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PETSc — Turing patterns
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random noise in otder to heeak the square
symntetry. The spstem was then incegrared
for 202,000 ome stepe and n inwee was
saved. In all cases, the initial cstarbance
popagated ourward from  the  central
square, leaving patterns 1n 11y wake, unal
the entice grid wos affecred by the imtnl
squarc porrmbarinn. The
wave-Jike, with the lending edge of (h
pernirbation moving with an approximarely
constant velocirv. Depening on the param-
erer values, it took on the order of 10,000
20,000 titne stops fer the inina! perretbation
mspreact over the entire gnd. The propega-
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patameter spoce. There ure rww addiuonal
wwhos m B 3, R and B, wdicating
spanally undform red and bloe stares, cespee-
tively. The red stare comespurds ro (U =
[,V = 0) and the blue stare depends on the
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roughly m (U = 0.3,V = 0.25)

Portam o is time- dependent and conusts
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dent and consuts of whet is generally called

phase torbulence (8). whith owun in the
wicttury of 3 Hopf brfucation to 2 steble
periodic. othrt. The medivor ¢ noable to
syncharase 50 the phase of che oseiators
vaties as a function of posen. In the
present case, the: small-amplinudc periodle
ochi that bifurcates & imstable. Paterny is
tme-dependent. It coasists prinntily of
stripes bus tlere ate smal localited regions
that escillase subha relauvely bugh freqden-
cy (~107"). The aefive rglens diseppear,
bar new caes always oppest clewhere. n

Complex Patterns in a Simple System

John E. Pearson

ermwsmmsdasmwmdemoddrmaIawmmmd
iregular spatiotemporal pattemns. These pattems arise in response to finite-amplitude
perturbations. Some of them resemble the steady irregular pattems recently observed in
thin gel reactor experiments. Others consist of spots that grow until they reach a critical
size, at which time they divide in two. If in some region the spots become overcrowded,
all of the spots in that region decay into the uniform background.

Pattems occur in nature at scales ranging
from the developing Drosophila embryo to
the large-scale structure of the universe. At
the familiar mundane scales we see snow-
flakes, cloud streets, and sand ripples. We
see convective roll pattems in hydrodynamic
experiments. We see regular and almost
regular pattems in the concentrations of
chemically reacting and diffusing systems
(I). As a consequence of the enormous
range of scales over which pattem formation

to finite-amplitude perturbations. The re-
sponse of this model to such perturbations
was previously studied in one space dimen-
sion by Vastano et al. (4), who showed that
steady spatial patterns could form even
when the diffusion coefficients were equal.
The response of the system in one space
dimension is nontrivial and depends both
on the control parameters and on the initial
perturbation. It will be shown that the
patterns that occur in two dimensions range

2x 107 and D, = 105, The boundary
conditions are periodic. Before the numer-
ical results are presented, consider the be-
havior of the reaction kinetics which are
described by the ordinary differential equa-
tions that result upon dropping the diffusion
terms in Eq. 2.

In the phase diagram shown in Fig. 1,2
trivial steady-state solution U = 1,V = 0
exists and is linearly stable for all positive
F and k. In the region bounded above by
the solid line and below by the dotted
line, the system has two stable steady
states. For fixed k, the nontrivial stable
uniform solution loses stability through
saddle-node bifurcation as F is increased
through the upper solid line or by Hopf
bifurcation to a periodic orbit as F is
decreased through the dotted line. [For a
discussion of bifurcation theory, see chap-
ter 3 of (7).] In the case at hand, the
bifurcating periodic solution is stable for k
< 0.035 and unstable for k > 0.035.
There are no periodic orbits for parameter
values outside the region enclosed by the
solid line. Outside this region the system is
excitable. The trivial state is linearly sta-
ble and globally attracting. Small pertur-
bations decay exponentially but larger per-
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' the familiar mundane scales we see snow-
flakes, cloud streets, and sand ripples. We
see convective roll pattems in hydrodynamic
o experiments. We see regular and almost
regular pattems in the concentrations of
chemically reacting and diffusing systems
(I). As a consequence of the enormous
range of scales over which pattem formation
occurs, new pattem formation phenomenon
is potentially of great scientific interest. In
this report, I describe pattems recently ob-
served in numerical experiments on a simple
reaction-diffusion model. These patterns are
A unlike any that have been previously ob-
served in theoretical or numerical studies.
The system is a variant of the autocata-
Iytic Selkov model of glycolysis (2) and is
due to Gray and Scott (3). A variety of
spatio-temporal pattems form in response
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sion by Vastano et al. (), who showed that
steady spatial patterns could form even
when the diffusion coefficients were equal.
The response of the system in one space
dimension is nontrivial and depends both
on the control parameters and on the initial
perturbation. It will be shown thar the
patterns that occur in two dimensions range
from the well-known regular hexagons to
iregular steady pattems similar to those
recently observed by Lee et dl. (5) to cha-
otic spatio-temporal pattems. For the ratio
of diffusion coefficients used, there are no
stable Turing patterns.

