Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 35
Reaction-Diffusion system in PETSc

(Refer Slide Time: 00:30)

intermediate

Hi guys, in this particular lecture we are going to continue on our journey of solving for

the steady state distribution of this particular equation right.

(Refer Slide Time: 00:43)

T S——

£ B-¢-/mT20- T
KA o S g
N 0) Tu,MO

So, just to recap this is the kind of discretization we had and the Jacobian would look
something like this alright.

(Refer Slide Time: 00:56)

So, let us start coding and because it is a one dimensional problem we do not need any

dm - going around over here but, we will need a one d grid something like this right.

(Refer Slide Time: 01:17)

¢ & :}‘_\\‘0\) = |
ek W) =M

(Refer Slide Time: 01:23)

intermediate

So, let us make a new file. So, first things first #include <petsc.h> int main(int argc, char

**argv) return PetscFinalize() alright.

(Refer Slide Time: 01:55)

intermediate

So, let us save this as rxn_dfn.c just to signify its a reaction diffusion system alright. So,
first things first we need to define the various things we will need. So, we are going to
need a DM da.

(Refer Slide Time: 02:29)

intermediate

But in this case it will be DM and will call it da; and we are going to need a SNES about
from this we are going to need AppCtx which is to hold the value of rho and all these
things. So, AppCtx we will define it as user because the user is going to supplied, we are
going to need two vectors one is u and one is uexact just to make a comparison we are

going to need anyway.

So, let us continue on this whenever we need a new variable we will sort of declare it and

we need a DMDALocallnfo for performing the loops and we will call it info.

(Refer Slide Time: 03:36)

: SNESJacobianFunction

Function used to convey the nonlinear Jacobian of the function to be solved by SNES

Synopsis

nes,Vec x,Mat Amat,Mat Prat,void *ctx);

Collective on snes

Input Parameters

& - input vector, the Jacobian is to be computed at this value
ctx- [optional] user-defined Jacobian context

Output Parameters

Amat- the matrix that defines the (approximate) Jacobian
Pmat- the matrix to be used in constructing the preconditioner, usually the same as Amat

See Also

SNESSetFunction(), SNESGetFunction(), SNESSetJacobian(), SNESGetJacobian()

Level

intermediate

(Refer Slide Time: 03:28)

-
gy
=
A
Q
¢ 3¢ i Y Y

petsc-3.14.3 2021-01-09

Creates an object that will man:
SOME POCessors.

the communication of one-dimensional regular array data that is distributed across

Synopsis

#include “petscdmda.h”

orCode DMDACreateld(MPI Comm comn, DMBoundaryType bx, Petsclnt M, Petsclnt dof, Petsclnt s, const Petsc

Collective
Input Parameters

comm- MPI communicator

bx - type of ghost cells at the boundary the array should have, if any. Use DM_BOUNDARY NONE.
DM_BOUNDARY_GHOSTED. or DM_BOUNDARY PERIODIC.

M - global dimension of the array (that is the number of grid points) from the command line with -da_grid x

M>)
dof - number of degrees of freedom per node
s -stencil width

Ix

- containing number of nodes in the X direction on each processor. or NULL. If non-m
length as the number of processes in the MPI_C

e 1

So, the data type DA is essentially DMDACreateld ok.

(Refer Slide Time: 03:42)

XY)

MDACreateld(MPT Comn comm, DMBoundaryType b, PetscInt M, PetscInt dof, Petsclnt s, const Petsc |

ollective

Input Parameters
-

comm- MPI communicator
bx - type of ghost cells at the boundary the array should have, if any. Use DM_BOUNDARY NONE,
DM_BOUNDARY_GHOSTED. or DM_BOUNDARY_PERIODIC.

of the array (that is the number of grid points) from the command line with -da_grid x

es of freedom per node

ontaining number of nodes in the X direction on each processor. or NULL. If non-null, must be of
length as the number of processes in the MPI_Comm. The sum of these entries must equal M

Output Parameter
da- the resulting distributed array object

Options Database Key
-dm_view - Calls DMView() at the conclusion of DMDACreateld()
-da_grid_x <nx> - number of grid points in x direction

-da_refine_x <rx>- refinement factor
-da_refine <p> - refine the DMDA n times before creating it -

So, one dimensional regular array and this is the distributed array object ok. So, we
going to use this DMDACreateld and it will help us in creating the one dimensional grid

alright.

