Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 39
Audio analysis — determine motor RPM

Hello everyone. Welcome to lecture 39, we have moved into the last week where we are
going to utilize some of the tools and learn new tools, in order to analyze some
experimental data. And many of you | am sure take interest in experiments and during
experiments you obviously, collect a lot of data, data collection is not what it used to be

what it was in your school days or something.

It is now more electronic, there is data loggers, all sorts of sensors, temperature sensors,
pressure sensors things like that. And so, in this electronic age it is expected that once
you have data you are going to analyze the data and get something useful out of it right.

So, in this particular lecture we are going to touch upon a bit of audio processing.

Well I call it audio processing, but more generally it is signal processing. So, few days
back | was tuning the carburetor of my bike and once | switch it on | can see the meter
on the bike it says something close to 1500 RPM and it is something which you can

make out clearly and it is sort of noise it is not too fast it is not too slow ok.

So, then that gives me an idea whether we can predict or tell what the RPM of a certain
devices with some audio clues. And what is audio? | mean whatever you perceive as
sound is really, how a pressure fluctuation is reaching your microphone or your ear right,

and whenever you have various machines that that whiz or were that go around you.

For example, the fridge compressor or your fan or some high frequency sound of a; of an
insect sort of associated with some kind of periodic motion that particular device or
insect is making right. So, in this lecture we are going to see how we can predict the

RPM of two machines that | had | mean in the workshop.

(Refer Slide Time: 03:20)

Synchronous speed

C
&
) §

N \\J V59

> ASTD g

Construction

So, the 1st machine is the bench grinder and the other machine is a simple pedestal fan.
And well everyone knows what a pedestal fan is it is one of those fans, which has a base
it has a long stem then from the side it looks something like this, this is shroud and this
three blades like this and this goes to mains. So, it is a device which runs of mains and it

does have an AC induction motor ok.

A bench grinder is also something similar how it looks like is there is a central bearing
holder and then there is two shafts and there is two wheels connected. So, these are
centered grits of aluminium oxide carborundum whatever it is. It is a; it is a device where
this rotate these two discs rotate and you can sharpen various things so, it is called as a
bench grinder. It is also AC induction motor, but whether or not when they have the

same frequency well, AC machines they run at synchronous speeds.

(Refer Slide Time: 05:07)

Audio of a pedestal fan

(Refer Slide Time: 05:30)

Audio of a bench grinder

This is quite different from how other kinds of motors, for example, DC motors or
universal motors run ok. So, induction motors have a synchronous speed well not all
kinds of induction motors. This different kinds like shaded pole motors which do not run
at in synchronous speeds, DC motors have a large speed regulation depending on the
load, universal motors tend to run at significantly higher RPM’s and that also depends on
the load.

But, AC induction motors is the one you find in your ceiling fan and all these kinds of
appliances, there are synchronous speeds. The synchronous speed is dependent on the
number of poles the frequency ok. So, if you have 50 hertz as the AC mains frequency,

so the synchronous speed will be something like 1500 rpm and the formula is quite.

(Refer Slide Time: 07:11)

'« PR
So, let me just show that formula.

(Refer Slide Time: 07:27)

+ Co ol senser

Synchronous speed [est

ous speed of @ ynchronous masr s gven:

s o commutaton), P = p/2.

e 2-gole-air) Synchronous motoris operating al an AC supply frequency of 50 Hz. The number of ole-pairs ks 2. 50 the synchvanous speed is:

So, it is simply equal to 120i ok. So, for a single phase 4 pole, so this is for 4 pole
Y

motor and the formula is 60i rather 120i alright. So, these are the number of pairs
P p

ok. So, 120><57? total number of poles, so there is 2 pairs, but there is 4 poles.

So, 30 and this gives you something like 1500 right. So, that is the rpm that we have of
the motor and that rpm of the motor when converted to hertz. So, you cannot just say that
this is the hertz that this is the motor is running at because the number of poles are
different.

And so, the corresponding hertz or per second calculation cycles per second is 1500 by
60 right. So, that is the hertz of the device. So, what do we get 75/ 3, 25. So, we have 25
hertz as the frequency of a 4 pole induction motor. And let us see whether we can predict

that the rpm of this induction motor is something which we can get from an audio source.

(Refer Slide Time: 09:20)

And how do you actually find the frequency? How do you actually do it? Well you use a
tachometer there is various kinds of meters you can attach it to the spindle it rotates or
you can use a strobe ok. So, in your basic electrical machines lab you might have done

something like this, but we do not bother with all this these are sort of.

So, this is a non contact method yeah it requires you to have a stroboscope this requires
you to have a tachometer there is laser tachometers as well, the old kind it involves you
mating the spindle of the tachometer with the rotating shaft. But, let us see whether we
can do something even simpler. So, what I did, I is | took my mobile phone I kept it over
here and | turned on sound recording when the fan was on. And | took my mobile phone
and | kept it on the casing of this bench grinder and | recorded a bit of audio.

How that audio can give me insight into the frequency of rotation of the motor is what
we are going to study ok. So, we are going away from the traditional techniques
something which is quite cheap you can do it at your home as well and at the end of the
lecture | do hope that you will take this technique and try to figure out various the

running frequencies of various motors or things around your house ok.

(Refer Slide Time: 11:09)

B+ X0O0» = C » Makdwnv Pyton3 O

Phase space - nonlinear equations

inport numpy as

0@ 128 Python3|ide

So, let me go to JupyterLab. So, what so this is these are the old files. So, let me create a
new file it is Python 3, | do not know why there is some bug.

