-17)
(] 1 380 8

(e : ]
[ 6.60000000e+00 4.85722573e-17 1.00000000e+00)]

So, let me define C as C = np.dot(A, B) and let me print what C is. So, if you look at this, it is
1.00€° 2.77*10"7, -5.55 107" So, these are as good as 0 alright.
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So, np.round(C,1). So, np.round means rounded to the first decimal. So, in that case, instead
of having those very small numbers appearing, we round them off to one decimal place and

they do come out to be 1, 1, 1, 0, 0, 0, 0. So, C is an identity matrix, and this helps us in

Siuw LuieAwar e - unwucupyIg

B+ XDO» & Cc » Markdownv

B3230)
a = np.linalg.det(A); print(a);

-26.000000006000004

B = np.linalg.inv(A); print(B);

[[-0.07692308 -0.19236769 ©.61538462]
[-0.46153846 ©.34615385 -0.30769231]
[ ©.38461538 -0.03846154 -0.07692308]]

Quickly check whether A B= [

C=np.
1§32
[e.
e 1

S(AM-11)°T = (AT)A-19 :

oro o
oo

1
1
1

verifying what we already know.

This is quite a trivial task, but nevertheless it instills a bit of confidence. Let us do this
particular check as well this is a theorem in matrix algebra. So, A inverse transpose is equal

to A transpose inverse. So, let us see whether this is true or not.

ot (A, B); print(np.round(C, 1));

(Refer Slide Time: 15:54)
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B = np.linalg.inv(A); print(B);

[[-0.87692308 -0.19230769 ©.61538462]
[-8.46153846 0.34615385 -8.30769231]
[ ©.38461538 -0.03846154 -8.87692308]]

Quickly check whether A - B= [

C = np.dot(A, B); print(np.round(C, 1));

1 o -8.]
(6. 1 8]
le. o 1]]
(A = (4Ty"!

1lhs = np.transpose(np.linalg.inv(A));
rhs = np.linalg.inv(np.transpose(A));
print(1hs);

print(rhs);

print(np.allclose(lhs, rhs))

[[-8.07692308 -0.46153846 0.38461538]
[-0.19230769 0.34615385 -0.03846154]
[ ©.61538462 -0.30769231 -8.07692308]]
[[-0.07692308 -0.46153846 ©.38461538]
[-0.19236769 8.34615385 -8.83846154)%
[ 8.61538462 -8.30769231 -0.87692308]]
True

Python3 Q

Python3 O




So, let us say lhs and it is equal to np.linalg.transpose sorry transpose is not inside linalg, it is
simply outside, so lhs = np.transpose(np.linalg.inv(A)) so, this is lhs and rhs =

np.linalg.inv(np.transpose(A)). So, then let us print whether lhs and rhs are equal.

So, here we will write np.allclose(lhs, rhs). So, it says True meaning whatever we have
claimed to be true is in fact, true and these are very famous theorems in matrix algebra

obviously, they are True, but again it is just to demonstrate how we can manipulate matrices.

Let us print out the lhs and rhs just for good measure alright. So, visual inspection as well
allows us to see that lhs and rhs are equal. So, before proceeding, let us quickly save this file.

Let me rename it to be lec 04 alright.
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lodified 1hs = np.transpose(np.linalg.inv(A));
M rhs = np.linalg.inv(np.transpose(A));
print(lhs);
print(rhs);
print(np.allclose(lhs, rhs))

[[-0.07652308 -0.46153846 ©.38461538]
[-0.19230769 ©.34615385 -0.83846154]
[ .61538462 -0.30769231 -0.07692308]]
[[-0.07692308 -0.46153846 ©.38461538]
[-8.19238769 ©.34615385 -8.83846154]
[ 0.61538462 -8.38769231 -0.87692308] ]
True

I Multiplicatioly of matrices is not commutative: $A\cdot B \neq B\cdot 145

So, let us verify one more famous theorem in matrix algebra that Multiplication of two

matrices is not commutative that is 4B = B-A |

(Refer Slide Time: 17:54)



- TV -
B+XD0O»mcCc» Cde v Python3 Q
lodified “[-6.19230769 0.34615385 -0.03846154)]
[ 9.61538462 -0.308769231 -5.37592555]]
[[-0.87632308 -0.46153845 ©,38461538)

0.61538462 -0.30769231 -0.07692308]]

[
[-6.19230769 ©.34615385 -0.03846154]
!
rue

h(

Multiplication of matrices is not commutative: A- B# B- A
print(); print(8);
.07692308 -0.19230769 0.61538462]

.46153846  ©.34615385 -0.30769231]
.38461538 -B.BSEAE}H -8.07692308]]

t
[
[
([~
[
{

oo o

So, we have two matrices A and B already like this.
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P AP BxRaUsE a9, 113) )
lodified
[[-8.7692308 -8.46153846 ©.38461538]
m -8.19238769 ©.34615385 -8.03846154]

[

[

[ ©.61538462 -0.38769231 -8.87692308]]
[[-0.87692308 -8.46153846 ©.38461538]
[-0.19230769 ©.34615385 -8.03846154]
[ ©.61538462 -0.30769231 -0.07692308]]
rue