(Refer Slide Time: 03:57)

i x | {f-¢-/8T%0 LY
3E 1 EIRnEesEE T

b -

L “23111

n)\
VA

W) = M
() =M

'

012 N
i, < lu=0 {N%Uw
R 3y =
[

oo Lol

e el G
] |

M0

Outnnt Parameter

So, let us proceed so, we will need Petsclnitialize we have PETSC sorry this will have
one &argc, &argv, NULL and the help text alright then, we will go ahead and let us first
declare what the user context will be so, we have to declare the struct so typdef struct.

So, this will be double so what all things do we need so, we going to need rho we going

to need M; so we going to need p and M we also going to need & and £ just to specify

the boundary conditions in terms of M alright.

(Refer Slide Time: 05:13)

. w(r) =
(ks WY

| = i
-y Sdu=0 V/”"“”’*

N

Nogittis 40> o 1,16~
—l‘*\j't 7‘*__ :’}_}7“ M\D fi’;/\'ﬁfa

pne-dimensional regular array data that is distributed across

FyType bx, PetscInt M, PetscInt dof, PetscInt s, const Petsc

;>hnuld have, if any. Use DM_BOUNDARY NONE,
mber of grid points) from the command line with -da_grid x

or NULL. If non-null, must be of
of these entries must equal M

So, let us declare that and that is pretty much it. So, we will define it as AppCtx so that is
the data type alright so; let us declare the data type over here so we have user.rho is equal
to so what was p, p interms of rather M was in terms of p right. So, let us define p
to be 12 that way M becomes 1 so, we can do this to the 12.0 alright; user.M will be the

square of user.rho/12.0, 2 well its a square so, we do not need to do this here.

Then, we need to define the « so, user.alpha will be simply user.M, user.beta will be
simply 16.0*user.M so, we have defined all the parameters there are alright. So, these are
what is required after initialization so, this is these are just the user defined values.

So, once we have; once we have the user defined values we will have DMDA creation so
DMDACreate 1d, it will require the communicator PETSC COMM WORLD then
DM_BOUNDARY_NONE. So, let me just show you the things that we require the
communicator the boundary type, the dimension of the array.

So, let us declare 9 grid points its fine then what do we have number of degrees of
freedom stencil width. So, number of degrees of freedom is 1 stencil width is 1 then,
number of nodes on each processor we will declare it to the NULL because the PETSC
will do the load balancing in case we have multiple processors and lastly we must pass

the da, that is the distributed array over here ok.

(Refer Slide Time: 08:34)

2 9 &
. “reateld

hat will manage the communication of one-dimensional regular array data that is distributed across

da.h”
PDACreate1d(MPI_Comn conm, DMBoundaryType bx, Petsclnt M, PetscInt dof, PetscInt s, const PetscInt 1x[], TEEe)

ers

communicator

f 1ls at the boundary the array should have, if any. Use DM_BOUNDARY NONE,
Y_GHOSTED. or DM_BOUNDARY _PERIODIC.

n of the array (that is the number of grid points) from the command line with -da_grid x

es of freedom per node

t B containing number of nodes in the X direction on each processor. or NULL. If non-null, must be of
as the number of processes in the MPI_Comm. The sum of these entries must equal M

So stencil is one because we are defining the h on our own right so, this is it this is how
the one dimensional grid is created then, we must do the other thing so
DMSetFromOptions we have to pass da then, DMSetUp da and then we have to set up

the application context.

(Refer Slide Time: 08:55)

FyType bx, Petsclnt M, PetscInt dof, PetscInt s, const Petsc
[

Lh«vuld have, if any. Use DM_BOUNDARY NONE,

NDARY_PERIODIC.

mber of grid points) from the command line with -da_grid x

rection on each processor, or NULL. If non-null, must be of
| Comm. The sum of these entries must equal M

(Refer Slide Time: 09:23)

Es LN K 9 Q- evinsmw 20 O

So, the there is a function DMSetApplicationContext. So, we must sort of tell the
distributed array that whatever the variable or all the parameters are it has to be
distributed over the grid. I mean it is not required for this problem, but there may be a

problem with it with this would be required.

(Refer Slide Time: 09:30)

R

DMSetApplicationContext

Set a user context into a DM object
Synopsis

#include “petscdm.h”
#include “petscdmlabel.h
#incle petscds.h”
PetscErrorode D{SetdpplicationContext(DH dm,void *ctx)

Not Collective
Input Parameters

dm- the DM object
ctx- the user context

See Also

DMView(). DMCreateGlobalVector(). DMCreatelnterpolation(). DMCreateColoring(). DMCreateMatrix().