(Refer Slide Time: 11:11)

o x
s wt ©
= Bt c R leciSipmb X & Launcher X Wlecibipnb X MieciZipb X Hleci8ipymb X
] .
nptel_codes
O Name Dropbox/nptel_codes/lec39
B M| Notebook
% a ¥
Ll
o 3 Octave
! Con
[N RERC]

But | need to select it again from here.

(Refer Slide Time: 11:21)

]
28
Mode:Edit @ Ln1,q

. S0, | have created a new file let me rename it as lec39 alright. So, first things first, let us
declare what this program is going to be about it is going to be about audio alright. So,
let us import the usual things we will require numpy and all this. So, let me run this and

what | did was I recorded this mp3.

Because my audio recorder the audio recorder | have in my mobile phone it gives me an
output in mp3. In order to process the audio files I need to have it in dot wav format and

how I did it was | went to the command prompt I navigated to the folder and | executed a

command in ffmpeg.

(Refer Slide Time: 12:38)

>
\
Modest ® lnicoly ¥ ¥

“3(7, &

So, ffmpeg is a set of encoders and decoders very efficient and | gave an input file as

tablefan. mp3 and the output file has tablefan.wav.

(Refer Slide Time: 12:52)

» & C » Code

Audio processing t ;=

inport

»

(Refer Slide Time: 12:58)

dit View Run Kemel Tabs Settings Help

Q

Show ContextuzX HleciSipynb X W jec3 o X =
B+ XB 0O » = C » Coe i

[Ep————

Audio @2 == any
D benchgrindermp3 - G =

inport n
- inport m
8 D freezer-hum-Twav plt.rcPa

© 7 Joc30 %config Inli
O D tablefanmp3 I

D tablefan

D benchgrinderwav

% O tensformer-1uav

0@ 3@ Python3|ide Saving completed

So, dot wav file let me go over here and get the media info maybe it is a bit too small to
read, but yeah this gives you all the information, but we can fetch all these information

from Python as well.
(Refer Slide Time: 13:14)

tyab/leCture'_li"st.htmI as a quick reference 0 30

File Edit View Run Kemel Tabs Settings Help

™ + B ¢t C Show ContextuaX ~ M leciSipynb X "Weci?m"bilr Rlectbippnd X HleciZipynb X MleciBipmb X
n/ - B+ X0O0» 8 C» Cde v Pyton3 O
/ nptel_codes / lec39 /

o Name
B s Audio processing to figure out RPM of motor

g D benchgrindermp3
D benchgrinderwav
% D freezerhumtvav
3 D tablefanmp3
D tablefanway

% O tensformer-1uav

"y
0B 138 Python3|idie Saving completed Mode: Command @ Lny‘c’;']

0« = FONFI g

P Type e 1o search

So, before going to that we need to do import the module which is going to help us to
import a .wav file ok. So, import scipy.io.wavfile as sw and let me run this cell. So, let
us do it. So, sam, d = sw.read(""tablefan.wav"), we are going to give the name of the file.

So, the first file we are going to analyze is the table fan.

So, tablefan.wav alright. So, let me run this. So, we have loaded the wav file and what do
the sam and d contain? So, let me print out what sam is, it is 1600 and let me print out
what d is, but it is a big; it is a big array, but we can query the size. So, it is an array of
size 32000 no its 322560. So, it is 322560 alright. So, what is the 16000, it is the
sampling rate of the file meaning that audio file has in 1 cycle, it has 16,000 samples ok.

So, it is samples per second. So, it is 16 kilo hertz basically. And so, the number of the
size of d that is, so d contains the data. So, d is it looks roughly 20 times what this
number is, meaning that the file we expect to be of 20 seconds duration. So, let us see
whether it is really 20 seconds. Let us go over here let me query the media info and it is
20 seconds great. So, what it is table fan.

(Refer Slide Time: 15:43)

15 {boov ian»/ut

0B 138 Python3|ide

So, tablefan.wav is a file of 20 seconds, 1 second contains 16000 samples and that is
what the information we have and d is obviously, the data. So, what we can do is we can
plot the data.

(Refer Slide Time: 16:02)

X W Spovnan o Wezete X | +

=
C O rasocssy ax 920

T Fle it Vew Run Kemel Tabs Settings Hep

o + B ¢t C Show ContextuzX MleciSippnb X Hlec9ipynb @ Eleclsipnd X HleciZipyb X MleciBipmb X

n/ - B+XO0»®C» Cde v Python3 O
/ nptel_codes / lec39 / .
Name 2 sam, d = sw.read("tablefan.wav");

= print(sam)
PPLAUSE!

" D APPLAUSEWAV it plot(d);

D) benchgrindermp3

16000
D benchgrinderwav

20000
% D freerer-hum Ly
lec33ipynb 15000
O D tablefanmp3
10000
D tablefanviav
% O vensformer-uav 3000
0
=500
~10000
—15000
0 30000 100000 150000 200000 250000 300000
o @ 13 & Python3|ide Saving completed Mode: Command @ 'nl,%’ 7
P Typereretosearch 0 & = = [

[

So, plt.plot and we can simply plot d, this is the data alright and it is just a bunch of
waveforms.

