
Tools in Scientific Computing
Prof. Aditya Bandopadhyay

Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture – 04
Matrix Manipulations Mohr’s circle

Hello everyone, we are in lecture 4. It is going to be a bit of a stressful lecture in the sense

that we are going to study Matrix Manipulations. In particular, we will look at how rotation

of a coordinate system leads to changes in the elements of the stress tensor. So, let us begin.

(Refer Slide Time: 00:50)

So, let us first import numpy. So, now, let us first look at some elementary matrix operations

in particular let us find out the transpose of a matrix, let us find out determinant of a matrix.

Let us find out the inverse of a matrix ok. So, let us first define a matrix to work with. So, let

us say A = np.array and we want a 3 3 so, there have to be three entries like this.

So, I have made three sets of bracket the first set of bracket is to show that it is an entire

matrix, then we have this set of bracket, this set of bracket and this set of bracket; so, each of

these three brackets stands for rows. So, let me define 3, 2, 1, 5, 7, 4 and 9, 6, 8. So, let us

print what A is also ok. So, A is this 3 3 matrix.

(Refer Slide Time: 02:28)

(Refer Slide Time: 02:34)

 So, now, let us find out the transpose of A. So, let me go over here B = np.transpose(A). Let

me print what B is. So, if you look at the output in A, the first column was 3, 5, 9 whereas, in

B the first column is the first row rather is 3, 5, 9; so, successfully taken a transpose of the

matrix A.

There is another way of defining the transpose of a matrix. So, C = A.T. So, this is also a way

of transposing the matrix A in the sense that the object A has a method transpose denoted by

T ok.

(Refer Slide Time: 03:23)

(Refer Slide Time: 03:24)

So, if in fact, if we double click on A and go to the contextual help, it will show some of the

attributes such as A.data, A .dtype.

(Refer Slide Time: 03:35)

So, apart from these attributes, it also has that method of finding out the transpose ok.

(Refer Slide Time: 03:44)

So, let us go back over here. Let me in fact, print C to convince you that C is in fact, the

transpose of A ok. So, there is another way of checking whether two matrices whether all the

elements are equal.

So, suppose I have done the transpose using the two methods one is np dot transpose and one

is A.T and I want to check whether B and C are equal. So, the way to do that is so, let me just

put it directly in print. So, print(np.allclose(B, C)) and it says true meaning all the elements of

B are identical to the elements of C.

(Refer Slide Time: 04:40)

In fact, if I do np.allclose(B, A), it says false because; obviously, B is a transpose of A.

Moreover, A.T this should show True ok.

(Refer Slide Time: 04:46)

(Refer Slide Time: 04:52)

So, this is how we can make checks. So, this is to check whether all the elements of B are

equal to C. So, even if one element is not equal, it throws false and the reason why it is called

all close? So, in this case, we are using integers as inputs to the array.

In case, you start using floating point numbers, then precise equation, precisely equating two

floating point numbers is not something which is logical to do rather the fact that a computer

has a finite representation in terms of bits so, that implies that you will always be restricted

by the representation of a number ok. So, often 0.0016 and 0.001599 so, they have to be

interpreted as the same number that is why it is called as all close.

(Refer Slide Time: 05:56)

And in fact, in the function allclose, we can specify the tolerances it is not showing it in the

help, but in allclose, you can specify the tolerance. I mean we will look at it later on, we will

encounter this later on as well.

(Refer Slide Time: 06:28)

So, let us continue let us find out the |A|. So, in order to find out the determinant, we must let

me create a new cell. So, let me print out A real quick ok. So, in order to find out the

determinant, we must make use of the linalg sub-module of numpy. So, let us call it d =

np.linalg.det(A). So, let me print d as well.

So, the determinant is equal to 55.000014 and you can do it by hand, you can do it by hand,

and you will see that the determinant is actually 55 ok. If you take out the determinant of this,

you will find out it is not 55.0000014, but it is rather 55 and this is what I just spoke about. It

is because of the finite accuracy and representation of a number in a computer ok, it is stored

in bits and thus, there will always be these small errors ok.

(Refer Slide Time: 07:46)

So, let us look at a very important property of two matrices. So, let us see whether

(Refer Slide Time: 08:19)

So, let us look whether this holds true or not. So, let us initialize two random matrices. So, A

= np.random.randint() and say we want to sample randint from 1 to 10 and the size let us

declare it as 3 3. Similarly, B will be the same thing and the fact that you are calling it

twice; it will generate a new random array. So in fact, let me print both A and B.