Most work in this field has focused on
pattern formation from a spatially uniform
state that is near the transition from linear
stability to linear instability. With this
restriction, standard bifurcation-theoretic
tools such as amplitude equations have
been developed and used with considerable
success (6). It is unclear whether the pat-
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bifurcating periodic solution is stable for k
< 0.035 and unstable for k > 0.035.
There are no periodic orbits for parameter
values outside the region enclosed by the
solid line. Qutside this region the system is
excitable. The trivial state is linearly sta-
ble and globally attracting. Small pertur-
bations decay exponentially but larger per-
turbations result in a long excursion
through phase space before the system
returns to the trivial state.

‘The simulations are forward Euler integra-
tions of the finite-difference equations result-
ing from discretization of the diffusion opera-
tor. The spatial mesh consists of 256 by 256
grid points. The time step used is 1. Spot
checks made with meshes as large as 1024 by
1024 and time steps as small as 0.01 produced
no qualitative difference in the results.

Initially, the entire system was placed in
the trivial state (U = 1,V = 0). The 20 by
20 mesh point area located symmetrically

Hello everyone in this lecture we are going to have a look at some special patterns in

very simple systems. So, in particular we will be looking at the article by John Pearson

titled Complex Patterns in a Simple System and this was published in 1993 in the Journal

Science. So, he was working at the center for non-linear studies and the question was

whether complicated spatiotemporal behavior could be obtained through simple systems.
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' perturbation moving with an approximately

constant velocity. Depending on the param-

eter values, it took on the order of 10,000 to

o 20,000 time steps for the initial perturbation

thus on the order of 1 X 10~* space units per
time unit. Afeer the initial period during

A can view Fig. 3 asamap and Fig. 2 as the key
to the map. The 12 pattens illustrated in
Fig. 2 are designated by Greek letters. The
color indicates the concentration of U with
red representing U = 1 and blue represent-
ing U = 0.2; yellow is intermediate to red
and blue. In Fig. 3, the Greek characters
indicate the pattern found at that point in

- [—

And patterns such as this you know stripes or islands,

even complicated Labyrinths.

bom Cobeart

Labyrinth patterns, cells, spots
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The Gray-Scott model comresponds to
the following two reactions:
U+2V-3V (U]
VP

Both reactions are irreversible, so P is an

s units are:
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So, such kinds of patterns they were shown by Pearson that such a system is able to give
rise to these complicated patterns. And in this lecture | am going to show an overview of
the program and the reason | say overview is because this particular code would take a
lot of time to write much more than an hour if | explain it everything.

So, I have already written down the C code and will be going through how you go about
this. Well back in the day there is a; there is a big difference on in how things were done
back in the day versus how one would do it nowadays. So, if you look at how he did it.
So, the simulations are forward Euler integrations of the finite difference equations

resulting from the discretization of the diffusion operator.

Spatial mesh is 256 by 256 and the time step is 1 and so, they refined the mesh they took
a small time steps and this led to no qualitative difference in the results and the

conclusion was whatever you see with this coarser relatively coarser mesh is ok.

And they had near the origin they gave a perturbation to the system ok with the random
noise to break symmetry and once symmetry was broken after 200000 time steps they

saw emergence of a pattern.
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Fig. 2. The key to the map. The pattems shown in the figure are designated by Greek leters, which
are used in Fig. 3 lo indicate the pattem found at a given point in parameter space.
w
& o 008 Fig. 3. The map. The Greek letters
indicate the location in parameter
space where the pattems in Fig. 2
were found; B and R indicate that
the system evolved 1o uniform blue
i assh and red states, respectively.
00 0@ 00+ 006 088
k
Fig. 1. Phase diagram of the reaction kinetics.
Qutside the region bounded by the solid fine,
there is a single spatially uniform state (called 004
the trivial state) (U = 1,V = 0) that is stable for .
all (F, K. Inside the region bounded by the solid
line, there are three spatially uniform steady
states. Above the dotted ine and below the
solid fine, the system is bistable: There are two
linearly stable steady states in this region. As F 002
is decreased through the dotted fine, the non- .
ivial stable steady state loses stability through
Hopt bifurcation. The bifurcating periodic orbit
is stable for k < 0.035 and unstable for k >
0.035. No periodic orbits exist for parameter 0.00
values outside the region bounded by the soid 003
fine.
190 SCIENCE * VOL. 261 * 9JULY 1993
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And the pattern is actually classified depending on the parameters at play. So, the
parameters at play are F D u D v and k. So, in our system we will call this as phi and this
has kappa ok. So, depending on that particular parametric space of F and in our case phi
and kappa you will obtain one of these patterns ok.

