Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 29
PETSc and MPI basics

(Refer Slide Time: 00:29)

; A S
coc W é 5
g8 e ! -4 sT®0]
i
Google et X & Q =
‘\ g Sc
S : P
PETSc/Tao: Home Page
PETSC - Por
s . o e for
Download Tutorials
Documentation PETSc Users Manual
V Dew
-

Instaliation Getting Started with PETSc

Hello everyone, to this 6th week where we are going to begin our journey with PETSc.
So, what is PETSc?

(Refer Slide Time: 00:41)

o x|

€ 3 C O maigone 2t g @

Portable, Extensible Toolkit Pee.
for Scientific Computation
Toolkit for Advanced

ZPETSc 1,4TAO

Optimization

The current version of PETSc is 3.14; released

* Home
« Annual Meetings September 29, 2020.

* Download PETSC, pronounced PET-see (the S is silent) is a
+ Features

suite of data structures and routines for the
* Documentation

© Manual pages and Users
Manual

scalable (parallel) solution of scientific
applications modeled by partial differential
equations. It supports MPI, and GPUs through

g:ﬁql:f“—(CUDA o OpenCL, as well as hybrid MPI-GPU
S paralllism. PETSc (sometimes called PETSc Tao)
o SAWs. also contains the Tao optimization software

. @Q library.

> %“ka News, book on PETSc, by Ed Bueler Hardcover

3 PETSc for Partial Differential Equations Numerical
> 0 Solutions in C and Pytho. or Google Play E-book
© License

* Applications /Publications News, paper on GPU PETSc. Toward Performance-
* Portable PETSc for GPU-based Exascale Systems

* External Software
Developers Site News, source code for petscdpy, developed by
Lisandro Dalcin, is now distributed with the PETSc

So, PETSc is collection of library, data structures, routines for solving large non-linear
algebraic systems and the whole library is sort of built around the MPI interface that is
the message passing interface, which enables one to run their programs over multiple
processors. And we will see some examples of that.

(Refer Slide Time: 01:21)

o CodeManagement

:

o License

+ Applications/Publications
* Miscellaneous
 External Software

Toggl Search

» Developers Site News, source code for petscdpy, developed by

* DMNetwork Lisandro Dalcn, is now distributed with the PETSc
o Case Studies source and supported by the PETSC team and
© Tutorials mailing hsts
o Publications

News, book on PETSc, by Ed Bueler Hardcover

PETSC for Partial Differential Equations Numerical
Solutions in € and Python. or Gooale Play E-book

News, paper on GPU PETSc Toward Performance-
Portable PETSc for GPU-based Exascale Systems

 Scientific applications that use PETSc
* Features of the PETSC libraries (and a recent
podcasy
o Linear system solvers accessible from PETSc
 Related toolkits/libraries that use PETSc
o ADflow An Open-Source
Cofnputational Fluid Dynamics Solver
for Aerodynamic and Multidisciplinary
Optimization
o Chaste Cancer, Heart and Soft Tissue
Environment
o code_aster open source general
purpose finite element code for solid
and structural mechanics
o COOLFIuID CFD, plasma and multi-
physics simulation package

- o x

Y BN
o ADflow An Open-Source -8

= R =5 %]
¢ s g ®
2 g e /®T=
also contains the Tao software
o Changes library. \TF: ”
© BugReporting '

Computational Fluid Dynamics Solver
for Aerodynamic and Multidisciplinary
Optimization

o Chaste Cancer, Heart and Soft Tissue
Environment

o code_aster open source general
purpose finite element code for solid
and structural mechanics

© COOLFluiD CFD, plasma and multi-
physics simulation package

o DAFoam Discrete adjoint solvers with
OpenFOAM for aerodynamic
optimization

© DEALJI C++ based finite element
simulation package

o FENICS Python based finite element
simulation package

o Firedrake Python based finite element
simulation package

o Hudity a finite element/volume fluids
code

o FreeFEM finite element PDE solver
with embedded domain specific
language

o hiPPYlib FEniCS based toolkit for
solving large-scale deterministic and
Bayesian inverse problems governed
by partial differential equations

o libMesh adaptive finite element library

o MEEM hightweight, scalable C++

(Refer Slide Time: 01:40)