=

Multiplication of matrices is not commutative: A- B# B- A

A = np.randon.randint(1, 10, size=(3,3));
B = np.random.randint(1, 10, size=(3,3));
C = np.dot(A,B); D = np.dot(B, A);
print(C); print(D);

print(np.allclose(C, D)); I

[[9% 88 %)
[100 101 108]
[52 49 53])
[[ 67 8 68]
[ 82124 90)
[ 63 82 59]]
False

A function to check whether a matrix is symmetric or no

In fact, let me re-declare A and B to be two new matrices. Let me copy this bit of let me reuse

that code alright. So, A and B are randomly initialized. So, now, we need to check whether

A'B=B-A | So, let me create C = np.dot(A,B).

Now, let me create D = np.dot(B, A). So, now, we want to see whether C = D or not. So, let
us just simply print np.allclose(C, D) and it says False quite obviously, because this theorem

is obviously, correct. So obviously, the two products are different and hence the result alright.
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lodified

A function to check whether a matrix is symmetric or not
A=Ay
def check_synn(A):

return(np.allclose(A, A.T));

| s pe marras, 230 12 4 51, 13,5, 6 prinein;

File "<ipython-input-34-39a947916db4>", line 1
A = np.array([[1, 2, 3], [2, 4, 5], [3, 5, G]);krprlﬂt(ﬂ)s

SyntaxError: closing parenthesis ')' does not match opening parenthesis '["

So, with this let us prove or let us write a small function to check whether a matrix is
symmetric or not. So, how can we do this? So, if a matrix is symmetric, then A; = A;. So, ifa

matrix is symmetric, then swapping the two indices makes no difference.

So, let us define a function called as check symm and it will take an input as an array, as a
matrix A. So, inside this we will simply check whether A" = A. So, it will simply return
np.allclose(A, A.T) that is it. So, let me run this cell. Let me declare an array, let me declare a
matrix. So, let me make it 1, 2, 3, 2, 4, 5 and 3, 5, 6. Let me print what A is. We forgot

bracket over here.
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lodified

def check_symm(A):
return(np.allclose(A, A.T));

A = np.array([[1, 2, 3], [2, 4, 5], [3, 5, 6]]); print(A);

[[123]
245
[356])

print(check_symm(&));

True

So obviously, by visual inspection, we can see that matrix A is symmetric. I mean we have
made small arrays and so, we can easily have a visual check whether its true or not. But when
you are doing a computation which involves large arrays, you better make some kind of
function like this and in fact, having a function like this, you can have an automatic check

whether to proceed with a certain computation or not.

Suppose you are working with stresses and you know that the stress tensor has to be
symmetric so, it is a good check to start off whether a stress tensor is symmetric or not
alright. So, let us pass A to the checker. So, print(check symm(A)) and it says true. In fact, |
have mentioned this in one of the earlier lectures as well. A is just a placeholder, this

particular A has nothing to do with this particular A.
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lodified
s o | A=y

def check_symm(aditya):
return(np.allclose(aditya, aditya.T));

I
A = np.array([[1, 2, 3], [2, 4, 51, [3, 5, 6]1); print(A);
23
[245]
[35¢6]]
print(check_symn(A));

True

Python3 Q

Even if I declare this as something like this, it will hardly make a difference ok. So, it is just a

placeholder, it is not a variable which is accessible to the other functions, it is it has a very

limited local scope alright.
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lodified return(np.allclose(aditya, aditya.T));

A = np.array([[1, 2, 3], [2, 4, 51, [3, 5, 6]]); print(A);
[123]

[245)

[356]]

print(check_symm(A));

True

I # Matrix-Matrix Fnuble dot produt: $A:B = A_{ij ‘B_‘ij'$|

So, let us define the double dot product. So, it is defined as A

(Refer Slide Time: 22:49)
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A= np.array([[1, 2, 31, [2, 4, 5], [3, 5, 6]1); print(A);
[ d

[

Python3 Q

lodified
m o
[245]
[356]]
print(check_symm(A));

Matrix-Matrix double dot produt: A : B = A;;B;;

And this is using the Einstein summation notation where on the right-hand side, we have i

which is a repeated index and j which is a repeated index.
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A= np.array([[1, 2, 3], [2, 4,51, [3, 5, 6]1); print(A);

Python3 O

lodified
- D
[245]
[356]]
print(check_symm(A));
True
I # Matrix-Matrix double dot produt: $A:B = A {ij1B_{ij} = \em_{i, 3} A_{ij}B_{ij}$

I

So, essentially it implies that this is actually equal to E
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lodified

s o | Matrix-Matrix double dot produt:
A:B= A,‘jB,‘j = Zi.j A,‘jB,‘j

print(A); print(8);

¢ = np.tensordot(A, B); print(c);

169

s=8;
for i in np.arange(e,3):
for j in np.arange(e,3):
s =5 + AL, J]"8[4, jl;
print(s)

169 &

So, essentially it will be something which resembles A, Byy; it will be Ay Biy + Az Bio + Ays
Bi; + Ay By and so on all the way from i equal to 1, 2, 3 to j equal to 1, 2, 3. So, let us see
how to do this and this kind of product in Python is called as a tensor dot product. So, let us
have, let us see what the two arrays we already have. So, these are the two arrays. So, let us

define ¢ = np.tensordot(A, B) and let us print out the value of c; so, it is 169.