LIS 9 [R =R

g
petsc-3.14.3 2021-01-09

E

[DMView(). DMCreateGlobalVector(). DMCreatelnterpolation(). DMCre:

Not Collective

Input Parameters

dm- the DM object
ctx- the user context

See Also

oloring(). DMCreateMatrix().

DMGetApplicationContext()
Level
intermediate

Location

(Refer Slide Time: 09:51)

er.zho/12.0) ftion(). DMCreateColoring(), DMCreateMatrix(),

So, we must pass to the array the address of the user defined context variables ok
because, if it is not done it will not be able to see that struct that we have defined like this

right ok. So, now that we have this we will create a global vector.

(Refer Slide Time: 10:18)

: DMCreateGlobalVector

Greates a global vector from a DM object

Synopsis

n dm

i Input Parameter

dm- the DM object

Bl Output Parameter
vec- the global vector

GOl See Also

Jector(), DMGetGlobalVector(). DMDestroy(). DMView(), DMCreatelnterpolation(),
ng(). DMCreateMatrix()

(Refer Slide Time: 10:22)

c 9*®
See Also I

ector(). DMGetGlobalVector(), DMDestroy(). DMView(), DMCreatelnterpolation(),
ng(). DMCreateMatrix()

Location
sre/dm/interface/dm ¢
l Examples

&

chtml

chtml
6.c.html

So, let me show this. So, this is the command which will create a global vector on the

grid da. So, it is the same as declaring the sort of associativity of u on d.

(Refer Slide Time: 10:36)

RN TY]
petse-3.14.3 202

So, DMCreateGlobalVector da and the address of u gets passed now, we will duplicate
this vector Vec so we could have simply done create vector but that is ok, Duplicate u

into uexact alright.

(Refer Slide Time: 10:55)

“toy(). DMView(). DMCreatelnterpolation(),

N VI TeET OO . VI TEATEMATT

(Refer Slide Time: 11:15)

g0.ac.in/~adityab/lecture_list.html as a quick refe
s =]

== foy(). DMView(). DMCreatelnterpolation(),

e > T Wesou 1215, _UT-
DNICTEaleColonny(); DVICTEaeNatx(|

Then, what we need to do is fetch the rather before fetching what we will do is because
we need to pass this into the array so, DMDAGetLocallnfo we will get it into variable
info alright. So, this is just because we going to pass info to the arrays because, we need

to loop over the grid points. So, we will eventually need this ok.

So then, what should we do? So, our (Refer Time: 12:04) should consist of Create the
exact solution because we will have to compare it eventually alright then, we must

Create the SNES object. So, creating the SNES object will require Creating the Jacobian

as well; and it will require Creating the function callback. Well, in this case we will need
all this we will need to create the function callback and we will need to create the

Jacobian as well alright.

So let us first create the exact solution so, what do we need. So, let us first allocate let us

first create the auxiliary Vec.

(Refer Slide Time: 13:22)

Y]
petsc-3.14.3 2021-01-09
Report Typos and Errogs

“toy(), DMView(). DMCreatelnterpolation(),

B NI TeRet 0IOnne . DM T VAT

So, to hold the nodal values we will create the auxiliary function so double *au, and

*auexact.

(Refer Slide Time: 13:35)

And then, over here we will do Vec or not Vec DMDAVecGetArray from da uexact
needs to be put into auexact alright. Apart from this, what do we need? That is all; that is
all that we need? In fact, we need to pause u so that we can create the initial condition so,
we will make a single function which will Create the exact solution and the initial

condition we can do it in one way.

So, DMDAVecGetArray from da get u and pass it to au. So, now that we have the
objects or rather the we have assigned u exact to auexact and u to au we can pass them to
GetlnitialConditions and Get Initial and Exact; and we will pass to it the address of the
info and we will pass the auxiliary matrices and we will pass the user context because, to

construct the exact solution we will also need the user context.

So, what we can do is pass the address of user so, we will keep this form and create this
function so Get Initial Exact. And we can copy this and copy this and we can create the

function over here.

(Refer Slide Time: 15:57)

Y]
petsc-3.14.3 2021-01-09
Repor Trpos apd Ermors

o T —— =" toy(). DMView(). DMCreatelnterpolation(),
g DNICIeAreT0lonngT). MCTEE A | —

So, the output will be Petsc Error Code. So, this is the function so, info instead of this we
will have DMDALocallnfo star info, we will have double *au and double *auexact and
void or in fact AppCtx *user because, we do not want to type cast it inside and we can
use it directly. In case you put a void star you need to typecast it to AppCtx, we have

done this in the previous example we do not need to typecast.