(Refer Slide Time: 16:22)

X ¥ s waee x| + -0 x
C O roRoas ax 420
_: File Edit View Run Kemel Tabs Settings Help
n + B ¢t C Show ContextuzX MleciSipmnb X Mlec9ipynb @ Mlectoipnd X Hieci7ipymb X WleciBipmb X
N/ - B+ X0OD0O»mC» Cde v Python3 O
/ nptel_codes / lec39 / -
Name - [8]: |sam, d = sw.read("tablefan.wav");
(
D APPLAUSEWAV prist (san)

&% plt.plot(d[10000: 20008]) ;
D benchgrindermp3

D benchgrinderwav
% D freezerhumtwav
10000

lec33ipynb
3 D tablefanmp3
D tablefanwiav 0

% D tensfomer-lwav

16008

—5000

—10000

0 2000 1000 6000 8000 10000

i g
Of 3@ Python3|ide Saving completed Mode:Edt @ Ln3,C D Ll
| = PR T N YT . .

So, let me pick out a small waveform. So, that let me pick out something between a
million and this to something like this, it is just a waveform cannot really understand

anything from a waveform can you.

(Refer Slide Time: 16:43)

-0 x
Y]

~ File Edit View Run Kemel Tabs Settings Help

+ B ¢t C ShowContextuaX M leciSipynb X Mlecipynb @ Hlectoipynb X WieciZippb X MleciBipmb X

n/ o B+ X0O0O0» m C» Cide v Python3 O

[D tablefanmp3
D tablefan

» D transformer-1.wav L300

0B 13@ Python3|ide Saving completed

That is where Fourier transforms come into the picture. So, well let me declare N =
np.size(d) that is the total number of samples right. So, on the one hand we have d on the
other hand we have the sample rate and N. So, we can actually create an array. So, we
can create t = np.arange(N)*1.0/sam , just to make the time axis we can plt.plot(t, d). So,

that gives us 20 seconds.

So, basically what we have over here is it is the Audio signal near a fan let me suppress
this right, so far so good, but how do | make sense of this data | mean it is too much data
in this I do not know what frequencies it contains. And by now you might have guess
that ok he is going to take a Fourier transform of it and find out the frequencies and if
you thought this you are absolutely correct, that is exactly what we are going to do just to

give you a small background.

So, we are going to do a discrete Fourier transform and it is called as a fast Fourier
transform. And what this is going to contain do is do the following. So, it is going to take
a signal x(n) where n goes from 0 to N - 1. It is going to transform it to the from time

domain to frequency domain.

N1 7Tim
So, we have y(k) = Ze “n x(n) and you may recognize this as being the discrete form
n=0

of the continuous Fourier transform. And similarly the inverse transform is nothing, but

.kn

k=1, k0
x(n) :Ze “n y(K) , where i is imaginary number, i = /(1) .
k=0

So, what this does it is going to pick out the amplitude of that particular frequency. So,
this is an indicator that given a certain frequency n what is the amplitude of that

particular wave? Imagine you have x =sin(5x2xt) alright. So, when n =5 it is going to

be 1, for all the other ends it is going to be 0, right.

So, this is what the interpretation is going to be it is going to isolate each wav

component, but it is not going to go over all the frequencies. It is going to go from

an% to 27 x . So, it is going to go over the discrete frequencies alright. So, we

are going to take a Fourier transform of all this. So, for that we have to import the

Fourier. So, let us import all those. So, we have to import fft.

(Refer Slide Time: 21:37)

So, from scipy dot transform sorry import fft comma fftfreq and | will tell you what these
two functions are. So, after importing this we are going to take a Fourier transform of the
data. So, the data is d. So, let me call dk as the transform data. So, dk will be fft of d
alright.

(Refer Slide Time: 22:28)

| nptel_codes / lec39 /
o Name =
[appLaUseway
B penchgindermss

[benchgrinderwav
%D treeser-hum- L
O D tablefanmp3

D tablefanwav

* D transformer-1wav

0@ 3@ Python3|ide

P Tipetez sy

Let us see what how dk looks like. So, plt.plot dk it is look it looks very weird ok, but
there is a certain way in which we must plot this, but before even plotting let me show

you what dk has.

(Refer Slide Time: 22:41)

~ File Edi W Run
+ B ¢t C
n
N/

/ nptel_codes / lec39 /
Name o
D APPLAUSEWAV

B D benchgrindermp3
D benchgrinderwav

k]

D freezer-hum-1wav

lec33ipynb
[D tablefanmp3

D tablefanway

% O trensformer-1uav

0@ 13 @ Python3|idie

P Tyvehese tosearch

s W S e g | + -8 ox
o Lx Ga@:
T Fle Edit View R Kemel Tabs Setings Help
™ + t C Show ContextuaX M leciSipmb X Wlec3%ipnh @ Mlectgipnb X MleciTipmh X WlectBipmb X
/o B+ X0O0» mCc w» Cde Python3 O

Kemel Tabs Settings Help

iscards the inaginary part
return array(a, dtype, copy=False, order=order)

[<matplotlib. Lines.Line2d at @x265d23c5626>]

1 0000 100000 150000 200000 250000 300000

Mode:Edt @ Ln1,Cf

Saving completed

6 x

Ak 4*0

Show ContextusX MleciSipynb X Mlec3%ipynb @ Elecibipmd X MieciZipynb X HleciBipmb X
B+X0O0»®C» Cde v Python3 O
~1000
S w
0d 25 50 T 100 125 15 175 20
Time

from scipy.fft import fft, fftfreq

[13]: |dk = Fft(d);
print(dk[1)

F:\anaconda\1ib\site-packages\nunpy\core_asarray.py:85: Complexiarning: Casting complex values to real d
iscands the imaginary part

return array(a, dtype, copy=False, order=order)
t1ib. lines.Line2D at @x265d23c3b20>]

[<matpl

Saving completed

So, let me first of all print dk well. Let me tell you the ordering of what dk is.