So, B corresponds to uniform blue state where one product or one of the reactants
dominates over the other. R corresponds to the red state where the other reactant
dominates while epsilon, eta, kappa, lambda, mu, they are all different patterns as seen in
this figure. And you can see that the band in which those kinds of patterns occur is not

very large. If you go to a zone over here you will have completely blue.

If you go to a zone over here you would be completely red. So, as such you do not; |
mean you have a very small parameter space to play with ok. So, you do get a host of
interesting patterns.
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And so, let us see how we can go about solving this particular equation. So, the equation
at hand is ou/ét =D, Vu—uv® +¢(Ll—u) and ov/ot=D,Vv+uv’ —(g+k)v. So, these

are the two systems.

So, you can clearly see that these two terms are the reaction terms and in this particular
case u is being consumed due to the reaction and v is being produced because of the
reaction and more v is produced per reaction because of the presence of v?. So, what

about these terms? So, these are the sources.

So, because of the consumption in u there is a source to make up for that consumed u and
it is this sort of balance between consumption and production that is sort of driving this

particular non-linear phenomenon. What about v?

So, there is a steady decay you a bulk decay which is proportional to the local
concentration and this gives rise to an evolution of the equation v. So, how can we solve
such a system? Well, as has been told in the article itself you can simply perform a

discretization.
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uniform solution loses stability through
saddle-node bifurcation as F is increased
through the upper solid line or by Hopf
bifurcation to a periodic orbit as F is
decreased through the dotted line. [For a
discussion of bifurcation theory, see chap-
ter 3 of (7).] In the case at hand, the
bifurcating periodic solution is stable for k
< 0.035 and unstable for k > 0.035.
There are no periodic orbits for parameter
values outside the region enclosed by the
solid line. Outside this region the system is
excitable. The trivial state is linearly sta-
ble and globally attracting. Small pertur-
bations decay exponentially but larger per-
turbations result in a long excursion
through phase space before the system
returns to the trivial state.

‘The simulations are forward Euler integra-
tions of the finite-difference equations result-
ing from discretization of the diffusion opera-
tor. The spatial mesh consists of 256 by 256
grid points. The time step used is 1. Spot
checks made with meshes as large as 1024 by
1024 and time steps as small as 0.01 produced
no qualitative difference in the results.

Initially, the entire system was placed in
the trivial state (U = 1,V = 0). The 20 by
20 mesh point area located symmetrically

xss -0

So, you have u;"™. So, this is an explicit method, but that is what

u

exactly they did they did the finite the forward finite integration. So, its quite easy to do
and so, I will. In fact, let me write down the entire discretization and you can take it as a

challenge to program it using Python or Octave.
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minus 1 times step plus u ij minus 1 upon h square plus u i plus 1 j and minus 1 minus 2

So, plus D u uij minus 1 plus minus 2 u ij plus minus 2 u ij j j. So, this these are all at n




uijn minus 1 plus u i minus 1 j at time n minus 1 upon h square. So, you can see that

this is the del 2 u del y 2 term while this is the delta 2 u del x 2 term.

Well, now what about this? This is simply plus phi times 1 minus u ij at n minus 1.
Because of the sort of linearity in this, this particular term you can actually take this to be
at time n. And why is that? Because it does not break any explicitness of the problem,
you can simply combine it with this particular term and obtain an expression for going

from time n minus 1 to time n explicitly over each cell ok.

(Refer Slide Time: 08:42)
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So, in similar fashion we can write the governing equation for v as well. Its everything is
going to look the same and therefore, you have what is called as the forward Euler
integration FD scheme as was done over here. And the delta t you can choose it to be 1
when the diffusion coefficients are appropriately chosen as mentioned in the paper over
here ok.

So, that can act as a nice exercise for you to do, but given that you have extensive solvers
available nowadays. What we do is club the linear terms or non reaction and non source
terms to one side and have the other terms on the other side. So, you can write let us say
that F of t, u u prime or if I write it down in terms of the y vector.
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conditions are periodic. Before the numer-
ical results are presented, consider the be-
havior of the reaction kinetics which are
im described by the ordinary differential equa-
tions that result upon dropping the diffusion
terms in Eq. 2.
In the phase diagram shown in Fig. 1,2
trivial steady-state solution U = 1,V = 0
fising variety of  exists and is linearly stable for all positive
finite-amplitude  F and k. In the region bounded above by
jtiy observedin  the solid line and below by the dotted
hacritical line, the system has two stable steady
u ol O& . tovercrowded,  states. For fixed k, the nontrivial stable

So, y vector is actually comprised of u v, this is what y vector is comprised of. So, F let
this be equal to del u del t minus D u Laplacian of u and dv dt minus D v Laplacian of v.
So, these are the two linear terms whereas, let me define G as the source and the non-
linear term; so, ty. So, its not a function of t. So, I can drop this particular t over here.