So, inside this we will create int i and double h that is the grid spacing, which will be 1.0
divided by the number of grid points minus 1 and the number of grid points is held inside
the info so, 1.0/(info->mx - 1). So, this is the number of grids minus 1 alright. We also

need double x for i going from i = info->xs; i < info->xs+info->xm; i++.

And so, where do we get this from and we have used this in one of the previous solver is
basically this bit of code.

(Refer Slide Time: 18:00)

s g
petsc-3.14.3 2021-01-09
Report T and Errors

== roy(). DMView(). DMCreatelnterpolation(),

B DI TEAeC 00T, DNCTEATENATIX

Because we are passing the address of info we can use this kind of a link ok to address
the content of the structure ok. So, now we are essentially looping over all the grid

points.

(Refer Slide Time: 18:24)

STy)
petse-3.14.3 2021-01-09
Report T foss

= = e =" toy(). DMView(). DMCreatelnterpolation(),
DNCTEIeC OIS, IMCTeae v —

So, this is just a loop over grid points alright. So, inside this loop x the value of x = i*h
that is fine and au[i] = user->alpha*(1.0-x) + user->beta*x. So, it is just an initial guess

so, we are getting the initial guess inside this u array.

So, look, what is going on. We have the au array which we have passed from main
alright, we have get vec array we are getting it we are passing it we are getting the initial
condition inside this and then, we will put it back inside u. So finally, we need to so we

need to eventually put it back.

(Refer Slide Time: 19:28)

s Y)
i petsc-3.14.3 2021-01-09
Report Typos and Ermor

IRy, DMV e, DY

So, DMDA SetVecSetArray da uexact & u auexact and we need to copy this, this will be
u and this will be au. So, we are fetching the initial conditions through this and then
setting it back to the petsc vectors alright. So, au[i] will be equal to it is the guess. So,
user->alpha*(1.0-x) + user->beta*x so, what it is? It is a linear interpolation between the
end points.

(Refer Slide Time: 20:24)

s Cecoment Kownd--

8 e fl-¢-/8T20- =-x}

0= aM l*.ﬂ’:)j
We MY o
: (1 317 \VMW
llr:*i)x/‘l’bg Lingn 18
M= \S) B o K OP &
bd G -
2

So, these are the two endpoints and | am saying its alpha*(1.0-x)+ beta*x. So, 1 x is 0,
the value of the guess is equal to @ when the value is equal to 1 this becomes 0 so, the
value is g ok. So, its like an initial sorry its like a linear interpolation. So this is the
initial guess alright. So, that is the initial guess no problem. Now, we need to set the

exact solution.

(Refer Slide Time: 21:04)

) M*@
=) =M= F "

N VICTeATEC OO, DVICTEATENATIXY

auexact[i] = user->M*PetscPowReal(x+1.0, 4.0) and this is the not x+ what (Refer Time:

21:28) yeah 1 + x ok. So, this is the solution that we have over here ok.

So, that is the exact solution finally, at the end of this we must return 0 and that is all
well and good. So, this is the function which creates the initial condition that we have

over here. Finally, we can move on to the creation of this SNES object.

(Refer Slide Time: 21:59)

t fl-¢-/mT=0-8-xy
4~ 8w =0 Prec fu
7 E foaksal %’r

[= S\IZ«L ‘Z‘]MS S‘R‘M

| N4 v i\
MCLt l/s o M L)
v{M‘\H."'\)
MWD

Lt

LM k}%lg&w
P 5

= \3) o Line» &/f &

B DN TEAeC 00T, DAICTEAe AN

So, it is the same protocol SNESCreate PETSC COMM WORLD comma the address of
snes right, SNESSetDM so we have to tell that this particular SNES is linked to the

distributed array. So, snes sorry snes, da now, we must set the function call alright so we
must set here the function callback and the Jacobian alright. So, the function has to be

done locally because doing it on a grid ok. So, the way to do it is ok.

(Refer Slide Time: 22:52)

Y

Let me show you that functional reference snes set local function what is it. Dmda snes

set local function local alright.

