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Hello everyone. Welcome to lecture 39, we have moved into the last week where we are 

going to utilize some of the tools and learn new tools, in order to analyze some 

experimental data. And many of you I am sure take interest in experiments and during 

experiments you obviously, collect a lot of data, data collection is not what it used to be 

what it was in your school days or something.  

It is now more electronic, there is data loggers, all sorts of sensors, temperature sensors, 

pressure sensors things like that. And so, in this electronic age it is expected that once 

you have data you are going to analyze the data and get something useful out of it right. 

So, in this particular lecture we are going to touch upon a bit of audio processing.  

Well I call it audio processing, but more generally it is signal processing. So, few days 

back I was tuning the carburetor of my bike and once I switch it on I can see the meter 

on the bike it says something close to 1500 RPM and it is something which you can 

make out clearly and it is sort of noise it is not too fast it is not too slow ok.  

So, then that gives me an idea whether we can predict or tell what the RPM of a certain 

devices with some audio clues. And what is audio? I mean whatever you perceive as 

sound is really, how a pressure fluctuation is reaching your microphone or your ear right, 

and whenever you have various machines that that whiz or were that go around you.  

For example, the fridge compressor or your fan or some high frequency sound of a; of an 

insect sort of associated with some kind of periodic motion that particular device or 

insect is making right. So, in this lecture we are going to see how we can predict the 

RPM of two machines that I had I mean in the workshop. 
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So, the 1st machine is the bench grinder and the other machine is a simple pedestal fan. 

And well everyone knows what a pedestal fan is it is one of those fans, which has a base 

it has a long stem then from the side it looks something like this, this is shroud and this 

three blades like this and this goes to mains. So, it is a device which runs of mains and it 

does have an AC induction motor ok. 

A bench grinder is also something similar how it looks like is there is a central bearing 

holder and then there is two shafts and there is two wheels connected. So, these are 

centered grits of aluminium oxide carborundum whatever it is. It is a; it is a device where 

this rotate these two discs rotate and you can sharpen various things so, it is called as a 

bench grinder. It is also AC induction motor, but whether or not when they have the 

same frequency well, AC machines they run at synchronous speeds. 



 

 

(Refer Slide Time: 05:07) 

 

(Refer Slide Time: 05:30) 

 

This is quite different from how other kinds of motors, for example, DC motors or 

universal motors run ok. So, induction motors have a synchronous speed well not all 

kinds of induction motors. This different kinds like shaded pole motors which do not run 

at in synchronous speeds, DC motors have a large speed regulation depending on the 

load, universal motors tend to run at significantly higher RPM’s and that also depends on 

the load.  



 

 

But, AC induction motors is the one you find in your ceiling fan and all these kinds of 

appliances, there are synchronous speeds. The synchronous speed is dependent on the 

number of poles the frequency ok. So, if you have 50 hertz as the AC mains frequency, 

so the synchronous speed will be something like 1500 rpm and the formula is quite. 
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So, let me just show that formula. 
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So, it is simply equal to 120
f

p
 ok. So, for a single phase 4 pole, so this is for 4 pole 

motor and the formula is 60
f

p
 rather 120

f

p
 alright. So, these are the number of pairs 

ok. So, 120
50

4
  total number of poles, so there is 2 pairs, but there is 4 poles. 

So, 30 and this gives you something like 1500 right. So, that is the rpm that we have of 

the motor and that rpm of the motor when converted to hertz. So, you cannot just say that 

this is the hertz that this is the motor is running at because the number of poles are 

different.  

And so, the corresponding hertz or per second calculation cycles per second is 1500 by 

60 right. So, that is the hertz of the device. So, what do we get 75/ 3, 25. So, we have 25 

hertz as the frequency of a 4 pole induction motor. And let us see whether we can predict 

that the rpm of this induction motor is something which we can get from an audio source. 
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And how do you actually find the frequency? How do you actually do it? Well you use a 

tachometer there is various kinds of meters you can attach it to the spindle it rotates or 

you can use a strobe ok. So, in your basic electrical machines lab you might have done 

something like this, but we do not bother with all this these are sort of.  