P e T -
€3 C 0masis Y
! e
solving large-scale ad -8 4 sT=0 5
Bayesian inverse problems governed PErC
\ {3

by partial differential equations

o libMesh adaptive finite element library

o MFEM lightweight, scalable C++
library for finite element methods

o MLSVM, Multilevel Support Vector
Machines with PETSc.

o MoFEM, An open source, parallel finite
element library

o MOOSE - Multiphysics Object-
Oriented Simulation Environment
finite element framework, built on top
of libMesh and PETSc

o OOFEM object oriented finite element
library

o OpenFOAM Available as an extension
for linear solvers for OpenFOAM

o OpenfVM finite volume based CFD
solver

o PermonSVM support vector machines.
and PermonQP quadratic
programming

% o PetiGA A framework for high

performance Isogeometric Analysis

o PHAML The Parallel Hierarchical
Adaptive MultiLevel Project

o preCICE - A fully parallel coupling

library for partitioned multi-physics
simulations
o PyClaw A massively parallel, high

(Refer Slide Time: 01:44)

' = S
€3 C 0munly . tgr@:i|
o MOOSE - Multiphysics Object- i
Ouiented Simulation Environment Pers.
finite element framework, built on top RS
of libMesh and PETSc
o OOFEM object oriented finite element
library
o OpenfOAM Avalable as an extension
for linear solvers for OpenFOAM
© QpenfVM finite volume based CFD

solver
o PermonSVM support vector machines
and PermonQP quadratic
programming
o PetiGA A framework for high
performance Isogeometric Analysis
© PHAML The Parallel Hierarchical
Adaptive MultiLevel Project
o preCICE - A fully parallel coupling
library for partitioned multi-physics
simulations
o PyClaw A massively parallel, high
order accurate, hyperbolic PDE solver
. © SLEPc Scalable Library for Eigenvalue
" Problems
o Packages that PETSc can optionally use

PETSC is developed as open-source, requests and
contributions are welcome.

Who are we? _Questions and Bug Reports _ Applications __FAQ __Tutorials
P Tipehesetoseach oxm> @59 A

So, yeah, | mean it is being used in a host of different toolkits libraries such as ADflow,
code aster, COOLFIuiD, FEnICS, fluidity, freeFEM, MOOSE, MoFEM, openFOAM and
so on. So, this particular library offers you a lot of tools with which you can achieve
great computational speed, efficient memory usage all through a very easy interface
through the C programming language. So, we are working on Windows, but we can use
the subsystem the windows subsystem for Linux to install Ubuntu as an app.

(Refer Slide Time: 02:22)

Y)

Portable, Extensible Toolkit \Tv— S

for Scientific Computation

=PETSc 1,TAO

Toolkit for Advanced
Optimization
| | The current vmlin of Pisr is3.14 released
bccioeed nt), is a
[s e
i Ubenfs 120417 ial
P un ough

* Home
+ Annual Meetings
+ Download
* Features
* Documentation
o Manual pages and Us
Manual
o Citing PETSc
o Tutorials
¢ Installation
© SAWs
o Changes
o BugReporting
> CodeManagement
° FAQ

o License

+ Applications/Publications
* Miscellaneous

» External Software

o Developers Site

* DMNetwork

So, | have it installed already. So, when | launch Ubuntu I will be greeted by this. So,
this is my desktop on work, I mean this is my Linux sort of virtualization inside
windows. All the Linux commands work quite well. So, it is something Linux users do

not have to do this. You can directly install PETSc.

So, let me just walk you through on how you would go around installing PETSc. So, first
of all 1 will assume you have GCC installed. So, on my PC | have GCC 7.5.0, and in

PETSc on this website you have to go to installation, alright.