(Refer Slide Time: 23:02)

(Refer Slide Time: 23:14)

C i nouigo . 0 RN TY]
petsc-3.14.3 2021-01-09
‘Repon Typos and Errors

DMDASNESSetFunctionLocal

set a local residual evaluation function
Synopsis

§ #include "petscdmda.h”
#include "petscsnes.h”
Bl PetscErrorCode DMDASNESSetFunctionLocal (DM dm, InsertMode imode,PetscErrorCode (*func)(DMDALocallnfo*,void*,void®,void*),void *ctx)

Logically Collective

Input Arguments

dm - associate callback with
imode- T_VALUES if local function computes owned part, ADD_VALUES if it contributes to ghosted part

func - local residual evaluation
ctx - optional context for local residual evaluation

Calling sequence

B For PetscErrorCode (*func) DMDALocallnfo *info,void *x. void *f, void *ctx)
info- DMDAT ocallnfo defining the subdomain to evaluate the residual on
x - dimensional pointer to state at which to evaluate residual (<.
f - dimensional pointer to residual, write the residual here (e.g

lar *x or **x or ***x)

or **for ***)

2 setalocal residual evaluation function

Synopsis

cal(DM dm, InsertMode imode,PetscErrorCode (*func)(DMDALocallnfo*,void*,void

Logically Collective

Input Arguments

dm - DM to associate callback with

RT_VALUES if local function computes owned part, ADD_VALUES if it contributes to ghosted part
func - loc: idual evaluation
ctx - optional context for local residual evaluation

Calling sequence

For PetscErrorCode (*func) DMDALocallnfo *info.void *x, void *f, void *ctx),
info- DMDAL ocallnfo defining the subdomain to evaluate the residual on
x - dimensional pointer to state at which to evaluate residual (
f - dimensional pointer to residual, write the residual here (e.g. P
ctx - optional context passed above

X or **x or *#*x)
for *for ***)

See Also

DMDASNESSetJacobianl ocal(). DMSNESSetFunction(), DMDACreateld(). DMDACreate2d(), DMDACreate3d()

So, it is a residual evaluation over a DM ok. So, because the function callback in this
particular problem is in the form of a matrix which is assembled over the distr and the

dmda ok so, that is why we need to do the following.

(Refer Slide Time: 23:41)

XY

fode inode,PetscErrorCode (*func)(DHDALocallnfo*, void®,void

So, we have DMDASNESSetFunctionLocal over da and we must do INSERT VALUES.
So, that is the way it is dm mode function and ctx. So DM mode finally, we need to
define the function as well. So, the function will be FormFunct and the user context. So

now, let us go ahead and define this function local ok.

(Refer Slide Time: 24:29)

wr

Bode inode,PetscErrorCode (*func)(DUDALocallnfo*, void*, void

s owned part, ADD_VALUES if it contributes to ghy

josted part

So, PetscErrorCode what was so, it is a pointer to the function ok let is see if there is an

error we can always fix it ok. So, PetscErrorCodeFormFunct and DMDA so we will have

the same type of inputs so, DMDAVLocallnfo star info what else do we have, we have the
array so double *u in this case it is au ok.

So it is actually a local function evaluation and we have to pass the handle to that ok. So,

we will rectify it later. So, the function should take as an input the info because we need
to perform a loop then dmdas.

(Refer Slide Time: 25:55)

€5 C 8 i Y
.-» DMSNESSetFunction
. 7 set SNES residual evaluation function

Synopsis

BB Not Collective
f Input Arguments
dm- DM to be used with SNES

f - residual evaluation function: see SNESFunction for details
ctx- context for residual evaluation

s normally used. but it calls this function intemnally because the user context is actually associated with the DM. This makes the
gardless of whether the user interacts with a DM or not. If DM took a more central role at some later date, this could become the

So, we need to wait ok so, it will take the u array and the evaluation of the function.

(Refer Slide Time: 26:36)

¢-/8T%0]
Nt B
‘Ul) 1“Mo 1’2 N
I, oly= Now Ay nige
[+ Siw i /
: v
i B RN TR
R
o g Lofle o
‘ W — =0
A .2~ W Sy
J= - N2

So, it will be double *aF and the ApplicationContext *user. So, what we need to do over
here is to create the functions in the particular problem. So the functions will be where is
it functions will be these things ok. So, and those will be stored in ff aF rather ok. So, int
i const double because we do not want to change h this will be simply we can just make
it double we are not going to change it anyway (info->mx - 1) alright.