(Refer Slide Time: 10:28)
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And simply write it as y comma y. It is in fact, not even function of y prime. So, | can
simply write it as G of y. So, this would be equal to. So, we want to cast it in the form F

of whatever it is equal to G of whatever it is. So, then these two terms have to go on the



left hand side. So, it will be u v square minus F of 1 minus u and minus u v square minus

F plus k or rather plus F plus k times v.

So, under these two when we write it like this we can write down the equationas F t,y, y
prime is equal to G y ok. So, now, we have actually made a operator splitting into
something which contains the time derivative and the spatial gradients and the other

operator which contain simply the reaction term and the source term.
(Refer Slide Time: 11:50)
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Well in the above situation for the Euler method | have written down the Laplacian |
have written on the Laplacian in typical star format. So, by star format I mean if I am
writing the Laplacian at this point I am writing in terms of this, this, this and that is it.
So, its u ij plus 1 minus 2 u ij plus u ij minus 1 by h square plus u i plus 1 j plus rather

minus 2 u ij plus u i minus 1 j upon h square.

So, when its like this you are writing it simply in terms of these terms while disregarding
the contributions from this term and usually its fine nothing fancy happens, but in such
cases where there is diffusion and all that you want to preserve the isotropy of the
problem. There is another stencil which is appropriate and that is based on the box

stencil.

So, if you recall that when we declared our DMDA there were two options one was to

declare it as a star. So, DMDA for structured meshes there are two options. One is to



declare as the star which is this case and one is to declare it as a box where you have
access to these elements as well. So, when you account for this you essentially have 8
neighbours to a given point and you can write down the derivative in terms of them. In

matrix form | can write down this as something like this.

So, itis 1 upon h square 1 1 1 1 minus 4 ok because these two terms they combine to
minus 4. So, you are writing it at i comma j. So, there is 1 contribution from this, 1
contribution from this, 1 from this, 1 from this and minus 4 from the center point. What
about the box?

(Refer Slide Time: 13:43)
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So, the discretization that many people have used in order to simulate what they call as
the Gray Scott systems and actually this kind of things were analyzed in quite detailed
details by Alan Turing. So, Alan Turing if you know he was the hero who was
responsible for breaking of the Enigma cipher during the 2nd World War ok.

So, the Enigma cipher was a German encryption system with which they would send
messages unimpeded across the | mean as radio waves and no one could even understand
what their plans were, but Alan Turing was able to solve this is just a little bit of history

just to break the monotonous routine.
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So, Alan Turing also started such kinds of systems and the general sub matrix. So, this is
the differentiation sub matrix and the differentiation sub matrix for a better discretization
would be this. So, this particular matrix gives us a better isotropic diffusion and helps us

in removing some of the artifacts, but well you can try your hand at the previous

discretion. And it does not make a difference its order x square anyway.

It is just accounting for more diagonal points which is always a good thing. The larger

your basis set or rather the larger your sub matrix becomes the better you are at

representing gradients ok.
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So, what we have done is split the problem into two parts which is an explicit part and an
implicit part. So, for the explicit part we must construct the RHS. For the implicit part we
must construct both the implicit RHS and the sub matrix or rather the Jacobian in order
to solve it using the SNES. And in this case the Jacobian will actually be a shift to

Jacobian where it is not just del G del u or in this case y plus its del G del y prime.
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construct this Jacobian, its called as a shifted Jacobian and once you start learning the

theories of all this you will be; you will be more aware of what all these things are.

But my hope is once you do learn these things or if you have ever learned these things
(Refer Time: 16:53) will enable you to implement them quite scalably on your home
computer even ok. So, that is pretty much it and ok. So, the domain in this particular case

is going to be periodic.

| have not drawn the domain the domain over which we are going to solve the problem
spans from minus 2.5 to 2.5 if | am not mistaken in both sides and the origin is at the

center and all the boundaries are periodic. So, its periodic in both x and y.

(Refer Slide Time: 17:33)

So, with this background let us go to the program | have written on the program already.
So, we will do two things we will first create the Field structure which contains simply
the u and v. We will create a structure which contains the parameters of the problem
which is going to which are going to be the length of the domain, the u diffusivity, the v

diffusivity, the phi and the kappa. So, these are the parameters of the problem.

And you will see the AppCtx that is the app context, it is being passed around to the
functions so that you can construct everything in terms of the parameters that are being
packaged under AppCtx. And the Field is required to declare the two degrees of freedom

per node that we have ok.



So, recall that we have declared everything as one degree of freedom so far because we
did not have a system of equations, but now we have at single node both values of u and
values of v. So, we declare it as a struct and that struct is simply called is simply declared
over here. And its star why? Because its a 2D matrix its a 2D array ok.