(Refer Slide Time: 22:52)

+ B t C

/ nptel_codes / lec39 /
o Name
D) APPLAUSEWAV
E p benchgrindermp3
D benchgrinderwav
% D freezerhum twav
O D tablefanmp3
D tablefanwav

% O tonsformer-uav

0@ 138 Python3idee
P Type hese 1o search

So, once you take a Fourier transform it arranges the terms in a very peculiar fashion it

goes from the following sequence of K it goes from 0, 1, 2 all the way to %—Hor the

positive frequencies. For the negative frequencies, it goes in the reverse order ok, it goes

in the reverse order and this particular sequence you can get using the fftfreq function as

dit View Run Kemel Tabs Settings Help

o= s
ShowConteruaX Kleclsimb X B () = ”; M] i
B+X00» = C» Coe 7V n=0 .
i ﬂwﬂﬂ (
W - 1% €yl
from scipy.fft import fft, fftfrd N L2

[15]: | dk = Fft(d);
xk = Fftfreq(N, 1.0/sam);

F:\anaconda\lib\site-packages\nun
iscards the imaginary part

return array(a, dtype, copy=Fa; K
[<matplotlib.lines.Line2D at x4

x10*

K=o, y(o) = Eﬂi‘/k'ﬂj
J)

Saving completi = * -

et Decomest Ko

'!'4'.!T%’D' L A, B

Wx0 5 uhd
N N

£L= b ‘Lgh‘ i)

- L2 I Yy,

well. So, once you have dk it is customary to also get the frequency points.

(Refer Slide Time: 23:37)

Bt C

/ nptel_codes / lec39 /
o Name
D) APPLAUSEWAV
B D benchgrindermp3
D benchgrinderwav
% D freezerhum vy
[D tablefanmp3
D tablefanvay

% O tansformer-uav

0B 138 Python3|ide

P Typedere o search

View Run Kemel Tabs Settings Help

RleciSipmb X Wid

B+ X000)» mC » Coe

Shan

Show Contextua X

from scipy.Fft inport Fft, fftfra

[13]: [dk = fft(d);
xk = fftfreq(N, 1.8/sam);

F:\anaconda\1ib\site-packages\nun|

iscards the imaginary part
return array(a, dtype, copy=Falll

[<matplotlib.lines.Line2D at @x24

1l

>! 2-/mT=0~ o]
n=4 ln
™
I N oy
W - L% €V ym
N -2

x0
N N

PRI "‘47,7[’{
s /(«“Uh\)

/-1 N - 4
N,l\ ly,

Saving complet ™ * -

So, let me call them as xk as fftfreq and this has the total number of sample points and an
additional input which is 1 over the sampling 1 over the sampling frequency, so it is
going to be 1.0/sam alright. So, why that 1/sam because once you have this ordering you
must realize that you are not sampling over all the frequencies the maximum frequency
you are going to sample or rather the smallest time interval that is going to be 1/16000
once again 16000 that is this per cycle that is a smallest At that exists alright.

So, that the inverse of that is going to be the frequency. Actually, let me put it this way.
So, you have 16000 samples per second so per cycle. So, 1 cycle consists of 1/16000
cycles per sample ok. So, that is the smallest unit you have and that is what you need to
give to the effective frequency to tell that this is the unit, step unit of the frequency ok.

So, this will give you xk so far so good.

Apart from this if you look at the formula, over here if you set y; if you set k = 0 then it

N-1
is simply the following sum. If you set k = 0 and you have y is 0, »e"x(n) and it is
n=0

simply the sum of all the peaks ok. So, let us see whether that is true.

(Refer Slide Time: 26:10)

So, we are going to plot the two quantities. So, g1 is sum or np.sum(dk) and g2 is going
to be the Fourier transform, but the Oth mode. So, let us now print g1 and print g2. This

is not going to be sum of dk it is going to be sum of d alright.

(Refer Slide Time: 27:07)

a l-¢-/mT=0)
. = h=v lkﬁ
1Siggb X A 1 4 1“"_»
» = C Code k\n) = rl\l"r ¢ thO
0
g 2Wr0 L uhd
N
from scipy.fft import fft, fftfrd ‘ - A { N
L= Ao (ST
o, U =8 20
’ : n=v '
AT /T TR
K o- 12 Wi Y A
A] !
e ‘ 3
o e for yke
L Eﬂ‘u
TR

0 13 @ Python3|idie

So, look it does check out the sum of all the data points is equal to the Oth or the once
you set the k = 0, the Fourier transform at the Oth frequency if you will ok that gives you

the sum. So, that is true.

So, we have verified this. Now, we can proceed to show another thing that it is
symmetric the distribution is symmetric, meaning the first term and the N -1 th term will
simply be complex conjugates because these are all the positive frequencies sorry these
are all the positive frequencies, these are all the negative frequencies. So, let me show

that as well.