(Refer Slide Time: 09:03)

(Refer Slide Time: 09:14)

So, A and B are obviously, different and another way, another professional way to check

whether it is different is this should be false and it is false. So, it means A and B are distinct.

(Refer Slide Time: 09:26)

So, let us do the following. Let us define C = np.dot(A, B). So, this is a way to do matrix

multiplication. So, the way to do matrix multiplication is the row of A multiplies the first row

of B and so on. It is the proper matrix multiplication, it is not an element wise operation, it is

what we have learned in school alright. So, let me call d as the determinant of C and let me

call e as the determinant of sorry A times this. Now, let me simply check np dot is close.

So, if we are trying to compare two scalar floating-point numbers instead of using all close,

we can use isclose. So, isclose is typically used for comparing two scalars. So, we want to

compare d and e and we give it a relative tolerance of 1e-5 for example, let me directly print

this. So, it says True. So, it is close, it gives true. Let me in fact, print so, let us say LHS:

%3.16f\n"%d and print RHS:%3.16f\b"%e ok. So, there you go.

(Refer Slide Time: 11:25)

These are the two in fact, let me increase the number of digits it will print ok. So, in this

particular case, they are equal to a very large degree, let me run it again ok. Over here look at

this, it is 1440.0000 whatever and in this case, it is 1439.99999, but the relative error between

these two numbers is less than 10-5.

In fact, let us print out what the relative error between them is and the relative error will be

np.abs(1-d/e)). So, relative error is quite small in fact, its all the way and the last digit

becomes 4. So, because the relative error between these two numbers are quite small, for all

practical purposes in our calculation, we can consider these to be equal alright.

(Refer Slide Time: 12:48)

So, we have so far considered the determinant, we have so far considered the transpose, let us

now proceed to find out the inverse of a matrix. So, alright. So, let me define let us define a

random I mean we have already defined a random array so, let me print out that array. So,

this is the not the array, the matrix ok. This is the matrix A. Let us now try to find out the

inverse of this matrix.

So, an important property in order to find out the inverse is that the determinant must be non-

zero. If the determinant is 0, then we cannot find out the inverse. So, let us do a quick check

whether the determinant is 0 or not. So, let us say c = np.linalg in fact, let me call it a =

np.linalg.det(A), print a. So, |A| is obviously, not equal to 0. So, in that case, we can find out

the inverse. So, let me call it B so, B = np.linalg.inv(A), let me print what B is. So, B is this

particular matrix.

(Refer Slide Time: 14:07)

And let us do a Quick check whether A times B is equal to the identity matrix or not.

(Refer Slide Time: 14:18)

So, let me define C as C = np.dot(A, B) and let me print what C is. So, if you look at this, it is

1.00e0, 2.77*10-17, -5.55 10-17. So, these are as good as 0 alright.

(Refer Slide Time: 14:55)

So, np.round(C,1). So, np.round means rounded to the first decimal. So, in that case, instead

of having those very small numbers appearing, we round them off to one decimal place and

they do come out to be 1, 1, 1, 0, 0, 0, 0. So, C is an identity matrix, and this helps us in

verifying what we already know.

This is quite a trivial task, but nevertheless it instills a bit of confidence. Let us do this

particular check as well this is a theorem in matrix algebra. So, A inverse transpose is equal

to A transpose inverse. So, let us see whether this is true or not.

(Refer Slide Time: 15:54)

So, let us say lhs and it is equal to np.linalg.transpose sorry transpose is not inside linalg, it is

simply outside, so lhs = np.transpose(np.linalg.inv(A)) so, this is lhs and rhs =

np.linalg.inv(np.transpose(A)). So, then let us print whether lhs and rhs are equal.

So, here we will write np.allclose(lhs, rhs). So, it says True meaning whatever we have

claimed to be true is in fact, true and these are very famous theorems in matrix algebra

obviously, they are True, but again it is just to demonstrate how we can manipulate matrices.

Let us print out the lhs and rhs just for good measure alright. So, visual inspection as well

allows us to see that lhs and rhs are equal. So, before proceeding, let us quickly save this file.

Let me rename it to be lec 04 alright.