 

 

So, this is a non contact method yeah it requires you to have a stroboscope this requires 

you to have a tachometer there is laser tachometers as well, the old kind it involves you 

mating the spindle of the tachometer with the rotating shaft. But, let us see whether we 

can do something even simpler. So, what I did, I is I took my mobile phone I kept it over 

here and I turned on sound recording when the fan was on. And I took my mobile phone 

and I kept it on the casing of this bench grinder and I recorded a bit of audio.  

How that audio can give me insight into the frequency of rotation of the motor is what 

we are going to study ok. So, we are going away from the traditional techniques 

something which is quite cheap you can do it at your home as well and at the end of the 

lecture I do hope that you will take this technique and try to figure out various the 

running frequencies of various motors or things around your house ok. 
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So, let me go to JupyterLab. So, what so this is these are the old files. So, let me create a 

new file it is Python 3, I do not know why there is some bug. 
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But I need to select it again from here. 
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. So, I have created a new file let me rename it as lec39 alright. So, first things first, let us 

declare what this program is going to be about it is going to be about audio alright. So, 

let us import the usual things we will require numpy and all this. So, let me run this and 

what I did was I recorded this mp3.  



 

 

Because my audio recorder the audio recorder I have in my mobile phone it gives me an 

output in mp3. In order to process the audio files I need to have it in dot wav format and 

how I did it was I went to the command prompt I navigated to the folder and I executed a 

command in ffmpeg. 
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So, ffmpeg is a set of encoders and decoders very efficient and I gave an input file as 

tablefan. mp3 and the output file has tablefan.wav. 
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So, dot wav file let me go over here and get the media info maybe it is a bit too small to 

read, but yeah this gives you all the information, but we can fetch all these information 

from Python as well. 
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So, before going to that we need to do import the module which is going to help us to 

import a .wav file ok. So, import scipy.io.wavfile as sw and let me run this cell. So, let 

us do it. So, sam, d = sw.read("tablefan.wav"), we are going to give the name of the file. 

So, the first file we are going to analyze is the table fan. 



 

 

So, tablefan.wav alright. So, let me run this. So, we have loaded the wav file and what do 

the sam and d contain? So, let me print out what sam is, it is 1600 and let me print out 

what d is, but it is a big; it is a big array, but we can query the size. So, it is an array of 

size 32000 no its 322560. So, it is 322560 alright. So, what is the 16000, it is the 

sampling rate of the file meaning that audio file has in 1 cycle, it has 16,000 samples ok. 

So, it is samples per second. So, it is 16 kilo hertz basically. And so, the number of the 

size of d that is, so d contains the data. So, d is it looks roughly 20 times what this 

number is, meaning that the file we expect to be of 20 seconds duration. So, let us see 

whether it is really 20 seconds. Let us go over here let me query the media info and it is 

20 seconds great. So, what it is table fan. 
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So, tablefan.wav is a file of 20 seconds, 1 second contains 16000 samples and that is 

what the information we have and d is obviously, the data. So, what we can do is we can 

plot the data. 
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So, plt.plot and we can simply plot d, this is the data alright and it is just a bunch of 

waveforms. 

(Refer Slide Time: 16:22) 

 

So, let me pick out a small waveform. So, that let me pick out something between a 

million and this to something like this, it is just a waveform cannot really understand 

anything from a waveform can you. 
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That is where Fourier transforms come into the picture. So, well let me declare N = 

np.size(d) that is the total number of samples right. So, on the one hand we have d on the 

other hand we have the sample rate and N. So, we can actually create an array. So, we 

can create t = np.arange(N)*1.0/sam , just to make the time axis we can plt.plot(t, d). So, 

that gives us 20 seconds.  

So, basically what we have over here is it is the Audio signal near a fan let me suppress 

this right, so far so good, but how do I make sense of this data I mean it is too much data 

in this I do not know what frequencies it contains. And by now you might have guess 

that ok he is going to take a Fourier transform of it and find out the frequencies and if 

you thought this you are absolutely correct, that is exactly what we are going to do just to 

give you a small background. 

So, we are going to do a discrete Fourier transform and it is called as a fast Fourier 

transform. And what this is going to contain do is do the following. So, it is going to take 

a signal x(n) where n goes from 0 to N - 1. It is going to transform it to the from time 

domain to frequency domain.  
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So, what this does it is going to pick out the amplitude of that particular frequency. So, 

this is an indicator that given a certain frequency n what is the amplitude of that 

particular wave? Imagine you have sin(5 2 )x t   alright. So, when n = 5 it is going to 

be 1, for all the other ends it is going to be 0, right.  