So, we need double to store x and the reaction term or we can just hold it in x, we can
define it later on we will then input these things these particular things ok. So double x
what we need to do for. So, we need this same for loop to loop over all the nodes that is
it then, we have if (i==0) then aF[i] = au[i] - user->alpha; else if (i == info->mx -1) that
is the right hand side grid or the rather right hand side node then, aF[i] = aul[i] - user-

>peta alright else you simply have the interior points. So, the interior points are easy.

So, what is the function? So, because it is happening locally that is why so first we need
to have x = i*h, which we have already defined and yep. So, aF[i] like the ith function

will be in terms of the u which is on the local grid.

So, -u[i+1] + 2.0*ul[i] - u[i-1] + user->rho*h*h*PetscSqrtReal(u[i]) so, that is the way

we will declare the function and once it is successful we will simply return 0 ok.

(Refer Slide Time: 30:38)

So, we have gone ahead and created this function. So, all these functions are valid for j

equal to the inner node so, these are all the inner nodes. Because the residues will be

calculated for these function evaluations ok. So, we have
DMDAsSetLocalFunctionSetFunctionLocal and it requires what let us see da then the
PetscErrorCode no not the PetscError the InsertMode then the function handle to so, it

needs the function handle.

(Refer Slide Time: 31:33)

| with the DM. This makes the
ater date, this could become the

So, we need to give instead of giving the name of the function we need to give the
Function handle. So, we will say that form funct is of the type DMDASNESFunction ok.
So, this will make it pass the function handle. It should run without even declaring it like

this, but anyway let us see if it does not work then we will think about it.

(Refer Slide Time: 32:38)

@ o .

il ¢ 3 C i oo - ' . ETY |
.5, 7. DMSNESSetJacobian

set SNES Jacobian evaluation function

Synopsis

M :include “petscsnes.h®
#include "petscdn.h”
PetscErrorCode DMSNESSetJacobian(D¥ dm, PetscErrorCade (*J)(SHES, Vec,Mat,Mat, void*),void *ctx)

&8 Not Collective
[l Input Argument
dm- DM to be used with SNES
J - Jacobian evaluation function
etx- context for residual evaluation
Note
SNESSetJacobian() is normally used, but it calls this function internally because the user context is actually associated with the DM. This makes the

interface consistent regardless of whether the user interacts with a DM or not. If DM took a more central role at some later date, this could become the
primary method of setting the Jacobian.

See Also

DMSNESSetContexi(), SNESSetFunction(), DMSNESGetJacobian(), SNESSetJacobian(), SNES JacobianFunction

Now, let me make the Jacobian callback so, DMDASetSNESSetJacobianLocal alright.
So, even this will contain da then the function callback if I remember correctly.

(Refer Slide Time: 32:48)

(Refer Slide Time: 32:56)

x 4

... DMSNESSetJacobian

B sct SNES Jacobian evaluation function

Synopsis
nclude “petscsnes.h”™

nclude “petscdn.h”
l PetscerrorCode DHSNESSetdacobian(Dd dn,PetscErrorCode (*)(SHES,Vec,Mat, Mat, void®),void *ctx)

B8 Not Collective

l Input Argument

dm- DM to be used with SNES

J - Jacobian evaluation function
etx- context for residual evaluation

Note

SNESSetJacobian() is normally used, but it calls this function internally because the user context is actually associated with the DM. This makes the

interface cor gardless of whether the user interacts with a DM or not. If DM took a more central role at some later date, this conld become the
primary method of setting the Jacobian.

See Also

DMSNESSetContext(), SNESSetFunction(), DMSNESGetJacobian(), SNESSetJacobian(), SNESJacobianFunction

So, DMDAS as JacobianLocal DMDASNESSetJacobianLocal it is the same kind of

function handle. So, dm then the function handle and the matrices ok.

(Refer Slide Time: 33:19)

W@
petsc-3.14.3 2021-01-09
Report Tvpos and Errors

M - Mat object for the Jacobian preconditioner matrix

Actually the function handle should contain the matrices and the application context ok.
So, this should contain the function handle so, FormJac and the type of the function is
DMDASNES function and not function Jacobian ok.

(Refer Slide Time: 33:45)

@ x 4

SNESJécobianFunction

Function used to convey the nonlinear Jacobian of the function to be solved by SNES

LY]

[t]

Synopsis

#include "petscsnes.h”
PetscErrorCode SNESJacobianFunction(SNES snes,Vec x,Mat Amat,Mat Pmat,void *ctx);

Collective on snes
Input Parameters

X - input vector, the Jacobian is to be computed at this value
ctx- [optional] user-defined Jacobian context

Output Parameters

Amat- the matrix that defines the (approximate) Jacobian
Pmat- the matrix to be used in constructing the preconditioner, usually the same as Amat.