(Refer Slide Time: 17:38)

So, let us verify one more famous theorem in matrix algebra that Multiplication of two

matrices is not commutative that is .

(Refer Slide Time: 17:54)

So, we have two matrices A and B already like this.

(Refer Slide Time: 18:14)

In fact, let me re-declare A and B to be two new matrices. Let me copy this bit of let me reuse

that code alright. So, A and B are randomly initialized. So, now, we need to check whether

. So, let me create C = np.dot(A,B).

Now, let me create D = np.dot(B, A). So, now, we want to see whether C = D or not. So, let

us just simply print np.allclose(C, D) and it says False quite obviously, because this theorem

is obviously, correct. So obviously, the two products are different and hence the result alright.

(Refer Slide Time: 19:38)

So, with this let us prove or let us write a small function to check whether a matrix is

symmetric or not. So, how can we do this? So, if a matrix is symmetric, then A ij = Aji. So, if a

matrix is symmetric, then swapping the two indices makes no difference.

So, let us define a function called as check_symm and it will take an input as an array, as a

matrix A. So, inside this we will simply check whether AT = A. So, it will simply return

np.allclose(A, A.T) that is it. So, let me run this cell. Let me declare an array, let me declare a

matrix. So, let me make it 1, 2, 3, 2, 4, 5 and 3, 5, 6. Let me print what A is. We forgot

bracket over here.

(Refer Slide Time: 21:00)

So obviously, by visual inspection, we can see that matrix A is symmetric. I mean we have

made small arrays and so, we can easily have a visual check whether its true or not. But when

you are doing a computation which involves large arrays, you better make some kind of

function like this and in fact, having a function like this, you can have an automatic check

whether to proceed with a certain computation or not.

Suppose you are working with stresses and you know that the stress tensor has to be

symmetric so, it is a good check to start off whether a stress tensor is symmetric or not

alright. So, let us pass A to the checker. So, print(check_symm(A)) and it says true. In fact, I

have mentioned this in one of the earlier lectures as well. A is just a placeholder, this

particular A has nothing to do with this particular A.

(Refer Slide Time: 22:08)

Even if I declare this as something like this, it will hardly make a difference ok. So, it is just a

placeholder, it is not a variable which is accessible to the other functions, it is it has a very

limited local scope alright.

(Refer Slide Time: 22:35)

So, let us define the double dot product. So, it is defined as .

(Refer Slide Time: 22:49)

And this is using the Einstein summation notation where on the right-hand side, we have i

which is a repeated index and j which is a repeated index.

(Refer Slide Time: 23:00)

So, essentially it implies that this is actually equal to .

(Refer Slide Time: 23:14)

So, essentially it will be something which resembles A11 B11; it will be A11 B11 + A12 B12 + A13

B13 + A21 B21 and so on all the way from i equal to 1, 2, 3 to j equal to 1, 2, 3. So, let us see

how to do this and this kind of product in Python is called as a tensor dot product. So, let us

have, let us see what the two arrays we already have. So, these are the two arrays. So, let us

define c = np.tensordot(A, B) and let us print out the value of c; so, it is 169.

So, how do we know whether this particular sum is correct or not? So, let us define sum s =

0, for i in np.arange(0,3), for j in np.arange(0,3), s = s + A[i, j]*B[i, j]. Well, I have written it

like this, but this is also equivalent, this is also the same thing. So, at the end of the

computation, let us print what s is.

So, s is equal to 169. So, we have established what a tensor dot product is. So, tensor dot

product contracts two tensors into a single scalar and this kind of double dot product is

typically used in finding out terms like viscous dissipation.

(Refer Slide Time: 25:35)

So, in fluid mechanics or convective heat and mass transfer or rather in heat transfer, you will

find that if you write down the energy equation, you end up with a viscous dissipation term

which resembles something like this where is the stress tensor and is the rate of

deformation tensor.

(Refer Slide Time: 25:42)

So, this is how the viscous dissipation is obtained and it has the same tensor dot structure as

we have shown over here.

(Refer Slide Time: 26:35)

So, yet another way of quickly finding out this tensor dot product using vectorized. So, we

have made use of two loops over here and obviously, in Python, you want to avoid using

loops, you want to vectorize your code, you do not want to make explicit declarations of

loops.