(Refer Slide Time: 03:24)

PETSc

Documentation: Installation

* Home
» Download
* Features
+ Documentation
© Manual pages and Users

Quick Instructions:

® On systems where MPI and BLAS/LAPACK are installed.

[contigure
make all check

Manual
o Citing PETSC
© Tutorials

« Or to specify compilers and have PETSc download and install MPI and BLAS/LAPACK (when they are not already on your
machine)

o Installation

Jeonfigure --with-ccagee --with-cxxegss --with-fesgfortran --download-pich --downlosd-folaslapack
o SAWs nake all check
o Microsoft Windows installation and DOE large scale systems installation

o Changes
© Bug Reporting
o Code Management

Don't need Fortran, use ~-with-fortran-bindings=0 to reduce the build times. If you are not using external packages that
o FAQ use Fortran (for example, MUMPS requires Fortran) you can use --with-fc=0 for even faster build times.
o License

Encounter problems?

o Linear Solver Table
o Nonlinear Solver Table
o TAO Solver Table

+ Applications/Publications

» Miscellaneous

* External Software

* Developers Site

« Read the error message from . /configure!

o Read help . /configure --help

o Refer to example usages (e.0., build PETSC without Fortran compiler)

o make problems? Just copy/paste make command printed by configure including any PETSC_DIR and PETSC_ARCH
options

 Check the bug-reporting section

(Refer Slide Time: 03:33)

€ 3 ¢ finas Wt
Download

* Home Recommended download

* Download

+ Features ® git clone -b release https://gitlab.con/petsc/petsc.git petsc

* Documentation

o Manual pages and Users 1 anytime to obtain new patches that have been added since your git clone or last git pull.
Manual ¥3.14.3 to checkout a particular version.

Please join the petsc-announce and petsc-users mailing lists.

o Installation

Documentation of changes/patches
o SAWs
© Changes o Documentation of patches in 3.14
© BugReporting o Summary of PETSc 3.13 to 3.14 additions and changes
> CodeManagement
° FAQ Downloads if you cannot use git
> License

* Applications/Publications
* Miscellaneous
 External Software

* Developers Site

o petsc-lite-3.14.3.tar.qz (use with online documentation)
o petsc-3.14.3.tar.qz (includes documentation, recommended for off-line use)

Use mirror below if GitLab and our primary download server are unavailable

© hutps |/ fip.mes.anl.qov/pub/petsc release-snapshots | (primary server)
o hitps / /www.mes.anl.gov/ petsc /mirror /release-snapshots/ (mirror)

Note: Older releases of PETSc are also available above. These should only be used for applications that have not been
updated to the latest release. We urge you, whenever possible, to upgrade to the latest version of PETSc.

So, how to go about installing this? So, first thing you have to download the thing. So,
you have to install git, you have to get the latest release, and once you get the latest
release you have to go to the you have to unzip the thing ok, because you will download
it as a zip file. Once you unzip it, you can configure it like this you have to sort of build

the set of files that you have downloaded, alright.

So, the configure statement tells what C compiler it has to use, what C + + compiler it

has to use, what Fortran compiler it has to use, whether it has to download MPI, whether

it has to download BLAS and LAPACK. So, | would suggest to keep the configure
statement as it is shown, so that the MPI that you may already have installed, does not

conflict with the MPI that you will install through this particular build, alright.

(Refer Slide Time: 04:56)

« Installing with TAU instrumentation package

o Installing PETS to use NVIDIA GPUs (aka CUDA)

o Installing PETSC with Kokkos

* Installing PETSc 1o use GPUs and accelerators via OpenCL (NVIDIA, AMD, and Intef)

* PETSc ./confiqure generates Pkqconfig and module files for each install
o Installing on large scale DOE systems

« Installing PETSc on an i0S or Android platform

Example Usages:

» Examples are at config/examples)*.py. We use some of these scripts locally for testing - for example one can update these files and run as
/cdufig/examples/arch-0sx-10.6.py
» Assuming BLAS, LAPACK, MPICH are not currently installed . /configure will download & install BLAS, LAPACK, MPICH if they are not already installed on the
system).