See Also

SNESSetFunction(). SNESGetFunction(), SNESSetJacobian(), SNESGetJacobian()

Level

intermediate

It has to give up this of that particular kind because, when you said Jacobian the Jacobian
function has to be of this particular kind ok, alright.

(Refer Slide Time: 33:58)

9 oo .+
€3 C @ ncnip 12 g @
> PetscErrorCode DMDASNESSetJacobianlocal (DM dm,PetscErrorCode (*func)(DMDALocallnfo*,void®,Mat,Hat,void*), void *ctx) i

] Logically Collective
Input Arguments
dm - DM to associate callback with
func- local Jacobian evaluation

ctx - optional context for local Jacobian evaluation

Calling sequence

For PetscErrorCode (*func)(DML callnfo *info,void *xMat J Mat Mvoid *ctx),
info- DMDALocallnfo defining the subdomain to evaluate the Jacobian at
x - dimensional pointer to state at which to evaluate Jacobian (e.g. PetséScalar *x or **x or ***x)
J - Mat object for the Jacobian
M - Mat object for the Jacobian preconditioner matrix
ctx - optional context passed above

See Also

DMDASNESSetFunctionl ocal(). DMSNESSetJacobian(). DMDACreateld(). DMDACreate2d(). DMDACreate3d()

Level

beginner

Location

Then ok so apart from this, we need to pass the application context as well so, the

address of user ok.

(Refer Slide Time: 34:05)

beginner

So, then we need to create the function, but before that SNESSetFromOptions snes ok.
So, now we need to create this form jack function. So, the form is the same as the above
it needs one which created from scratch so, it is essentially going to return again an

integer to say whether everything has run properly or not.

(Refer Slide Time: 34:38)

So, PetscErrorCode FormJac(DMDALocallnfo *info, double *au, Mat J, Mat P, AppCtx
*user). It is the same thing, instead of passing the vector we are passing the auxiliary

vector that is it that is the only difference ok, alright. So, int i and for the Jacobian we

going to have to insert three columns. So, int col[3] and they will keep on shifting

depending on i we need a double h, which we can borrow from the previous code alright.

(Refer Slide Time: 36:03)

beginner

And we going to need something which will store 3 values because, we will insert the 3
values ok. So, then we will do the for loop for so, we going to borrow the for loop
alright. Now, if i == 0 so, what is the Jacobian we have already discussed this, but when i

==0and i = n - 1 the Jacobian the diagonal element is simply going to be 1 alright.

(Refer Slide Time: 37:00)

So, let us encode that so, if i = 0 then what should we do? v[0] = 1.0 and col [0] does not
matter we can choose not to give call because it is going to be the same location as i. So,
its we going to insert it at i, i. So, we going to do MatSetValues into P and we going to
insert 1 row, the location of the row is i and we going to insert 1 column and the location

of the column is also i that is why we do not need to bother about row.

And we going to insert v because, we going to insert only one value v [0] is sufficient
and we going to do it as insert values. In fact, when iis 0 or 1 i is equal to the last row
i==info->mx-1. So, when this is true then this needs to be done ok. So, we have to set the
Jacobian to one now, when it is not the case else what should we do else you have to

construct the 3 rows and do it ok.

So, col[0] = i-1, col[1] =i alright and col[i+1] is going to be not i+1 col[2] = i+1, these
are the columns where we want to insert the values alright. Now, v[0] = -1.0, v[2] =-1.0
whereas, v[1] = 2+h*h*user->rho/(2*PetscSqrtReal(au[i])).

(Refer Slide Time: 39:51)

)
A

N
A

So, it is going to be 2+h*h*user->rho/(2*PetscSqrtReal(u[i])) alright. So, this is the

Jacobian you do not need to insert these values obviously.

So, we set then we simply do MatSetValues into P we going to insert 1 row we going to

pass the address of i, we going to insert 3 values we going to pass the column address we

going to pass the values to be inserted address and insert values that is it. So, using this

we have created the matrix P and we going to then have to assemble the matrix.

(Refer Slide Time: 41:03)

beginner - (8]

So, we can borrow the program from the previous so in fact, we need this entire chunk.

(Refer Slide Time: 41:09)

Because, either you assemble it if J 1= P then you assemble J whatever the user has
provided ok alright. So, looks good. So, this is the way you call the functions this is

syntax for it and after this we have made all this we simply then solve.