So, let me just quickly show you how to do that. So, simply we will first flatten all the

elements of the matrix into a straight line. So, the way to flatten something; so, let me print

out what A is. Now, let me print out what the flattened version of A is np.ndarray.flatten(A)

ok. So, I have essentially flattened all the elements of A.

So, now you can imagine if we have a, if we have an, if you have these two arrays so, we

need to take a element wise product of these two ok, we need to take an element wise product

of these two and whatever we obtain using that we have to sum over all the elements. So, let

me just show it. So, C equal to the product of this times this. So, let me in fact, print what C

is for your benefit. So, this is what C is and now simply I need to sum over all the elements of

C.

(Refer Slide Time: 27:47)

So, the way I can do that is np.sum(C) and it does give 169. So, I have shown you a very

efficient way of going about things.

(Refer Slide Time: 28:02)

So, simply the way to do a tensor dot product would have been this. So, this is a vectorized

way of computing the tensor dot product. So, instead of having these two loops, we have

written everything in a single line and that saves time. When the matrices become really big,

this is how you start saving time.

(Refer Slide Time: 28:41)

So, let us now proceed to; so, let us now proceed to find out a rotation matrix. So, what is

rotation matrix? So, consider rather the transformation matrix it should be clearer. So, let us

consider a coordinate system x, y and a vector say this is the vector a. Now, in a rotated

coordinate system such as this let us say this is and this is so, we have rotated this

coordinate system by an angle .

So, we want to, so, we are interested to know what are the components of a in this rotated

coordinate system. So, let the components of a be and in the first coordinate system.

So, what are ? So, is and . So, geometrically this is and this is and this is

, and this is going to be . So, we are interested to relate the components in the rotated

coordinate system with the original coordinate system.

So, the fact of the matter is rotation of a coordinate system should not have any bearing on

the representation of a meaning should still be equal to when where and

 are unit vectors in the and direction.

So, now let us take a dot product of everything with . So, . Similarly,

 where we have made use of the fact that that is and are

orthogonal alright. So, what is ? is the angle between this unit vector and this unit

vector that is cos().

(Refer Slide Time: 31:35)

(Refer Slide Time: 31:46)

So, essentially the first expression essentially boils down to so, j is

this direction and is this direction. So, this cos of this angle is basically , is

basically so, this is and this is i so, it is which is and this

is j and this is so, this angle is obviously, so, this will be because .

(Refer Slide Time: 32:18)

So, essentially, we end up with a representation like this. So,

So, essentially where Q is called as the transformation matrix alright.

(Refer Slide Time: 33:06)

So, now let us encode this particular Transformation matrix in Python alright.

(Refer Slide Time: 33:08)

So, we want to find out ok. So, let us define first the that is the rotation of the

coordinate system. So, is equal to so, let us declare it in terms of radian directly. So, 30

times so, we have to make it into radian because all these angles have to be in radians and not

in degrees. So, times np.pi/180 ok. So, this is the angle.

Let us define Q = np.array. So, let us do a 2D transformation first. So, we need two such

brackets. So, one is np.cos(), np.sin()], [-np.sin(), np.cos(). So, let us print out what

the Q matrix looks like. So, Q is the transformation matrix. So, print Q this is what it looks

like. So, let us now create a vector rather before delving into the transformation itself, let us

quickly look at some properties of the transformation matrix.

So, here are some properties which are quite well known from matrix algebra, I am just

pointing them out for as a refresher nothing else. So, the first property is |Q| = 1 . Second

property is QT = Q-1 and the third property is by corollary actually .

(Refer Slide Time: 35:32)

So, let us look at these three properties one by one. So, let us check whether the determinant

of Q is 1 or not. So, let me define c = np.linalg.det(Q). Let me print c and see the determinant

of c is obviously, equal to 1 and that is quite obvious because the determinant of this fellow

over here is so, it is 1 so, identically equal to 1.

(Refer Slide Time: 36:19)

Let us check for the second identity. So, lhs = np.transpose(Q), rhs = np.linalg.inv(Q). So,

then let us print np.allclose(lhs, rhs, rtol=1e-6) so, it is true. In fact, in order to check whether

this particular identity is true or not, we can make use of a function called as 1’s or I’s not

1’s, but I’s.

So, let me define it is called as I is in MATLAB, but in number it is I. So, let me define I =

np.eye(2). Let me print out what I is. So, I is an identity matrix. So, np.eye(2) gives you a

diagonal 1 matrix every other element is set to 0.