(Refer Slide Time: 28:06)

/ nptel_codes / lec39 /
Name
D APPLAUSEWAV
g

D) benchgrindermp3

D benchgrinderwav

8 D freezer-hum-1uav

[D tblefanmp3

0B 3@ Python3|idie

P Tyvederetoseerd

- 6 x

2% 440

AlectSippmb X W lec39ipynb o Hiectbipmb X ®jeci7ipynb X W leci8ipynb X

® C » Code v Pyhon3 O

from scipy. £t import F7t, Fftfreq

dk = Fft(d)

F:\anaconda\lib\site-packages\numpy\core_asarray.py:85: Complexiarning: Casting complex values to real d
iscards the imaginary part
return array(a, dtype, copy=False, order=order)

[<matplotlib.lines.Line2D at @x265d23c3b20>]

-

ol
Mode:Command @ Ln1,Col1 ..ﬁ

() #10 Ea

Saving completed

In order, to show that | am going to assign gl to dk 1 and this as N -1. So, as you can see

they are simply complex conjugate. So, it is good enough if we can simply plot half the

values we do not need to take all the values into consideration ok.

(Refer Slide Time: 28:27)

i B %
/-

/ nptel_codes / lec39 /
Name

D APPLAUSEWAV

D benchgrindermp3
D oenchgrinderwav

s
8 D freezer-hum-1wav

3 D tablefanmp3
D tablefanvav

% O tansformer-uav

0 13 @ Python3|idie
S

nere 0 sewch

it View Run Kemel Tabs Settings Help
ShowContextuizX HlectSipymb. X Wleckoipynb @ Electipmb X Hleciipmb X HleciBipmb X

B+ X0O0)» = C » Cde v Python3 O

+ 920

Time

from scipy.fft import fft, fftfreq

dk = FFE(d)[:N//2];
xk = Fftfreq(N, 1.8/sam)[:N//2];

print(7//2)

=
Saving completed Mode: Command @ n1,Col] N g

So, in order to take half the values we can simply take N ceiling 2 alright sorry. So, in

case you are wondering what that operator means let me show you, ok the lowest is the

floor function ok it is the floor function. So, essentially we are picking out only half the

range. So, once we have picked out half the range what do we do? We can now make a

plot of it.

(Refer Slide Time: 29:16)

-0 x
* 540

— File Edit View Run Kemel Tabs Settings Help
™ + B t C Show ContextusX MleciSipynb X Mlec3%ipynb @ Miectéipnd X Hileci7ipynb X HleciBipnb X
m/ o B+ XO0)» 8 C » Cde v Python3 O

Time

from scipy.Fft inport Fft, fftfreq
D benchgrindermp3 & = £ LN;
D benchgrinderwav xk = fftfreq(N, 1.9/sam)[:N//2];

plt.plot(xk, np.abs(dk));

[D tablefanmp3

D tablefanvav

% O tensformer-1uav

0 13 @ Python3|idie Saving completed

P Typeneewsexcn

So, let me do that. So, we are going to plot xk and the magnitude of dk. So, np.abs(dk).

(Refer Slide Time: 29:29)

AR
Y
© Fle fdit View Run Kemel Tabs Setiings Help
showContextuaX MleciSipynb X Mlecipynb @ Rleclbipb X MieciZippnb X Wlecigipynb X
B+ XBO O »nC» Cde v Pyton3 O

[D tablefanmp3

D tablefanvav

% O tensformer-1uav

0@ 13 @ Python3|idee Saving completed ModeEdt @ Ln1,Colig i
A 1 B

P Typebese 1o search

So, let us see ok we have something, things are very crowded, but we do expect things to

be crowded near the small numbers. So, that is why we make a log of it.

(Refer Slide Time: 29:45)

P Tyvedese tosearch

St = GE 5
0 * %0
T Fle it Vew Run Kemel Tobs Settings Hep
(¢ ShowContextuiaX MleciSipmb X Wlec3ipmb @ Rlectsipmd X WleciZipmb X Wleci8ipmb X
B+X0D0» = C» Coe Pytnon3 O
dk = FRE(A)[N2];
A xk :'Fft?'req[N, 1.8/sam)[:N//2];
B B baiilin plt. loglog(xk, np.abs(dk));
D benchgrinderwav 1
% D freezerhum twav
O D tablefanmp3
D tablefanwav
% D tensfomer-lwav
10
10 10 1 s 10 0
a
0B 3@ Python3|idee Saving completed Mode: Command @ (n1, Col 19 I

So, instead of plot we do a log log alright. So, this is the log log plot for the fan problem

alright. So, now, from this plot you see that at a certain frequency there is a peak in the

amplitude and this frequency is something near, well it has different modes this, this,

this, this.

So, we would like to isolate those modes alright. So, let us try to isolate those modes, we

have done this before as well in order to isolate the modes we are going to use the scipy

function peaks find peaks.