So, how do we know whether this particular sum is correct or not? So, let us define sum s =
0, for i in np.arange(0,3), for j in np.arange(0,3), s = s + A[i, j]*BJ[i, j]. Well, I have written it
like this, but this is also equivalent, this is also the same thing. So, at the end of the

computation, let us print what s is.

So, s is equal to 169. So, we have established what a tensor dot product is. So, tensor dot
product contracts two tensors into a single scalar and this kind of double dot product is

typically used in finding out terms like viscous dissipation.
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lodified
M A = np.array([[1, 2, 3], [2, 4, 5], [3, 5, 6]]); print(A);
(123
[245]
[356]]

print(check_symm(4));

True

# Matrix-Matrix double dot product: $A:B = A_{1j}B_{ij} = \sum_{i, j} A_{1j}B_{ij}$
$\tau_{ij)s_{ijhs

=

print(A); print(B);
[[123]

[245

[

[[45 6]
[
[455]]

¢ = np.tensordot(A, B); print(c);

169

s30;
for i in np.arange(,3):
for j in np.arange(8,3):
s = s+ Al J1'8[4
PO

So, in fluid mechanics or convective heat and mass transfer or rather in heat transfer, you will

find that if you write down the energy equation, you end up with a viscous dissipation term

which resembles something like this Ti%i where T is the stress tensor and S is the rate of

deformation tensor.
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lodified
@ A = np.array([[1, 2, 3], [2, 4, 5], [3, 5, 6]]); print(A);
[[123]
[245]
[356]]

print(check_symn(A));

True

Matrix-Matrix double dot product:
A:B=A;Bj=Y,;AB;

I 40]: print(A); print(B);
[[123]

¢ = np.tensordot(A, B); print(c);
169

So, this is how the viscous dissipation is obtained and it has the same tensor dot structure as

we have shown over here.
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lodified {45 50)

ute ago ¢ = np.tensordot(A, B); print(c);

169

$=6;
for i in np.arange(e,3):
for j in np.arange(8,3):
s = s+ Ald, 3)%8[4, 31
print(s)

169

print(A); print(np.ndarray.flatten(A))
print(np.ndarray.flatten(B));

C= np.ndarray.flatten(A)‘np.ndarray.flatten(a);
print(C);

[456866455]
[ 41018 16 24 30 12 25 30)

So, yet another way of quickly finding out this tensor dot product using vectorized. So, we
have made use of two loops over here and obviously, in Python, you want to avoid using
loops, you want to vectorize your code, you do not want to make explicit declarations of

loops.

So, let me just quickly show you how to do that. So, simply we will first flatten all the
elements of the matrix into a straight line. So, the way to flatten something; so, let me print
out what A is. Now, let me print out what the flattened version of A is np.ndarray.flatten(A)

ok. So, I have essentially flattened all the elements of A.

So, now you can imagine if we have a, if we have an, if you have these two arrays so, we
need to take a element wise product of these two ok, we need to take an element wise product
of these two and whatever we obtain using that we have to sum over all the elements. So, let
me just show it. So, C equal to the product of this times this. So, let me in fact, print what C
is for your benefit. So, this is what C is and now simply I need to sum over all the elements of

C.
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lodifed {a55])
m ¢ = np.tensordot(A, B); print(c);
169
§29;

for i in np.arange(8,3):
for j in np.arange(,3):
s = s+ Ald, 31'8(4, j];
print(s)
169
print(A); print(np.ndarray.flatten(A))
print(np.ndarray.flatten(B));

C = np.ndarray.flatten(A)*np.ndarray.flatten(B);
print(np.sum(C));

[[123]
[245])
[356]] b
3
4

So, the way I can do that is np.sum(C) and it does give 169. So, I have shown you a very

efficient way of going about things.
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lodified fa5sh)
m ¢ = np.tensordot(A, B); print(c);
169

42]: [s = 0;
for i in np.arange(e,3):
for j in np.arange(8,3):
s = s+ A[L, j]*B[i, il;
print(s)|

| 169

# A vectorized way of computing the tensordot product
T = np.sum(np.ndarray.flatten(A)*np.ndarray.flatten(B));

([123]
[245]
[356]]
[123245356]
[456866455]
169

So, simply the way to do a tensor dot product would have been this. So, this is a vectorized
way of computing the tensor dot product. So, instead of having these two loops, we have
written everything in a single line and that saves time. When the matrices become really big,

this is how you start saving time.
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# A vectorized way of conputing the tensordot product
€ = np.sun(np.ndarray. flatten(&) np.ndarray. flatten(8));

23
[456

| oM 4@ Phondjide  Savingcompleted  Mode:Edt ® Ln1,Col1 lecOdipynb

So, let us now proceed to; so, let us now proceed to find out a rotation matrix. So, what is
rotation matrix? So, consider rather the transformation matrix it should be clearer. So, let us

consider a coordinate system X, y and a vector say this is the vector a. Now, in a rotated

coordinate system such as this let us say this is X' and this is ¥ so, we have rotated this

coordinate system by an angle .
So, we want to, so, we are interested to know what are the components of a in this rotated

coordinate system. So, let the components of a be % and ** in the first coordinate system.