So, let me do this directly. So, print(np.allclose(np.dot(Q, Q.T), I)) have to check whether this

is close to I or not. So, it is in fact, equal to I. So, this last identity we have done using the

single line and oftentimes nesting these functions may not be in the best interest for

readability of the code. So, when you write such a short code, it often ends up confusing the

other reader.

So, in this particular case, it is not so complicated and so, we can do it like this, but in other

case, it is expedient to define this as some other variable and then check this alright. So, now

let us consider a having two components like this. So, let a = (1, 3) for example. So, find out

 alright.

(Refer Slide Time: 39:15)

So, the components of will be equal to so, ap = np.dot(Q, a), but we have not yet defined

what a is. So, a = np.array([1, 3]) so, it has to have two components; first component is 1,

well the second component is 3 ok. So, let us print out what the components of ap are. So,

these are the two components of ap. So, the angle is 30 degree. So, how does this look like?

Let us try to draw this I mean.

(Refer Slide Time: 40:11)

So, we have a system like this and we have rotated by 30 degree something close to this and

the first it was (1, 3) alright or something like this. So, it was (1, 3) in this coordinate system

and it does look to be something equal in the other coordinate system. So, over here it is

something 2.366 and 2.099 I mean physically it makes sense ok.

So, let us in fact, do full rotation sweep and see how the components vary. I mean to say in a

loop we can vary this going from 0 to a certain to all the way to and we will try to

find out what the components will be. So, in fact, there will be a certain angle; there will be a

certain angle.

So, when the coordinate system is something like this, there will be no y component the y

component is 0 because the vector is aligned completely with the coordinate and there will

be an angle so, when the coordinate system appears to be something like this; something like

this so, this will be and this will be . So, when the coordinate system would have

rotated by this particular angle, we would have only a component which would be non-

zero and would be 0.

In fact, this would occur also when this will be and this will be x. So, when the coordinate

system rotates by this angle ok. Try to draw this on your own and you will see what I mean.

So, let us do a sweep of and find out the two components of the transformed vector ok.

So, let us do that. So, let us create the array. So, theta equal to np or let me call it theta a to

signify that it is an array. So, it will be theta_a = np.linspace(0, 2*np.pi, 100). So, this is in

radians.

So, let me create the vector v or let us use it, let us use the vector a. So, a = np.array([1,3]) let

me redefine it just for completeness. So, now, we will have to run in a loop. So, in order to

store each element of the transformed vector; so, basically, we need to have two arrays one of

which will store all the components of for all different and one which will store all the

components of for all the different .

So, there will be 100 values of as defined in this linspace and there will be 100 values of

 as well as defined by this linspace. So, let us create two empty arrays. So, it is always a

good idea to initialize; it is always a good idea to initialize whatever you are going to store

instead of dynamically allocating an array, it is always a better idea to pre allocate it in terms

of 0s.

(Refer Slide Time: 44:37)

So, we will declare array is equal to np.zeros(np.shape(theta_a)). It means it will create a 0

array which has the same shape as the array. This is important because array and vp

I am calling it v let me call it a. So, array and array must have the same length and

hence, they must have the same dimension as well ok.

Similarly, ap2_a = np.zeros(np.shape(theta_a)). So, this ensures that if I change the number

of elements in theta_a, it will automatically change the number of elements in ap1_a and

ap2_a. So, I do not have to hard code the size of ap1_a and ap2_a ok. Instead of hard coding

it, I am querying the size that these two arrays should be from the earlier declared array of

ok.

So, now, let we can go in a loop. So, for in theta_a so, theta will pick up each element of

theta in the loop alright ap1_a and now, we have to create a counter as well because for the

first loop it has to have a value of a 0; ap1 0, then 2, 1, 2, 3, 4 and so on till 99 so, this will be

count where I have to first define count outside the loop as 0.

So, ap1 count is equal to it will be equal to in fact, let me do this ap = np.dot(Q, a) where Q =

np.array([[np.cos(), np.sin()], [-np.sin(), np.cos()]]) and we have to wrap it up with a

another square bracket alright.