So, it helps in definition of the not the definition, but it helps to sort of reference to the

data ok. So, let us see what the main looks like before going into the functions.

(Refer Slide Time: 19:03)
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So, we have the declaration of the PetscErrorCode ierr. | mean you can make do without
this as well. We have done a bunch of examples where we have not taken ierr as the
output. But usually what you do is whenever you call PETSc function, you the return

value is going to be an ierr that is a PetscErrorCode.

And then you check the error code with this function CHKERRQ, but you do not need to
do that as you have seen in previous examples as well. Then you declare the AppCtx and
assign it to a variable called as user then you declare the time stepping object, you
declare the vector x, you declare the DM da, you declare the DMDALocallnfo and you

declare a noiselevel.

So, this noiselevel you can change and recompile and run the program. Alternately, you

can fetch the noiselevel from the command line arguments, but here we will do it



through main as itself. Then you have Petsclnitialize which you must have always then

you declare the L, Du, Dv, phi and kappa. So, let us look into the paper.

So, D u was 2 10 to the power minus 5 D v is 10 to the power minus 5. What | have
chosen is 8 10 to the power minus 5, 4 10 to the power minus 5 and phi and kappa are
kept to be 0.024 and 0.06. So, over here the various simulations are done, but where do
we lie? 0.024, 0.6; 0.024, 0.6, somewhere over here ok, alright.

(Refer Slide Time: 20:53)

R0 O BOUNDARY/PERIODIC, MDA STENCIL BOX, J,7,PETSC_DECIDE,
IT) ;

So, phi, kappa everything is defined then we create a DMDA and this is the entire
creation of the DMDA. So, it contains a create 2D function and here the stencil box will
be the stencil will be of the kind box, it is not going to be a star anymore ok. So, here the
number of degrees of freedom is going to be 2 and that is it and here the boundaries are

declared to be periodic.
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Synopsis

petsc-3.14.3 2021-01-09

DMDACreate2d

Creates an object that will manage the communication of two-dimensional regular

ta that is distributed across some processors.

Collective
Input Parameters
comm - MPI communicator

bx,by - type of ghost nodes have. Use one of
DM_BOUNDARY NONE. DM_BOUNDARY_GHOSTED.

DM_BOUNDARY_PERIODIC
stencil_type- stencil type. Use either DMDA_STENCIL_BOX or

- corresponding number of processors in ea
PETSC_DECIDE to hav
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Synopsis

#include “petscdmda.h”
P E de DMDACreate2d(MP:

Input Parameters

comm - MPI communicator

bx.by - type of ghost nodes the array have. Use one of
DM ARY_NONE. DM_BOUNDARY_GHOSTED.
DM_BOUNDARY_PERIODIC.

stencil_type- stencil type. Use either DMDA_STENCIL_BOX or
DMDA _STENCIL STAR

MN - global dimension in each direction of the array

ma corresponding number of pr n each dimension (or

dof
s
I, Iy

asmand n, and the ding m and n cannot be
PETSC_DECIDE Ix[] entries must be M, and
the sum of the ly[] entries must be M

Output Parameter

e T i 3

So, just for a reference just for reference, so, we have bx, by ok, let us zoom this out a
bit. So, a stencil type which is stencil box then you have m comma n. So, in this case the
default grid is 3 comma 3 and you have to decide let PETSC decide the number of the

load balancing between the processes.

You have 2 degrees of freedom, stencil weight is 1, everything else is null null and you
have to pass the address of the dm, da. This is we have done this plenty of times and
there should be no doubt in this. Then you set from options in case you are passing

commander arguments you need to allow this you set up the da.

Now, you have to do DMDA set field name. So, because there is 2 degrees of freedom
you are going to called the zero field as u and you are going to call the v field the second
field as v. So, these two lines are used to define the alias for the 2 degrees of freedom

over the entire grid.

So, the grid has 0 2 radial freedoms. So, the index of the 1st degree of freedom is 0 and it
is it has an alias u. The index 1 has an alias equal to v and then you fetch the information
about the grid because when you define the local functions for forming the RHS function
on the Jacobian, you need to pass around the info object for the DMDA. So, that you can

perform the loops and all that thing you can find out what h is going to be.
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DMDASetUniformCoordinates

Now, here is something which we have not used so far, which DMDA | said in form
coordinates. It is a very simple function which you can imagine what it means. It takes
the default domain and it scales it between 0 and L. In this case L is 2.5. So, it is going to

scale it fromOto L.

So, you have to pass the da, you have to pass the xmin, you have to pass the length, you
have to pass the ymin, you have to pass this and it does not matter what these two values

are because it is a 2 dimensional problem because you are creating DMDA 2D. It does



not matter what these values are. It is going to be ignored in the case of 2 dimensional
problems. Then we are creating the time stepper. So, TSCreate PETSC COMM
WORLD, SetDM.