(Refer Slide Time: 30:41)

/ nptel_codes / lec39 /
o Name
D) APPLAUSEWAV
B D benchgrindermp3
D benchgrinderwav
% D feererhum-iuay
3 D tablefanmp3
D tablefanway

% D tensfomer-twav

~ Fie Edit View Run Kemel

0@ 13 @ Python3|Busy

P Typeteretosearch

evcros ks Wepeta X

Tabs Settings Help

R lec3%ipynb [}

™ + B ¢t C Show ContextuzX ~ M leciSipynb X R lec16pynb
m/ o B+ XO0» 8 C» Cde v

from scipy.fft inport £ft, fftfreq
from scipy.signal import find_peaks

[23]: dk = Fe(d)[:N//2);
xk = Fftfreq(N, 1.0/sam)[:N//2];
plt.loglog(xk, np.abs(dk));

X

o

- x
ax *0

Mieciippmb X EleciBipmb X

Python3 @

10

Saving completed

(Refer Slide Time: 30:55)

+ t
™ B t C

N/
/ nptel_codes / lec39 /
o Name
D APPLAUSEWAV
B D benchgrinder.mp3
D benchgrinderwav
% D freezerhum tvay
O D tablefanmp3
D tablefanwav

% D tonsfomer-lwav

0@ 138 Python3|idie

P Tyvehese tosearch

So, let us import that as well. So, from scipy dot signal dot import find peaks alright. Let
me run that now we are going to say peaks comma nothing is equal to find peaks of dk
height on the peak should be above 10" and the distance between the peaks has to be
maybe 200 array points alright. So, once we have done this. So, let us do
plt.loglog(xk[peaks], np.abs(dk[peaks]), xr"). So, let us see what we have alright.

(Refer Slide Time: 31:57)

+ B t C
|
N/

/ nptel_codes / lec39/
o Name
D APPLAUSEWAV
B D benchgrindermp3

D benchgrinderwav
%D freerer-hum Ly
O D tablefanmp3

D tablefanwav

% D tensfomer-lwav

o @ 138 Python3|ide

P Typebese tosearch

W Spveran e Wepets X

_: File Edit View Run Kemel Tabs Settings Help

Show ContextuzsX MleciSipynb X Mlec3%ipynb @ HMleclbipmd X MleciZipynb X MleciBipmb X

B+ XO0» = C » Cde v

X W S e Wepete X

= Fle Edt View Run Kemel Tabs Settings Help

Show ContextuzX ~ MlectSipynb X Mlec3%ipynb @ Electbipmd X Mieci7ipynb X HleciBippnb X

B+ X000 » = C » Cde v

0 x

ax %0

Python3 O

dk = FFt(d)[:N//2];
xk = fFftfreq(N, 1.8/sam)[:N//2];
plt.loglog(xk, np.abs(dk));
peaks, _ = find_peaks(dk, height=1e7, distance=208)
plt. loglog(xk[peaks], np.abs(dk[pesks]), ‘xr’
F:\anaconda\lib\site-packages\numpy\core_asarray.py:85: Complexiarning: Casting complex values to real d
iscards the inaginary part
return array(a, dtype, copy=False, order=order)
[<matplotlib.lines.Line2D at @x265d5d320a8>]

Saving completed Mode:

0 x

ek $*0

Python3 O
peaks, _ = Find_peaks(dk, height=1e7, distances208) i
plt. loglog(xk(peaks], rp.abs(dk[pesks]), 'xr’

F:\anaconda\lib\site-packages\numpy\core_asarray.py:85: Complexiarning: Casting complex values to real d
iscards the imaginary part

return array(a, dtype, copy=False, order=order)
[<matplotlib.lines.Line2D at @x265d5d32028>]

(f

0

Saving completed A

Mode:Command @ Ln1, Colg
]

(Refer Slide Time: 32:07)

/ nptel_codes / lec39 /
Name

D APPLAUSEWAV
D benchgrindermp3
D benchgrinderwav
D freezer-hum-Twav

[D tablefanmp3

D) tablefanvay

% O tensformer-1uav

0B 138 Python3|idie

P Typereewsexcn

So, we do have the peaks, but ok I think yeah because find peaks we need to give it

np.abs alright great. So, now, we do have the peaks let us see what the values of the

View Run Kemel Tabs Settings Help

o

ax §*0

ShowContextuzX HleciSipmb X Wlecoipynb @ Eleclipynb X Hlecilipmb X EleciBipmb X

B+ X0D0»
peaks, _ = find_pesks(np.abs(dk), height=le7, distance=200)
plt.loglog(xk[peaks], np.abs(dk[peaks]), 'xr')

c

» Code Python3 Q

[<matplotlib.lines.Line2D at @x265d3b8b48>]

Saving completed

| 8

peaks are ok. So, let me simply plot the frequencies at which the peaks occur.

(Refer Slide Time: 32:26)

/ nptel_codes / lec39 /

Name

[appLaUsEwAY
B D benchgrindermp3

D benchgrinderwav
% D freezerhum-tvav
[D tablefanmp3

D tablefanway

% O tensformer-1uav

0B 3@ Python3|idie

So, xk peaks print xk peaks alright.
frequency that we had found out and yeah for us for synchronous motor it does come out
to be 25 hertz. And that is great | mean you could figure that out using a very simple

program | mean it literally is a few lines of code and audio signal with which you could

ST
cakost a* §*0

T Fe it Vew Run Kemel Tabs Settings Hep
m B t C Show ContextuzX ~ ® leciSipynb X m Rlectipmb X HieciZipmb X MleciBipmb X
u/ - B+ X000)» mC » Coe Python3 Q

7 7619 183.37301587 128.86904762
286 231.89484127]

Mode: Command @ L1 Cc-'l'. !

Saving completed

So, it is 25, 51,

77, 103 and so on. What is the

figure out what that frequency of operation is and you do see that you get multiples of

those frequency like 25, 51, 77, 100. So, it is like 25, 50,
going to bet that this is something like 12.5.