(Refer Slide Time: 47:26)

So, we have defined the transformation matrix a in Q inside the loop because is changing

so, each time changes the matrix, Q has to change as well. a is defined a is not going to

change. So, now, ap = np.dot(Q, a) and now, so, the first element that we will save it will be

this, while the second element it will be this ok. Remember that the element number and the

index that differ by 1. So, this is the 2nd element, but the index is 1. Remember that this is 1st

element, but the index is 0 ok.

So, now, we have stored. So, when count is 0, we have stored it in ap1 underscore is 0 and

ap2 underscores underscore 0. Once this loop has executed till this point, we need to

increment the value of count. So, count will become count plus 1 alright. So, let us evaluate

this entire cell and see what happens ok.

(Refer Slide Time: 48:58)

So, now let us plot. So, plt so, first we have to import the plot functions. So, import

matplotlib.pyplot as plt, plt.plot(ap1_a) and on the x axis, we will have ok. This seems to

be an error. So, it has to be theta_a because is just one of the many entries in theta_a where

theta_a is the array alright.

(Refer Slide Time: 49:48)

So, this is how the entry, how the plot of ap1_a looks like.

(Refer Slide Time: 50:01)

In fact, let us plot on top of this what theta_a, ap2_a looks like alright. So, it looks something

like this. Let us draw the grid let me set x levels and y levels.

(Refer Slide Time: 50:14)

So, now, let us see there does exist an angle where the let me label this two as well this is just

to make the legends of the plot alright. So, there are points where the first component that is

 is maximum and that corresponds to a = 0 and that happens twice similarly, there are

points where = 0 over here and where is negative minimum and positive maximum

alright. So, the magnitude is maximum and that does correspond to these four angles that we

have talked about in the working out of this problem. So, this is how you can do that.

(Refer Slide Time: 51:34)

In fact, let us draw a phase plot of meaning plt.plot we will plot how and vary

simultaneously, it is like a parametric plot. So, is like the parameter, but I want to plot

versus . So, we will plot ap1_a and ap2_a. So, this is ap1.

One should always be careful with the variables. So, it looks like a circle. In fact, let me make

the aspect ratio of the plot better. So, we will get first the access. So, plt.gca, then we will set

aspect ratio to be 1.

(Refer Slide Time: 52:34)

So, the parametric plot it does look like a circle in the sense that all the components lie on this

particular circle. So, if I select this particular point alright so, it corresponds to some angle .

In fact, let me superpose on top of this the original components. So, the original components

were this ok. So, let me superpose that particular point as well.

So, plt.plot so, this will be a[0], a[1] and let me put a circle, black colored circle over there.

So, this is the point where we have started the original vector and as you rotate it, you will

change the components and in accordance to this particular circle ok. Once you rotate

by a certain angle, you will reach this particular point and these the projections will be the

components of and this is what it means.

(Refer Slide Time: 54:13)

So, now once we are done with this, we are ready to move into transforming stress ok. So,

now, let me just mention how a matrix transformation looks like. So, if we have a matrix

so, the components of will be . So, this is how the transformation of a matrix

looks like and so, in its rawest form, this will be equal to so, it will be equal to this.

So, let us do this. Let us so, let me define a matrix s is equal to so, let me define it as [50, 30],

[30, -20]. So, typically the tensors so, there is a difference between a tensor and a matrix, but

this is not the course to discuss about that, but typically it is symmetric. So, let us print out

what s is.

(Refer Slide Time: 55:43)

So, s is this matrix ok. So, let me remove this print, let me define what will be. So, will

be say some rotation by 30 degrees. So, the coordinate system rotates by an angle 30. So,

. So, the Q, the transformation matrix will be np.array in fact, let me copy it from

above.

(Refer Slide Time: 56:35)

So, now with the help of this, we can find out the transformed entity. So, sp let the

transformed matrix be sp. So, it will be np.dot(np.dot(Q,s), Q.T). So, let us print out s and let

us print out sp. So, those are the transformed elements of the matrix s when the coordinate

system is rotated by an angle 30 ok.

(Refer Slide Time: 57:56)

In fact, let us do the same procedure over here. Let us try to loop over all the thetas and find

out how the components change alright. So, let us reuse this bit of program and let us try to

convert this into a loop. So, first of all we have to declare as an array. Let us define it till

only 180 degree i.e. theta_a = np.linspace(0, np.pi, 100) and it will be clear why that is the

case sorry ok.