(Refer Slide Time: 24:16)

So, this particular line is used to link the time stepper with the DMDA ok. So,
ApplicationContext, so, you have to tell the time stepper that ok whatever parameters
you are going to have they are stored under the variable called as users, you have to pass

the address of user.

Then you have DMDA time stepping set function ok. So, here you are setting the RHS
functions and the Jacobians ok. So, here you are doing the setting of the RHS function
and the Jacobians ok and the time stepper type is ts RKIMEX which is which stands for
Adaptive Runge Kutta Implicit Explicit.

So, its a advanced time stepping routine, but we can use the Crank Nicolson on anything,
but in this case this gives us the best performance | have written it like this. So, you set
the time parameters that is the initial time, the max time, the time step and so on, you can
make this lower if you want and you have to match the final point with the time step.
TSSet from options in case you are passing command line arguments. After this you

have DMCreate vector global vector da.



So, this is fine. So, you are creating a vector x based on the DMDA grid then you create
an initial state. This is quite important because obviously, 1 comma 0 is going to be a
solution. So, if you said u equal to 1 and v equal to 0, both these equations the LHS and
RHS they match. It means that the system is having a trivial solution of u equal to 1 and

v equal to 0. No or is it u equal to 1, u equal to 1 and v equal to O is a trivial solution.

So, in that case that is not of much interest to us and that is why we have to give a
perturbation to the initial condition and that is what will be done through the function
InitialState. So, in order to find the InitialState we are going to pass. So, these are all
functions which we have to create ok. We will pass the DM da, we will pass the vector x
which will be iterated in time and we will pass the noiselevel and we will pass also the

set of parameters that we have stored in the structure AppCtx called user.

Then you solve it, then you destroy the variables, then you finalize that is it. It does not
appear to be much more complicated than what we have done so far, but now let us look
at the functions. So, first things first. Let us create the initial state. So, we have as an
input to the function da, the vector y, the noiselevel and the AppCtx which contains all
the different parameters of the problem.

So, | am going to just tell you the logic what is going on. You set the vector to 0 both the
u and v are their initialized to 0 through this point. After that you set a random value of y
or you sort of set it to y, but then you scale that to the appropriate noise level that is you
first set the random value.
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So, let me show that function reference. Set all the components of a vector to random
values ok. After that you scale them to the appropriate noise level.



(Refer Slide Time: 28:14)

e, seec

8. SR Marder. C. 8. Gorman, B. G. Tiemann, L-T.
Cheng, Proc. SPIE 1775, 19 (1933). C. 8. Goman
and S. R Marder, in preparation.

[ < ER—
(Refer Slide Time: 28:17)

e, seec

1. LG.S Brockeretal
(1951)
12 P Hacsgwamc S. Dahne, J.

J.Am. Chem.Soc. 73, 5332

J. Mol. Struct. 5, 399

Semiconductors, T. Kobayashi, Ed. (Springer-
Verag| Beriin, 1989), pp. 108-119.

7. W.Di mancE H Wiebenga. Acts Crystaliogr
8,75
BRFB&.@P’Z\EEWHJWCN ks
=3 S ynth. Methods 11
9. P. Groth, Actz we'n Scand, B4Y
2 10. F. Chenti-Bechkna, J. P. Declercq, G. Gen
M. V. Meerssche, Cyst. Siuct. Comm 6, 421
] (1977,
i 11. LGS Brooker efal, J Am Chem Soc 73, 5332 beenwseredm s v G W
] (1951). 0. Havela, M. W vcscse 2012
2R F\acsgwam $. Dahne, J. Mol Stuct 5, 399 Cheng, Proc: SPIE
etal, J Pys (
\35Fhlame<ea ), Am. Chem Soc. 115, 2525 Cheng et al, i
” (1999). 25. Tne research vas
2 14. S. Scheider, Ber. Buns. Ges. 80, 218 (1976). ter for Space MK
15. H.E. Schafler,R. R, Chance, R . Silbey. K. Knok Propuision Labord
R R Schiock, J Chem. Phys. 94, 4161 (1991 Technogy, and
98, F: K ) e, . 1. ke 58 Strategic Defense
ve Scence and T
wsawcaJAFar,FLxlavran~ eement win | ) e
Grubbs, in Organic Materials for Noniinear Op- Space Adminisiri e
tics, R A Hann and D. Blocr, Eds. (Royal Sociely Beckman Instiutg
of Chemistry, London, 1989), pp. 288-294 Scentfic Researd
18. F. Kaizer, in Noninear Opfics of Organcs and aiso acknowledos
Semiconductors, T. Kobayashi, Ed. (Springer- tor's office for a; vecscale function | R Documentation
Verlag, Berfin, 1989), pp. 108-119. thanks the Nationg - o -
19. S. H.Stevenson, D. S Donald, G. R. Meredith, in for a resident resg
Noninear Optical Propeties of Poymers. Mat
Res. Soc. Symp. Proc. 109 (Materals Research 2 January 1993