(Refer Slide Time: 33:35)

_: t View Run Kemel Tabs Settings Help
m s c Show ContextuaX MleciSipmb X Wlec3%ipmb @ M leciipynd
m/ B+ X000 » = C » Coe

/ nptel_codes /lec39 /
0 dk = FFE(d)[:N//2];

xk = Fftfreq(N, 1.8/sam)[:N//2];

plt.loglog(xk, np.abs(dk));

peaks, _ eaks(np.abs(dk), height=1es, distance=208)
plt.loglog(xk[peaks], np.abs(dk[pesks]), 'xr')

Name
D APPLAUSEWAV

g

D benchgrinder.mp3

D benchgrinderwav
[<matplotlib. lines.Line2d at 8x265d244c38>]

s

D freezer-hum-1.wav

75, 100, 125 and so on and | am

- 0 x

T4 520

X Hieclipmb X HleciBipmb X

Python3 O

B lec39ipynb

[D tablefanmp3
D tablefanviav

% O tensformer-1uav

[N REXC]

P Typedese o seard

Python 3 | idle Saving completed

(Refer Slide Time: 33:54)

_: File Edit Vi
n + B t C Show ContextuaX ~ M leciSipynb X W lec3%ipynb @ I lec1bipynb
m/ C » Code

B+X0O0>»

/ nptel_codes / lec39 / L

Name
D APPLAUSEWAV

1t

D benchgrindermp3
D benchgrinderwav
% D freezerhum tway

) D tablefanmp3

D tablefanwav

0 x

L x 4% 0

X BieciZipmb X Hlecigipmb X

Python3 Q

\
D tansfomer-tuay v

[29]: print(xk[peaks]

o @13 & Python3|idie

- -

Mode: Command @ LM.CoCU./
: 1]
L]

So, let me just reduce the threshold of the peak finding function let me make it 1e° let me

run it. And let me see what this contains ok it contains

a bunch of values because it is

grabbing this as well. I do not want to grab this well it should be the second peak and it is

actually 12.89 it is good enough. So, we are getting all th

ose harmonics it is let me revert

back to 1e’. So, the real peak occurs at something like 77. Now, ok we are going to go
with the primary peak which is 77 alright. So, what do we have from the audio signal?

(Refer Slide Time: 34:30)

A [e o
B 2385
1215.3

So, from the audio signal for a pedestal fan we have a peak at 77 hertz alright, that is the
peak signal all the other signals are sort of at least a decade smaller in magnitude than
that peak signal. But, why 77?2 | thought it was supposed to be 25 know and the reason is

clear this 3 fans these 3 blades in the fan the 3 blades are cutting air thrice in 1 cycle.

So, we must divide this by 3 to get the true frequency of the fan ok. So, in the cycle you
are getting 3 pressure fluctuations because of the presence of 3 blades and hence it comes
at something like 75 hertz which corresponds to the synchronous speed of the AC motor.
That is quite fantastic | mean think about it you are able to get a very good estimate of
the synchronous speed just by the audio signal no fancy electronics nothing just an audio

recorder.

(Refer Slide Time: 35:46)

- « FE——r -6 x
Lx GA0:
T Fle Edt View R Kemel Tabs Setings Help
u Show Contextual Hely X [lec1Sipynb X | [lec3gipynb o Fieclipynb X W leciipynb X [leciBipynb X
B+ X0OO0» m Cw» Cde Python3 O
Audio processing to figure out RPM of motor
B
inport nunpy as np;
. inport matplotlib.pyplot as plt;
-] plt.rcParams. update({ text.usetex”: True});
Sconfig TnlineBackend. Figure format = "svg"
import scipy.io.wavfile as sw
O
11 read(benchgrinder.u
* t = np.arange(N)*L./sam;
plt.plot(t, d); plt.xlsbel("Tine"); plt.ylabel(Audio signbl near fan");
200
15000
10000
:
-
H
H

0@ 3@ Python3|ide Saving completed Mode Bt @ Ln1,Col39.
| < B 0 &

5

Well not, so first let us change the input file to the bench grinder and let us run the entire

thing again for a bench grinder. In fact, let me make a new set of cells to be imported all
this.

(Refer Slide Time: 36:12)

X W Spomea e Wapete X | 4 - 8 x
ax »0

_: File Edit View Run Kemel Tabs Settings Help

n Show Contextual Hely X 1 lec1Sipynb X [lec3dipynb o ®leci6ipynb X | B leci7ipynb X M leci8ipynb X

B+ X000 » = C» Cde v Pyhon3 O

0 il

10 1f 10 10 10 10

g
print (xk(peaks])

On [25.79365079 51.53769841 77.5297619 103.37381587 128.86904762
154.61309524 189.35714286 231.89484127]
sam, d = sw.read("benchgrinder.wav”);

D N= np.si. -s(d\

= op.arange(N)*1.0/san;

plt.pio:[t, d); plt.xlabel("Tine"); plt.ylabel("Audio signal near bench grinder");
» o = FR(d)[:N//2];

xk = Fitfreq(N, 1.8/sam) [:N//2];

plt. loglog(xk, np.abs(dk));

pesks, _ = find_peaks(np.abs(dk), height=1e7, d:stance 208)

plt. loglog(xk[peaks], np.abs(dk[pesks]), 'xr'

print(xk[peaks])

[49.85562577 99.62951031 149.72615979 199.33956185 249.19458763
298.96907216 348.90463918 649.0818299 1009.65494845 1048.08311856
1215.36726804 1253.86597938 1459.89046392 4212.62886598]

l ’
X
be

Saving completed

0@ 138 Python3|idie

P Typeter o search

I am just going to change this to benchgrinder and | am going to write this as audio

signal near bench grinder.