In order to save the different components of the transformed matrix, let us declare a few more

arrays. So, let us define sigma_n_a = np.zeros(np.shape(theta_a)) and let us define tau_n_a =

np.zeros(np.shape(theta_a)) and again we can do the same thing, we can declare everything

inside a loop for in theta_a.

So, now we must indent these lines because these have to be executed inside a loop and we

must have a loop counter as well so, count equal to 0. So, now, let us set sigma_n_a[count] =

sp[0,0] that is this particular element we are declaring as sigma_n, these elements we are

declaring as tau_n. So, these are some of the notation’s that solid mechanics that appear in

solid mechanics so, alright.

So, let us before this, we have to increment count as well. So, one way of doing this is

count+=1. So, this is equivalent to writing count = count + 1 ok. So, this is an equivalent way

of writing it. So, let us execute this and see whether so, there is no error. So, great we can

now plot sigma_n_a as a function of tau_n_a.

(Refer Slide Time: 61:01)

(Refer Slide Time: 61:06)

Let me make the aspect ratio. So, it does look like a circle, but can we show it, can we prove

that it does actually have to be a circle and the circle is not centered about (0, 0), it is centered

about some other value. So, what is that value? Ok. So, let us quickly simplify whatever we

were doing over here.

So, let me simplify whatever this is. So, let us simplify this. So, instead of and

, I am just going to write C and S; so, this will be , , ,

this times C, -S, S, C alright.

(Refer Slide Time: 62:17)

So, this will be equal to so, this multiplies this. So,

 So, these are the

components. And so, so, this become because we have selected

the to be symmetric. So, this is , is equal to this term so, this is so, they are

equal alright so, this is and if you note that this element is

also equal to this CS - so, it checks out so, its symmetric as well the transform matrix

is symmetric as well.

While if I call this as , this comes out to be so obviously, we have

made a small mistake. So, this should have been this times this, this should have been -CS ok.

So, this is .

So, one thing to note from this is that if you add these two, so, this becomes

 because , these two terms cancel out while,

ok.

(Refer Slide Time: 66:22)

But if we just focus on this sigma n prime so, ; while,

. While .

(Refer Slide Time: 67:47)

So, keeping this in mind, we can further simplify everything and we can show that

. This can be shown using these expressions and with

the help of this, we can finally write down an expression like this . So, let us add and

subtract . So, if we add and subtract over here so, this becomes

 and this essentially means

.

And this implies and this particular earlier result when we combine so, this implies that

.

(Refer Slide Time: 69:48)

So, its clear that the locus or rather the curve in the , plane will be a circle whose

center is at this point that is the , that is and I call it the average because

.

Hence, I have written it as because the trace is simply the sum of diagonals and the

radius of this circle is equal to this entity ok. So, let us verify whether that is true; let us verify

whether that is true.

(Refer Slide Time: 70:41)

So, on top of this plot, let me plot the center of the circle plt.plot so, let me so, the x; x point

will be half of the trace so, plt.plot(np.trace(s)/2, 0, 'ok'). So, this is indeed the center and that

is simply the trace of s and we do not need the transform matrix to find out the location of the

center ok.

So, on the radius of this circle, you can independently verify that it will be equal to this

equation over here and this particular construction is called as the Mohr circle and it helps us

in identifying which will be the coordinate system in which we will experience maximum

shear stress or the maximum normal stress. So, on the x axis, we have essentially the

maximum another the transform normal stress, on the y axis, we have the maximum shear

stress ok.

So, let me label this. So, the x-label will be equal to sigma n prime while the we have to put a

double escape character over here and plt.ylabel("$\\tau_n'$") ok. So, this helps us in

identifying the locations of the maximum shear stress and normal stress.

And I request you to have a look at basic solid mechanics and try to figure out all this on your

own. There will be n number of problems where you are required to find out the plane where

the maximum stress occurs and try to resolve it using Python, I have shown you how to do it.

So, this pretty much wraps up this particular lecture and, in this lecture, we have covered a

whole lot of matrix manipulations and I have shown you how it can be used to your

advantage to understand matrix transformations and vector transformations. This is different

from vector rotations where you are rotating a vector. Here, we are rotating coordinate

systems and in your free time, I request you to have a look into rotation of vectors and

rotation of matrices not just the transformations.

With this it is goodbye from me, I will see you again next time bye.