Complex Patterns in a Simple

B =% VecScale
6. SR Marcer, C. 8. Gorman, B. G Tiemamn, LT Society, Pisburg)
Cheng, Proc. SPIE1775,19(1993):C. 8.Goman 20, Y. Marcus, J. SO g,y vone
[ and $. R Marder, in preparation. 21. 8. M. Pierce, Prog
7. WD o H Webenga, Ao Crsalor. 22, CH.OIKLT.O O o
8,755 (1955) Chem 43,27 (
8 2. Enhancement
- discussed prev
9. P. Gro Scar 987) Y Yong, 0. Zam .
=Y 10, . Cren Bechit, . P Dok G Gemai 1989)
M. V. Meerssche, Cryt Stuct. Comm 6, 421 24, increased y in ' € Iaput Parameters
& (1977, ganics rela

\35Fhlame<ea ), Am. Chem Soc. 115, 2525 Cheng etal, B,
» (1993). 25. Theresearch was| . the scaled vector
2 14. S. Scheider, Ber. Buns. Ges. 80, 218 (1976). ter for Space Mi
15. H.E. Schafler,R. R, Cnance, R . Silbey. K. Knok Propusion Labo Note
R R Schrock, J Chem. Phys. 94, 4161 (1991) Technology, and |
16. F. Kajzar and J. Messer, Rev. Soi Instum. 58 Sirategic Defense -
2081 (1987). tive Scence and
\75RWG&JAFHQFLKW€VW~ agreement win |
Grubbs, in Organic Matenials fr Noninear Op- Space Adminssd |
tics, R A Hann and D. Blocr, Eds. {Royal Society Beckman Institg < ©
of Chemistry, London, 1989), pp. 288-294. Scentfic Researd .
18. F. Kaizer, in Noninear Opfics of Organcs and aiso acknowledos

vecscale: Scale vectors to fill the current plot in friendly

L LN

been obsen
0. Havla MW
Creng. Proc. SPE
eal, J Py prmh.m ter

x -
.|p|:. the scalar

tor's office for 3|y o ey
thanks the Nationd
for a resident res¢

2 Janary 190 Frampls

So, VecScale will scale it to the whatever the random values are. It will try to linearly
scale it between 0 to the scaled vector. So, in this case we can make it 1 or you can make
it even smaller ok. So, that is governed by the scalar noise level and in the main | have
defined noise level to be 1, but you can keep changing it and recompiling it you will get

new solutions.

Well, not really new solutions, but a difference in the time taken to evolve to the solution

ok that is all going to change. So, then you get the Localinfo get the CoordinateArray.



So, you save the CoordinateArray in the from the DMDA into a variable called ac which
is a second 2D array. So, that will contain all the xs and ys. And how do you call the xs

and ys. So, inside this ac j comma i dot x.

(Refer Slide Time: 29:07)

So, the calling sequence for the coordinates is going to be ac j i dot x or ac j i dot y. So,
this is going to give you the local x and y coordinates something which can imagine to be
of the kind mesh grid in python ok. Then you get the array. Then you assign it with a
random number; not a random number you have already assigned everything to a random

number, but in between L edge and R edge.

So, L edge and R edge are at the left edge and the right edge in the problem ok. So, it is
going to be between 1 and 1.5 because user dot L is going to be 2.5. So, 2.5. So, here
what we have is declare some analytical function on top of the random variables between
x equal to 1 point rather x equal to 1.0 to x equal to 1.5.

So, you are going to set that to a random number. You are going to set that zone that strip
with a defined function. In this case it is going to be sin 4 pi x square times sin 4 pi y
square times half and you are going to sum it over all the domains that is like the not the
domain, but the strip while for you are going to simply do 1 minus 2 v.



So, that is the initial condition for u. So, with the help of this you can create some
perturbations in the initial condition. Lastly you must restore both the coordinate array

and the on the unknown array that is u and v ok.

(Refer Slide Time: 31:12)

So, what about form RHS function local? Because its being done on the function G is
going to be done on the function G, so, what is the function G ok? So, its going to be u v
square minus F times 1 minus u. Well, over here | think | have taken the negative sign

meaning. | have made this and this.

So, I have just it does not make any difference, it is nothing is going to change. So, it is
minus uv square plus phi times 1 minus u and uv square times uv square minus phi times
phi plus kappa times v. So, this is obviously, going to be a v times a v ay j comma a

comma v. This is how you form the RHS function.