So, what are @ 2 So, @ is %1 and®: . So, geometrically this is A1 and this is ** and this is @

, *1 and this is going to be ** . So, we are interested to relate the components in the rotated

coordinate system with the original coordinate system.

So, the fact of the matter is rotation of a coordinate system should not have any bearing on

a,1+a, ]

P32 should still be equal to ! : ) when where 1" and

. .oa
the representation of a meaning !

) are unit vectors in the X" and ¥ direction.

So, now let us take a dot product of everything with ! So, & = Qit+a,jit Similarly,

a, =arj +a,jJ where we have made use of the fact that ij =0 that is ! 'I and J are



orthogonal alright. So, what is 7 "9 01 s the angle between this unit vector and this unit

vector that is cos(9).
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# A vectorized way of computing the tensordot product
€ = np.sun(np.ndarray. flatten(d) 'np.ndarray. Flatten(8));

23]

[123245356]
[456866455)
169

m a (& .,‘ i,d(\\IZEfse{gngeMumdn ® 1,1 mommb'
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[T S———— m
C O locabos NNt N
T Fle Edt View Run Kemel Tabs Settings Help

Show Contextual Help X 8 leco4 pynb X
B+X0D0O»wC» Cde Pyhon3 O

# A vectorized way of con

€ = np.sun(np.ndarray

ng the tensordot product
(8)*np.ndarray. flatten(B));

]

[123245356)
[456866455]
163

n e downloaded froi

a = a, cos(f)+ a_,{j-f"}

So, essentially the first expression essentially boils down to ™ S0, ] 18

this direction and !  is this direction. So, this cos of this angle is basically sin(8) , s



basically @) o, this is / and this is i so, it is ©°5(%0+0) which is ~5M0) and % this

isjand thisis / so, this angle is obviously, @ so, this will be €95(?) pecause /7 = cos(f)

(Refer Slide Time: 32:18)

» |
C 0 kot NN ]
e L]
g e J-¢-¢4mT%0 b ~
= Fle Edt View Run Kemel Tabs Setings Help
Show Contextual Help X ¥ lecOdipynb °
B+ XD O» mC» Cde v Python3 O

Transformation matrix

V=0Q-v

theta = 36*np.pi/180;

Q = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.c

print(Q

[[ @.8660254 .5 ]
[-e.5 0.8660254] ]

o det(Q) =1
Q=0
e 00" =1

¢ = np.linalg.det(Q); print(c);

0@ 4@ Pthond|ide Saingcompleted  Mode:Edt @ Lnt,Col1 lectdipynb

: al" | cos(8) sin(@) ) ‘)
)

! _,__—sin{f]} cos(f)

So, essentially, we end up with a representation like this. So, * %

So, essentially @ =04 ywhere Q is called as the transformation matrix alright.
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€ = np.sun(np.ndarray. flatten(d) 'np.ndarray. flatten(8));

123

[245)

[123245356)
[456866455]
169

# Transformation matrix
S\mathbf{v}'s \mathbf{Q}\cdot \mathbf{v}y

nﬁe@ Python3|ide  Savingcompleted  Mode:Edit ® Ln2,Col42 lechdipynb
@\E gD S



So, now let us encode this particular Transformation matrix in Python alright.
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Transformation matrix

V=Q-v

theta = 38*np.pi/180;

Q = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.¢
print(

[[ @.8660254 8.5 ]

[-8.5 9.8660254]

- $\det(Q) = 18

- 8T = Q-138
- $Q\cdot QT = |

04 @ Pythond|ide Saingcompleted  ModeiEdt ® Ln3,Col17 lectipynb
Qrowdosos 0 B

So, we want to find out v ok. So, let us define first the B that is the rotation of the

coordinate system. So,  is equal to so, let us declare it in terms of radian directly. So, 30
times so, we have to make it into radian because all these angles have to be in radians and not

in degrees. So, times np.pi/180 ok. So, this is the angle.

Let us define Q = np.array. So, let us do a 2D transformation first. So, we need two such

brackets. So, one is np.cos(?), np.sin(?)], [-np.sin(?), np.cos(?). So, let us print out what
the Q matrix looks like. So, Q is the transformation matrix. So, print Q this is what it looks
like. So, let us now create a vector rather before delving into the transformation itself, let us

quickly look at some properties of the transformation matrix.