(Refer Slide Time: 36:39)

X W Sporman o Wapete X | + T

cabotif a*x %0

_: File Edit View Run Kemel Tabs Settings Help

™ Show Contextual Hely X M fec1Sipynb X [lec39ipynb o Hiecibipynb X HWlec17ipynb X W lecigipynb X
B+XM0O0OB » = C» Cde v Python3 O
[RYIBSSOLSTTYYZISIOST 1Y IZ61597S 199, SSISHING ZRY. 1SAKT6S 3
o 298.96967216 348.99463918 649.0818299 1009.66494845 1048.08311856
1215.36726804 1253.86597938 1459.89046392 4212.62886598]
g
W
% H
3
=
=
£
O 210
2
* 1,
&1
o
3
2
<

be et .

0@ 138 Python3|ide

P Typetere tosearch

Let me run this cell let me see whether it gives me the same synchronous speed and the
answer is no. Well, what is this blue plot let us see we are plotting everything in.

(Refer Slide Time: 36:52)

ot PR T —— -0 x
ax §»0
_:' File Edit View Run Kemel Tabs Settings Help
I Show Contextual Helf X~ M lec1Sipynb X | [lec39ipynb o ®lecibipynb X ®lec17ipynb X W lecigipynb X
B+ X000 » = C» Code v Pyton3 O
[25.79365079 51.53769841 77.5297619 103.37301587 128.86904762 i
o 154.61309524 180.35714286 231.89484127]

sam, d = sw.read("benchgrinder.uav*);

5] N = np.size(d);

t= an;

#pl d Lt.ylabel ("Audio signal near bench grinder”);
% dk = FF(d)[:N//2];

xk = Fftfreq(N, 1.8/san)[:N//2);
plt.loglog(xk, np.abs(dk));
& peaks, _ = find_peaks(np.abs(dk), height=le7, distance=200)
plt.loglog(xk[peaks], np.abs(dk[peaks]), ‘xr')
print(xk[peaks])
» [49.85502577 99.62951031 149.72615979 199.33956186 249.19458763

298.96907216 348.98463918 649.8818299 1009.65494845 1048.88311856
1215.36726884 1253.86597938 1459.89046392 4212.62886598]

Saving completed

0@ 13 & Python3|ide

D Typeteretosearch

So, let us suppress this particular plot alright.

(Refer Slide Time: 36:57)

X W S Wt x| 4 -0 x
C 0 rabosiye ax 20

: File Edit View Run Kemel Tabs Settings Help

™ Show Contextual Hely X I lec1Sipynb X | [lec39ipynb ® X lecibipynb X HWlec17ipynb X M leci8ipynb X
B+X0O 0O » = C» Cde v Pyhon3 O
e T 3

0 plt.loglog(xk[peaks], np.abs(dk[peaks]), 'xr')

print (xk[peaks])

Q [49.85502577 99.62951031 149.72615979 199.33956186 249.19458763
E 298.96967216 348.99463918 649.8818299 1009.66494845 1048.88311856
1215.36726804 1253.86597938 1459.89046392 4212.62886598]

10°
o 10
P i
10
10t
0
10 1f 10 " 10 10
- A
o 3@ Python3|idie Saving completed Mode: Command @ lnl,Co\[' . I
e,

P Tpeteeiosxh

0+ 1 RN

So, for a bench grinder peak frequency appears to be around this which is 50 hertz, well
that changes everything. So, for the bench grinder it is around 50 hertz. And you have
multiples of 50 hertz that those are the overtones, so to say 50, 100, 150, 200 and so on
and that is fine, but 50 hertz.

(Refer Slide Time: 37:32)

el
it o (I
snuve RIS
§ PHASE
A
i
i N0

ER COMPANY
& KOLKATA
|

And the fact of the matter is | checked the label of the bench grinder and it did say that
the bench grinder runs at 3000 RPM and not 15000 RPM, what could be the reason it
runs at 3000 RPM? The reason is over here instead of having 4 poles it has 2 poles.

(Refer Slide Time: 37:53)

oA Kemel Tabs Setting 8 fi-¢-/m8T=0 b
1 \ 3
n S o4 e = oo X J 7B
a - Y50
— g
g 160
9 . —> 190 P oy
e [
@ [ouEssasT o GBS I)D\Q D o
,’,\lﬂmg/ > }Aﬁ xS0
% T FV\ N“gﬁf
’u //? JJ/‘O . \)|
O % x5 i
*
0 3 @ Python

So, the AC motor of a bench grinder it has 2 poles. So, it is 120><5—20 and it does give you

3000 rpm alright. So, 3000 rpm corresponds to 50 hertz and (Refer Time: 38:10) you do
have a good estimate of what the synchronous speed of the bench grinder is. Typically,
bench grinders have a higher speed because you are doing a lot of grinding in order to

have good material removal rate you need to have a high rpm in the grinder.

So, with the help of this simple experiment you are able to figure out all the different
frequencies that are at play. So, with this I am going to conclude this experiment all the
sound files will be up for upload and you can try this piece of sample code for many
roto-dynamic machines in and around your place. So, with this | say goodbye | will see

you again next time bye.