(Refer Slide Time: 41:34)

beginner . Q

SNESSolve snes NULL put the solution in u and let us destroy whatever we had before
finalizing so, VecDestroy(&uexact) then DMDestroy(&da) and SNESDestroy(&snes).

(Refer Slide Time: 42:19)

(Refer Slide Time: 42:28)

beginner : o

So, let us see whether this compiles or not. So let us create a new target so, rxn_dfn

alright.

(Refer Slide Time: 42:39)

(Refer Slide Time: 42:43)

So, | have saved this lets see whether it compiles ok there is an error form jac and all this

ok let us see what the issues are so ok.

(Refer Slide Time: 43:14)

[DAVecSetarray’; did

beginner ! '3 [}

So, DMSetUp does not require the user context we just need to set up the application

context. So, DMSetUp DMSetApplicationContext dm and the address of user ok.

(Refer Slide Time: 43:36)

rs/Adwin/Dropbox/

dnin/Dropbox/TSC_petsc/rxndfn.c:87:9

pbox/TSC_petsc/rxndfn

So, let us see if that error goes away unexpected so, have we missed semicolon

somewhere ok.

(Refer Slide Time: 44:00)

There was a small mistake this is not SetArray this should be RestoreArray.

(Refer Slide Time: 44:18)

Let me make it that is a small spelling mistake over here as well there is a small mistake

over here as well.

(Refer Slide Time: 44:44)

There is a small mistake over here as well. Well | have cleared some of the mistakes and
they basically stemmed from declaring the variable inside the | mean as a function call to
the declaring the variable going into the function as a u, but rather | am using u that was

the error.

(Refer Slide Time: 45:10)

So, now | will remove the error so, in the functions control ok form jac we have not

returned 0.

(Refer Slide Time: 45:27)

And what does it say X is set, but not used inside FormFunct ok.

(Refer Slide Time: 45:44)

So, we do seem to get convergence, but now we should now check it with the analytical
solution. So, let us see how we can check it so, we at the end of this function we have the

solution inside u.

(Refer Slide Time: 46:01)

So, what we must do is compare it with the exact solution. So, the exact solution was
built over here. So, we will do the same thing vecaxpy (u, -1.0, uexact) and we will

return the norm. So VecNorm(u, NORM_INFINITY, &errv) and the err variable has to
be of kind double ok.

(Refer Slide Time: 46:47)

(Refer Slide Time: 46:59)

So, finally, we can print out the error. So, we can do a PetscPrintf it has to be done over
the COMM WORLD and we will print %d, that is the number of grid points and the

error as %g and this will be in info.mx, errv ok.

(Refer Slide Time: 47:35)

(Refer Slide Time: 47:38)

So, let us recompile ok so the error appears to be 0.003 let us do a grid refinement. So,
because we are we have declared the default to be 9 we can do a minus da refine 3.

(Refer Slide Time: 47:59)

So, when we refine we get a much better norm let us do a larger refinement to see

whether things are better ok.

(Refer Slide Time: 48:15)

So, as we refine things become much better and we get conversions. So, this is the
solution for some reason it says x is unused but, the fact of the matter is x is actually

used | do not know why.

(Refer Slide Time: 48:36)

(Refer Slide Time: 48:40)

It is quite weird to see that error it is not an error it is a warning, but I do not like to see
that warning anyway. So, the solution is written and well can we draw the; can we draw

the solution.

Well let us see, whether we have the option to draw the solution let us run it with
refinement 6 monitor solution draw pause 10, we do not have x ok let us make let me

start x min and now, we should be we should be able to show the ok.

(Refer Slide Time: 49:50)

So, the solution goes from it did go from 1 to 16 ok it goes from 1 to 16 well there you
have it.

(Refer Slide Time: 50:03)

Just like this we can solve a complicated problem it is updating the solution depending
on the number of iterations and its going to take a while. So, for large number of

refinements we do get a solution which is well converge with respect to the exact
solution.

(Refer Slide Time: 50:33)

And in this particular lecture we have seen how to create out of a PDE in this case it was
not a PDE but, in this case it was an ODE from that ODE we were able to create a sort of
non-linear optimization problem, if you will we were able to construct the Jacobian of
the discrete algebraic equations we were able to construct the functions of those
equations and all those were done on a distributed grid.

So, do this on your own learn it by practice and you will see that all doing all this is not
at all difficult; and with this | end this particular lecture I will see you again next time
bye.