So, here are some properties which are quite well known from matrix algebra, I am just

pointing them out for as a refresher nothing else. So, the first property is |Q| = 1 . Second
property is Q" = Q™' and the third property is by corollary actually Q-Q =l
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Transformation matrix

V=0Q-v

theta = 30*np.pi/18e;

Q = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.
print(Q

[[ 0.366025¢ 05 ]
[-e.5 ©.8660254])

o det(Q) =1
ol =0
Q-0 =1

¢ = np.linalg.det(Q); print(c);

o4 @ Pyhon3|lde Saingcompleted  Mode:Edit ® Lnt,Col1 lecOdipynb
Q09800 50, B

So, let us look at these three properties one by one. So, let us check whether the determinant
of Q is 1 or not. So, let me define ¢ = np.linalg.det(Q). Let me print ¢ and see the determinant

of ¢ is obviously, equal to 1 and that is quite obvious because the determinant of this fellow

over here is €05 @ = (=sIn" ) g4 4t 5 1 50, identically equal to 1.
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e det(Q) =1 3
s0'=0"!

200" =1
¢ = np.linalg.det(q); print(c);
1.0
Ths = np.transpose(Q);
rhs = np.linalg. inv(Q);
print(np.allclose(lhs, rhs, rtol=le-6))

True

I = np.eye(2); print(T);

[[1. 0]
fo. 1.1]

print(np.allclose(np.dot(Q, Q.T), I));

True

| ooy

oM 4@ Pthon3|ide Swingcompleted  ModerEdt ® Ln1,Col25 lecOAipynb
Q0980w 50, B

Let us check for the second identity. So, lhs = np.transpose(Q), rhs = np.linalg.inv(Q). So,
then let us print np.allclose(lhs, rhs, rtol=1¢) so, it is true. In fact, in order to check whether
this particular identity is true or not, we can make use of a function called as 1’s or I’s not

I’s, but I’s.



So, let me define it is called as I is in MATLAB, but in number it is I. So, let me define I =
np.eye(2). Let me print out what I is. So, I is an identity matrix. So, np.eye(2) gives you a

diagonal 1 matrix every other element is set to 0.

So, let me do this directly. So, print(np.allclose(np.dot(Q, Q.T), I)) have to check whether this
is close to I or not. So, it is in fact, equal to I. So, this last identity we have done using the
single line and oftentimes nesting these functions may not be in the best interest for
readability of the code. So, when you write such a short code, it often ends up confusing the

other reader.

So, in this particular case, it is not so complicated and so, we can do it like this, but in other
case, it is expedient to define this as some other variable and then check this alright. So, now

let us consider a having two components like this. So, let a = (1, 3) for example. So, find out

a’ alright.
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1hs = np.transpose(Q);

rhs = np.linalg.inv(Q);
print(np.allclose(lhs, rhs, rtol-le-6))

I = np.eye(2); print(I);
(f1. 0.]
fo. 1.7

print(np.allclose(np.dot(Q, Q.T), I));

a=(1,3) find out a'

a = np.array([1, 3])
ap = np.dot(Q, a);
print(ap,

[2.3660254 2.09807621]

o b ' " B 0 | OB 4® Phond|l. Savingcomplet. Mode:Comma.. © Lni,Col. lecdipy.

So, the components of 2" will be equal to so, ap = np.dot(Q, a), but we have not yet defined
what a is. So, a = np.array([1, 3]) so, it has to have two components; first component is 1,
well the second component is 3 ok. So, let us print out what the components of ap are. So,
these are the two components of ap. So, the angle is 30 degree. So, how does this look like?

Let us try to draw this [ mean.
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1= np.eye(2); print(D);

([1. 0]

f6. 1.1]

print(np.allclose(np.dot(Q, Q.T), 1));
True

a=(1,3)find out a'

azn (1, 3
ap = np.dot(Q, a);
print(sp)

[2.3660254 2.09807621]

So, we have a system like this and we have rotated by 30 degree something close to this and
the first it was (1, 3) alright or something like this. So, it was (1, 3) in this coordinate system
and it does look to be something equal in the other coordinate system. So, over here it is

something 2.366 and 2.099 I mean physically it makes sense ok.

So, let us in fact, do full rotation sweep and see how the components vary. I mean to say in a

loop we can vary this ¢ going from 0 to a certain to all the way to 300 and we will try to
find out what the components will be. So, in fact, there will be a certain angle; there will be a

certain angle.

So, when the coordinate system is something like this, there will be no y component the y

component is 0 because the vector is aligned completely with the X' coordinate and there will

be an angle so, when the coordinate system appears to be something like this; something like
this so, this will be Y and this will be x'. So, when the coordinate system would have

rotated by this particular angle, we would have only a y component which would be non-

zero and X would be 0.

In fact, this would occur also when this will be y and this will be x. So, when the coordinate

system rotates by this angle ok. Try to draw this on your own and you will see what I mean.

So, let us do a sweep of © and find out the two components of the transformed vector a’ ok.



So, let us do that. So, let us create the  array. So, theta equal to np or let me call it theta a to

signify that it is an array. So, it will be theta_a = np.linspace(0, 2*np.pi, 100). So, this is  in

radians.

So, let me create the vector v or let us use it, let us use the vector a. So, a = np.array([1,3]) let
me redefine it just for completeness. So, now, we will have to run in a loop. So, in order to

store each element of the transformed vector; so, basically, we need to have two arrays one of

which will store all the components of 1 for all different # and one which will store all the
components of 2 for all the different @ .