So, this is what the interpretation is going to be it is going to isolate each wav 

component, but it is not going to go over all the frequencies. It is going to go from 

0
2

N
   to 2

1

N

N
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
. So, it is going to go over the discrete frequencies alright. So, we 

are going to take a Fourier transform of all this. So, for that we have to import the 

Fourier. So, let us import all those. So, we have to import fft. 
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So, from scipy dot transform sorry import fft comma fftfreq and I will tell you what these 

two functions are. So, after importing this we are going to take a Fourier transform of the 

data. So, the data is d. So, let me call dk as the transform data. So, dk will be fft of d 

alright. 
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Let us see what how dk looks like. So, plt.plot dk it is look it looks very weird ok, but 

there is a certain way in which we must plot this, but before even plotting let me show 

you what dk has. 
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So, let me first of all print dk well. Let me tell you the ordering of what dk is. 
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So, once you take a Fourier transform it arranges the terms in a very peculiar fashion it 

goes from the following sequence of K it goes from 0, 1, 2 all the way to 1
2

N
 for the 

positive frequencies. For the negative frequencies, it goes in the reverse order ok, it goes 

in the reverse order and this particular sequence you can get using the fftfreq function as 

well. So, once you have dk it is customary to also get the frequency points. 
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So, let me call them as xk as fftfreq and this has the total number of sample points and an 

additional input which is 1 over the sampling 1 over the sampling frequency, so it is 

going to be 1.0/sam alright. So, why that 1/sam because once you have this ordering you 

must realize that you are not sampling over all the frequencies the maximum frequency 

you are going to sample or rather the smallest time interval that is going to be 1/16000 

once again 16000 that is this per cycle that is a smallest t  that exists alright. 

So, that the inverse of that is going to be the frequency. Actually, let me put it this way. 

So, you have 16000 samples per second so per cycle. So, 1 cycle consists of 1/16000 

cycles per sample ok. So, that is the smallest unit you have and that is what you need to 

give to the effective frequency to tell that this is the unit, step unit of the frequency ok. 

So, this will give you xk so far so good. 

Apart from this if you look at the formula, over here if you set y; if you set k = 0 then it 

is simply the following sum. If you set k = 0 and you have y is 0, 
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  and it is 

simply the sum of all the peaks ok. So, let us see whether that is true. 
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So, we are going to plot the two quantities. So, q1 is sum or np.sum(dk) and q2 is going 

to be the Fourier transform, but the 0th mode. So, let us now print q1 and print q2. This 

is not going to be sum of dk it is going to be sum of d alright. 
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So, look it does check out the sum of all the data points is equal to the 0th or the once 

you set the k = 0, the Fourier transform at the 0th frequency if you will ok that gives you 

the sum. So, that is true.  

So, we have verified this. Now, we can proceed to show another thing that it is 

symmetric the distribution is symmetric, meaning the first term and the N -1 th term will 

simply be complex conjugates because these are all the positive frequencies sorry these 

are all the positive frequencies, these are all the negative frequencies. So, let me show 

that as well. 
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In order, to show that I am going to assign q1 to dk 1 and this as N -1. So, as you can see 

they are simply complex conjugate. So, it is good enough if we can simply plot half the 

values we do not need to take all the values into consideration ok. 
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So, in order to take half the values we can simply take N ceiling 2 alright sorry. So, in 

case you are wondering what that operator means let me show you, ok the lowest is the 

floor function ok it is the floor function. So, essentially we are picking out only half the 



 

 

range. So, once we have picked out half the range what do we do? We can now make a 

plot of it. 
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So, let me do that. So, we are going to plot xk and the magnitude of dk. So, np.abs(dk). 
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So, let us see ok we have something, things are very crowded, but we do expect things to 

be crowded near the small numbers. So, that is why we make a log of it. 
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So, instead of plot we do a log log alright. So, this is the log log plot for the fan problem 

alright. So, now, from this plot you see that at a certain frequency there is a peak in the 

amplitude and this frequency is something near, well it has different modes this, this, 

this, this.  