How do you find Jacobian? Its quite simple again. It is going to simply be Jacobian of,
S0, it is the its going to be the Jacobian of this guy which is going to be. So, del u; this is
going to be what? Minus v square comma 0. So, let us see where | have written it. So,

you are looping over the entire grid.
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So, uv Vv 2. So, they are defined as u times v and v square. So, this is going to be minus v
2 minus F minus phi times u. So, when you take a derivative of this function with respect
to u you get minus v square minus phi which appears over here then this is minus 2 u v.
So, when you take a derivative of this with respect to v, you have minus 2 uv which is

appearing over here.

So, uv is already declared as this double, it is a local variable inside a function. So, it
does not matter then MatSetValuesStencil P comma 1 comma row comma 2 comma col.
So, this is just to set the preconditioner. Similarly, you have this and you can easily
verify it from the derivatives of that function this particular function and you set it and

like always when you declare a Jacobian you are going to fill in the preconditioner.

Once you filled in the t preconditioner if J is not equal to P, you assemble the Jacobian
anyway. If they are equal you essentially are assembling the preconditioner which is also

equal to the Jacobian and we have discussed this in the previous lectures.
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Now, we come to the implicit part that is we have to form the functional and not the
functional the local function. So, let us see what we get ok. So, the derivative, so, let us
see. So, you have this stencil, look at this stencil. This is exactly this particular stencil
that | showed over here ok.

So, its Laplacian of u, Laplacian of v, but finally, aF u will be a dot u minus the diffusion
coefficient times Laplacian of u. Essentially, its this term ok and the other function is
going to be v dot minus Laplacian of v. Actually you are writing both these terms in
terms of the in terms of u dot and u dot and v dot, not just the us and vs and hence

because it is an implicit function you have to do all that in order to define it ok.

And what about the Jacobian for this? So, here comes the shifted Jacobian. Just a quick,
let me just fix this real quick. If I want to write it in terms of F equal to G. So, let me just
tidy this up a bit. I mean although the discussion is still valid, I just want to clearly write
it.
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So, this will be del u del t minus the Laplacian of u. This will be del v del t minus
Laplacian of v and this will be minus u v square that is this plus phi 1 minus u and this

will be u v square minus phi plus kappa times v yeah ok. So, now we have to form the
implicit Jacobian.
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Now, the implicit Jacobian will actually be written in this form. It is going to be dF dY
dot plus dF dY and its not at all difficult. So, these are all the sub matrix of

differentiation. Now, remember whenever you want to loop over the two variables you



need to do a final loop like this ok. So, each row value. So, when once you want to loop
over a certain variable you must say row dot ¢ equal to either 0 or 1 because you want to

loop over u and v separately ok.
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But, in internally it always sets the variable correctly and there is no issue in that. Then
you do the same thing. SetStencil then AssemblyBegin AssemblyClose, if J is not equal

to the preconditioner you assemble j anyway, but we have already done it.
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So, the functions are not that difficult and we have set an implicit, explicit problem. So,

once everything is set | guess all that is left is to run the program.

(Refer Slide Time: 38:42)
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So, let me just make the noiselevel a bit low 0 point maybe 0 2, will increase the time
later, but let me make turing. So, | have called the program as turing dot ¢ and I also
gone ahead and modified the make file then we do dot slash turing. So, da refine is

because we have defined a 3 cross 3 grid, it is quite small. So, we refine it 5 orders of



magnitude, ts monitor, ts monitor solution draw. So, whatever the solution we are going

to get we are going to draw the solution as well.
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So, let us run this and let us see what happens ok. There you have it. We have weird
looking oscillations ok. Maybe | need to increase the number of time steps to maybe say

2000. And what is the time step? The time step is fine.
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So, the initial condition was those 4 loops nothing else. I forgot to make it.
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You have these oscillating solutions. It is not going to really die down. | guess we can

stop. Let me just change some of the parameters.
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So, let me change 5 to 0.05 and let me change kappa to 0.063. The diffusion coefficients
can remain the same. Let me change the MaxTime to something much larger maybe say

15000 and let me change the noise pattern to 0.15.
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So, let us see let us make the file. Let me refine it. Maybe let me refine it a bit more. Let
us see if we can get something fantastic out of this. We have chosen phi to be 0.05 and
kappa to be 0.063 something in this region. So, we expect a kappa kind of pattern that is
this Labyrinth pattern. It is almost like one of those Labyrinth mazes that you might have

seen in the movie shining where Jack Nicholson is finally, stuck in a Labyrinth like this.

In fact, such patterns are also formed in ferrofluids when you subject it subject them to a
uniform magnetic field. This is the kind of Labyrinth instability they form as well. Let us
see whether it evolves to that. So, it does seem to evolve towards something everything. |

think we need to let it run for a while.

So, its like the lobes are expanding outwards and at some point it should start folding
onto itself after which the pattern will start forming that kind of a Labyrinth nature. Well,
while this program runs | will take this opportunity to end this class over here. The video

will contain the rest of the evolution. It will be (Refer Time: 43:29).