So, there will be 100 values of ? as defined in this linspace and there will be 100 values of

4 as well as defined by this linspace. So, let us create two empty arrays. So, it is always a

good idea to initialize; it is always a good idea to initialize whatever you are going to store
instead of dynamically allocating an array, it is always a better idea to pre allocate it in terms

of Os.
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a = mp.array([1, 3])
ap = np.dot(Q, a);
print(ap;

[2.3660254 2.09807621]

ape(theta_a));
. shape(theta_a));
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So, we will declare " array is equal to np.zeros(np.shape(theta_a)). It means it will create a 0

array which has the same shape as the © array. This is important because ? array and 2 vp



I am calling it v let me call it a. So, 2 array and © array must have the same length and

hence, they must have the same dimension as well ok.

Similarly, ap2 a = np.zeros(np.shape(theta_a)). So, this ensures that if I change the number
of elements in theta a, it will automatically change the number of elements in apl a and

ap2_a. So, I do not have to hard code the size of apl a and ap2 a ok. Instead of hard coding

it, I am querying the size that these two arrays should be from the earlier declared array of

ok.

So, now, let we can go in a loop. So, for ? in theta a so, theta will pick up each element of
theta in the loop alright apl a and now, we have to create a counter as well because for the
first loop it has to have a value of a 0; apl 0, then 2, 1, 2, 3, 4 and so on till 99 so, this will be

count where I have to first define count outside the loop as 0.

So, ap1 count is equal to it will be equal to in fact, let me do this ap = np.dot(Q, a) where Q =

np.array([[np.cos(?), np.sin(?)], [-np.sin(?), np.cos(?)]]) and we have to wrap it up with a

another square bracket alright.
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a = np.array([3, 3))
ap = np.dot(Q, a);
print(ap)

[2.3660254 2.99807621)
 bace(@, 2'np.pi, 100); # Theta in radians
D;
p.shape(theta_3));
np.shape(theta_a));

3a
[[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta))));|
La);
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So, we have defined the transformation matrix a in Q inside the loop because ? is changing

so, each time ? changes the matrix, Q has to change as well. a is defined a is not going to

change. So, now, ap = np.dot(Q, a) and now, so, the first element that we will save it will be



this, while the second element it will be this ok. Remember that the element number and the
index that differ by 1. So, this is the 2nd element, but the index is 1. Remember that this is Ist

element, but the index is 0 ok.

So, now, we have stored. So, when count is 0, we have stored it in apl underscore is 0 and
ap2 underscores underscore 0. Once this loop has executed till this point, we need to
increment the value of count. So, count will become count plus 1 alright. So, let us evaluate

this entire cell and see what happens ok.
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[2.3660254 2.09807621]

theta_a = nspace(8, 2*np.pi, 108); # Theta in radians

shape(theta_a));
5(np. shape(theta_a));

count = 6;
for theta in theta_a:

Q = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(thets),
& = np.dot(Q, a);
ap1_afcount] = s
ap2_afcount] = ap[1]; # 2nd elemer
count = count + 1;

+ | import matplotlib.pyplot as plt
plt.plot(theta_, apl_a)

Valuekrror
all last)
<dpython-input-57-1c151650a3b5> in

1 import matplotlib.pyplot as plt
-==-> 2 plt.plot(theta, apl 2)

F:\anaconda\1ib\site-packages\
data, *angs, **kuargs;
jocstring. copy (Axes.

2760 def plot(*angs, scalcHummm

o 4@ Pyhon3|lde Swingcompleted  ModerEdt ® Ln2,Col16 lecdipynb
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So, now let us plot. So, plt so, first we have to import the plot functions. So, import
matplotlib.pyplot as plt, plt.plot(apl_a) and on the x axis, we will have f ok. This seems to
be an error. So, it has to be theta_a because ¢ is just one of the many entries in theta_a where

theta a is the array alright.
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So, this is how the entry, how the plot of apl_a looks like.
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: |import matplotlib.pyplot as plt
1 theta_a, apl_a);
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In fact, let us plot on top of this what theta_a, ap2_a looks like alright.

like this. Let us draw the grid let me set x levels and y levels.
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ap1_a[count] = ap[@); # 1st el i o

ap2_afcount]
count = count + 1;

import matplotlib.pyplot as plt

(theta _a, apl_a, label="a' 1");

plot(theta_a, ap2_a, label="a'_2");
True);

o 4@ Pyhon3[l. Swingcomplet. Mode:Comma.. ® Ln2 Col. lechdipy

So, now, let us see there does exist an angle where the let me label this two as well this is just

to make the legends of the plot alright. So, there are points where the first component that is

; ;
[

1 is maximum and that corresponds to a 42 =0 and that happens twice similarly, there are

. a a, . . .. .. .
points where ! = 0 over here and where “* is negative minimum and positive maximum

alright. So, the magnitude is maximum and that does correspond to these four angles that we

have talked about in the working out of this problem. So, this is how you can do that.
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plt.plot(apl a, ap2 3);
ax = plt.gea();
ax.set_aspect(1);
AttributeError Traceback (most recent ¢

all last)
<ipython-input-65-a87b12251ef> in
1 plt.plot(apl 2, 22 2);
2 ax = plt.gea();
----> 3 ax.set_aspec(1);

AttributeError: 'AxesSubplot’ object has no attribute 'set_aspec’

o 4@ Pyhon3|lde Swingcompleted  ModeiEdt ® Ln3,Col14 lecOipynb



In fact, let us draw a phase plot of a’ meaning plt.plot we will plot how 4 and * vary
simultaneously, it is like a parametric plot. So,  is like the parameter, but I want to plot -

versus ! . So, we will plot apl aand ap2 a. So, this is apl.