So, we would like to isolate those modes alright. So, let us try to isolate those modes, we 

have done this before as well in order to isolate the modes we are going to use the scipy 

function peaks find peaks. 
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So, let us import that as well. So, from scipy dot signal dot import find peaks alright. Let 

me run that now we are going to say peaks comma nothing is equal to find peaks of dk 

height on the peak should be above 10
7
 and the distance between the peaks has to be 

maybe 200 array points alright. So, once we have done this. So, let us do 

plt.loglog(xk[peaks], np.abs(dk[peaks]), 'xr'). So, let us see what we have alright. 
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So, we do have the peaks, but ok I think yeah because find peaks we need to give it 

np.abs alright great. So, now, we do have the peaks let us see what the values of the 

peaks are ok. So, let me simply plot the frequencies at which the peaks occur. 
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So, xk peaks print xk peaks alright. So, it is 25, 51, 77, 103 and so on. What is the 

frequency that we had found out and yeah for us for synchronous motor it does come out 

to be 25 hertz. And that is great I mean you could figure that out using a very simple 

program I mean it literally is a few lines of code and audio signal with which you could 



 

 

figure out what that frequency of operation is and you do see that you get multiples of 

those frequency like 25, 51, 77, 100. So, it is like 25, 50, 75, 100, 125 and so on and I am 

going to bet that this is something like 12.5. 
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So, let me just reduce the threshold of the peak finding function let me make it 1e
6
 let me 

run it. And let me see what this contains ok it contains a bunch of values because it is 

grabbing this as well. I do not want to grab this well it should be the second peak and it is 

actually 12.89 it is good enough. So, we are getting all those harmonics it is let me revert 



 

 

back to 1e
7
. So, the real peak occurs at something like 77. Now, ok we are going to go 

with the primary peak which is 77 alright. So, what do we have from the audio signal? 
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So, from the audio signal for a pedestal fan we have a peak at 77 hertz alright, that is the 

peak signal all the other signals are sort of at least a decade smaller in magnitude than 

that peak signal. But, why 77? I thought it was supposed to be 25 know and the reason is 

clear this 3 fans these 3 blades in the fan the 3 blades are cutting air thrice in 1 cycle. 

So, we must divide this by 3 to get the true frequency of the fan ok. So, in the cycle you 

are getting 3 pressure fluctuations because of the presence of 3 blades and hence it comes 

at something like 75 hertz which corresponds to the synchronous speed of the AC motor. 

That is quite fantastic I mean think about it you are able to get a very good estimate of 

the synchronous speed just by the audio signal no fancy electronics nothing just an audio 

recorder. 



 

 

(Refer Slide Time: 35:46) 

 

Well not, so first let us change the input file to the bench grinder and let us run the entire 

thing again for a bench grinder. In fact, let me make a new set of cells to be imported all 

this. 
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I am just going to change this to benchgrinder and I am going to write this as audio 

signal near bench grinder. 
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Let me run this cell let me see whether it gives me the same synchronous speed and the 

answer is no. Well, what is this blue plot let us see we are plotting everything in. 
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So, let us suppress this particular plot alright. 
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So, for a bench grinder peak frequency appears to be around this which is 50 hertz, well 

that changes everything. So, for the bench grinder it is around 50 hertz. And you have 

multiples of 50 hertz that those are the overtones, so to say 50, 100, 150, 200 and so on 

and that is fine, but 50 hertz. 
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And the fact of the matter is I checked the label of the bench grinder and it did say that 

the bench grinder runs at 3000 RPM and not 15000 RPM, what could be the reason it 

runs at 3000 RPM? The reason is over here instead of having 4 poles it has 2 poles. 
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So, the AC motor of a bench grinder it has 2 poles. So, it is 120
50

2
  and it does give you 

3000 rpm alright. So, 3000 rpm corresponds to 50 hertz and (Refer Time: 38:10) you do 

have a good estimate of what the synchronous speed of the bench grinder is. Typically, 

bench grinders have a higher speed because you are doing a lot of grinding in order to 

have good material removal rate you need to have a high rpm in the grinder. 

So, with the help of this simple experiment you are able to figure out all the different 

frequencies that are at play. So, with this I am going to conclude this experiment all the 

sound files will be up for upload and you can try this piece of sample code for many 

roto-dynamic machines in and around your place. So, with this I say goodbye I will see 

you again next time bye. 