One should always be careful with the variables. So, it looks like a circle. In fact, let me make
the aspect ratio of the plot better. So, we will get first the access. So, plt.gca, then we will set

aspect ratio to be 1.
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So, the parametric plot it does look like a circle in the sense that all the components lie on this

particular circle. So, if I select this particular point alright so, it corresponds to some angle .
In fact, let me superpose on top of this the original components. So, the original components

were this ok. So, let me superpose that particular point as well.

So, plt.plot so, this will be a[0], a[1] and let me put a circle, black colored circle over there.

So, this is the point where we have started the original vector and as you rotate it, you will

change the components % and *: in accordance to this particular circle ok. Once you rotate

by a certain angle, you will reach this particular point and these the projections will be the

a a. . . .
components of ' and “* this is what it means.
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Transformation of a matrix

I |5 = np.array([[50; 30], (38, -20])

Qroving o W

So, now once we are done with this, we are ready to move into transforming stress ok. So,

now, let me just mention how a matrix transformation looks like. So, if we have a matrix ¢

so, the components of * " will be QoQ . So, this is how the transformation of a matrix

looks like and so, in its rawest form, this will be equal to so, it will be equal to this.

So, let us do this. Let us so, let me define a matrix s is equal to so, let me define it as [50, 30],
[30, -20]. So, typically the tensors so, there is a difference between a tensor and a matrix, but
this is not the course to discuss about that, but typically it is symmetric. So, let us print out

what s is.



(Refer Slide Time: 55:43)

x|+ st
C O lcamost 2% @
P ]
¢} /- ¢ BT%0 L] S
o Fle Edt View Run Kemel Tabs Settings Help
Show Contextual Help X | [ lecOdipynb .
B+ XD 0O »nCw Cde v Python3 O

Transformation of a m

: | theta = 38%np.pi/188;
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So, s is this matrix ok. So, let me remove this print, let me define what f will be. So, 7 will

be say some rotation by 30 degrees. So, the coordinate system rotates by an angle 30. So,

30180
180 | So, the Q, the transformation matrix will be np.array in fact, let me copy it from

above.
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Transformation of a matrix

theta = 38*np.pi/180;

Q = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.c
s = np.array([[50, 38], (30, -20]]); I

np.dot(Q, 5), Q.);

print(sp);

[[ 58 30]
[ 30 -20])

it 211 -15.31088913]
+15.31088913 -28.48076211])

0 4@ Python3|l. Swingcomplet. Mode:Comma.. @ Lnt,Col. lecMipy.

So, now with the help of this, we can find out the transformed entity. So, sp let the

transformed matrix be sp. So, it will be np.dot(np.dot(Q,s), Q.T). So, let us print out s and let



us print out sp. So, those are the transformed elements of the matrix s when the coordinate

system is rotated by an angle 30 ok.

(Refer Slide Time: 57:56)

x4
C O b ax @

= Fle Edt View Run Kemel Tabs Setings Help

Show Contextual Help X 8 lecopynb .
B+XDO»wcCw Cde v Python3 O

([ 5o 30]
[ 30 -20])
[[ 58.48076211 -15.31688913]
[-15.31088913 -28.48076211])

theta_a = np.linspace(@, np.pi, 160);
signa_n_a = np.zeros(np. shape(theta a));
tau_n_a = np.zaros(np. shape(theta_3));
count = 8;

for theta in tl

os(theta), np.sin(theta)], [-np.sin(theta),
(38, -20]1);
, Q1)

' : |plt.plot(signa_n_a, taun_a)

o 4@ Pyhon3|lde Swingcompleted  ModerEdt ® Ln1,Col28 lecOipynb
Qrovin s

In fact, let us do the same procedure over here. Let us try to loop over all the thetas and find

out how the components change alright. So, let us reuse this bit of program and let us try to

convert this into a loop. So,  first of all we have to declare as an array. Let us define it till
only 180 degree i.e. theta a = np.linspace(0, np.pi, 100) and it will be clear why that is the

case sorry ok.

In order to save the different components of the transformed matrix, let us declare a few more
arrays. So, let us define sigma n_a = np.zeros(np.shape(theta a)) and let us define tau n_a =

np.zeros(np.shape(theta_a)) and again we can do the same thing, we can declare everything

inside a loop for 7 in theta_a.

So, now we must indent these lines because these have to be executed inside a loop and we
must have a loop counter as well so, count equal to 0. So, now, let us set sigma_n_a[count] =
sp[0,0] that is this particular element we are declaring as sigma n, these elements we are
declaring as tau_n. So, these are some of the notation’s that solid mechanics that appear in

solid mechanics so, alright.

So, let us before this, we have to increment count as well. So, one way of doing this is

count+=1. So, this is equivalent to writing count = count + 1 ok. So, this is an equivalent way



of writing it. So, let us execute this and see whether so, there is no error. So, great we can

now plot sigma n_a as a function of tau_n_a.
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plt plot(signa n_s, taun_s);
ax = plt.gea();
ax.set_aspect(1);
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Let me make the aspect ratio. So, it does look like a circle, but can we show it, can we prove
that it does actually have to be a circle and the circle is not centered about (0, 0), it is centered
about some other value. So, what is that value? Ok. So, let us quickly simplify whatever we

were doing over here.



So, let me simplify whatever this is. So, let us simplify this. So, instead of cos(#) gpq sin(é)

, I am just going to write C and S; so, this will be Co, S0, , Ca), 'Sﬁ-'-', 'Sﬁ"_c'ﬁ-",

-56,,7C9., this times G, -S, S, C alright.
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So, this will be equal to SO, this multiplies this. So,

' C°o,, +CS0,, +CSo, +S°a,, -CSo, -S5'c, +C'o, +(CSo,,)

 -CSo,, +C'0, -S0,,+CS0,, S0, -CS0, -CSo, +C 0, So. these are the

7 = (f"tf” + S"U_,_, + 2080

L .
components. And so, * 21" s0, this become because we have selected

F . .. 2080, T. . . . o,
the ¢ to be symmetric. So, this is 1 "a o is equal to this term so, this is so, ! they are

"ot -850, +CS(o, -0,

equal alright so, this is T ) and if you note that this element is

also equal to this P22 ¢S - g0, it checks out so, its symmetric as well the transform matrix

is symmetric as well.



o . o o' =50, +Co,, .
While if I call this as ' , this comes out to be ' ' “ so obviously, we have

made a small mistake. So, this should have been this times this, this should have been -CS ok.

.. =20
So, this is 2CSo, .
. .. . U,"Hr." .
So, one thing to note from this is that if you add these two, " so, this becomes
TutOn pecause OS5 (O)+sin (@) =1 goce two terms cancel out while,

{J_,I" =cos (0o, +sin’ (B0, +sin(20)0,, ok
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) 1
T =cos(26) —gind 267 — | ' - P . T
x =cos20)o, 2 sin(260)(0y, -0, While €+ = cos™ (o, +sin (), +sin(20)a
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So, keeping this in mind, we can further simplify everything and we can show that

0, - oo =an
— | +T, = l —— = +T
2 ' . 2

!

. This can be shown using these expressions and with

¥

the help of this, we can finally write down an expression like this '+ . So, let us add and

o,

subtract So, if we add and subtract over here so, this becomes

[ 20, ~ (0 +{JII}J o (o
: : +T, " =l

-, 2
—"J +T
2 2

!

and this essentially means

(o +0)) no (o, -0,
o, - ————| +1,° =‘7” J +T°

2 2

And this implies and this particular earlier result when we combine so, this implies that

ag, —;tr{u}) +T7," = R°

\ I
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So, its clear that the locus or rather the curve in the 7+, T plane will be a circle whose

g, +0T,
2

center is at this point that is the Ty ,thatis < and I call it the average because

U.-.- + (.FI- 0, +0,

2 2

1
—tr(er)
Hence, I have written it as 2 because the trace is simply the sum of diagonals and the

radius of this circle is equal to this entity ok. So, let us verify whether that is true; let us verify

whether that is true.
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So, on top of this plot, let me plot the center of the circle plt.plot so, let me so, the x; x point
will be half of the trace so, plt.plot(np.trace(s)/2, 0, 'ok'). So, this is indeed the center and that
is simply the trace of s and we do not need the transform matrix to find out the location of the

center ok.

So, on the radius of this circle, you can independently verify that it will be equal to this
equation over here and this particular construction is called as the Mohr circle and it helps us
in identifying which will be the coordinate system in which we will experience maximum
shear stress or the maximum normal stress. So, on the x axis, we have essentially the
maximum another the transform normal stress, on the y axis, we have the maximum shear

stress ok.

So, let me label this. So, the x-label will be equal to sigma n prime while the we have to put a
double escape character over here and plt.ylabel("$\\tau n'$") ok. So, this helps us in

identifying the locations of the maximum shear stress and normal stress.

And I request you to have a look at basic solid mechanics and try to figure out all this on your
own. There will be n number of problems where you are required to find out the plane where

the maximum stress occurs and try to resolve it using Python, I have shown you how to do it.

So, this pretty much wraps up this particular lecture and, in this lecture, we have covered a

whole lot of matrix manipulations and I have shown you how it can be used to your



advantage to understand matrix transformations and vector transformations. This is different
from vector rotations where you are rotating a vector. Here, we are rotating coordinate
systems and in your free time, I request you to have a look into rotation of vectors and

rotation of matrices not just the transformations.

With this it is goodbye from me, I will see you again next time bye.