Jconfigure --vith-cezgee g++ --with-fesgfortren --downlosd- folast --download-mpich
* Same as above - but do not have a fortran compiler [and want to use PETSc from C only].

= .[configure --vith-ccsgee --with-cxe=d

ith-fe=d --download-f2cblaslapack --download-mpich
* Same as above - but install in a user specified (prefix) location.

/configure --prefix=/home/user/soft/petsc-install --with- 9 --with-fc=d --download-f2cblaslapack --download-mpich

o I BLAS, LAPACK, MPI sources (in “-devel” packages in most distros) are already installed in default system)compiler locations and mpicc, mpif90, mpiexec are
available via PATH - configure does not require any additional options.

< Jcontigure
 If BLAS, LAPACK, MP! are already installed in known user location use: 1
[Note: Do not specify —with-cc —wath-fc etc when using —with-mpi-dir - so that mpicc/mpif90 can be picked up from mpi-dir]
(
/configure --with-blaslapack-dir=/usr/local/blaslapack --with-mpi-dir=/usr/local/mpich «

& masign ERTY

Jeontigure -with-cxxsges --uith-fegfortran --downlosd- folaslapack --download-mpich

* Same as above - but do not have a fortran compiler [and want to use PETSc from C only].

Jeontigure --ith

=gcc --with-cxx=d --with-fc=8 --download-f2cblaslapack --download-mpich

» Same as above - but install in a user specified (prefix) location.

Jeontigure --prefix=/hone/user/soft/petsc-install --with-cesgec --with-cxx=d --with-fcsd --download-f2chlaslapack --download-mpich

o I BLAS, LAPACK, MP! sources (in *-devel" packages in most distros) are already installed in default system compiler locations and mpicc, mpifQ0, mpiexec are
available via PATH - configure does not requite any additional options.

[contigure

 IF BLAS, LAPACK, MPI are already installed in known user location use
[Note: Do not specify —-with-cc —with-fc etc when using —with-mpi-dir - so that mpicc/mpif90 can be picked up from mpi-dir]

./configure --with-blaslapack-dir=/usr/local/blaslapack --with-mpi-dir=/usr/local/mpich

[configure aslapack-dir=/usr/local/blaslapack --with-cc=/usr/local/mpich/bin/mpicc --with-mpi-f98=/usr/local/mpich/bin/mpif3d --

wpich/bin/mpiexec

with-mpiexec:

o Build Complex version of PETSC [using ¢+ compiler]

.Jeontigure --uith-ccagec --with-feagfortran --vith-cxxege+ --with-clanguagescxx --download-fblaslapack --download-apich --with-scalar-

type=complex
» Install 2 variants of PETSc, one with gnu, the other with Intel compilers. Specify different PETSC_ARCH for each build.

--with-cxxege+ --with-fesgfortran --download-spich

c¢ --with-cxx=icpc --with-fe=ifort --download-mpich --with-blaslapack-dir=/usr/local/mkl

So, once you do that you do a make all check, and then you follow whatever you see on
screen. So, eventually you will end up with lines such as this. You will do this particular
thing, you will configure it with PETSc arch and PETSc dir, which specifies the PETSc
directory and the PETSc architecture.

(Refer Slide Time: 05:27)

PETSc

Documentation: §

|||||

* Dew s Site

So, once you start installing you will actually be prompted to use those. So, keep a note
of those, the variables that you will be requiring are PETSc dir. So, for me it is installed
inside this, right. And the other thing will be PETSc arch. So, command not found, but
this is the thing. So, in fact, the working directory for PETSc where it is installed its
PETSc dir \ PETSc arch \ bin and inside this if I do this I will have all the different.

So, inside this I will find MPI exec. So, | must use this particular version of MPI to run
the programs over multiple processors. And in fact, if | do not want to do that. You may
not wish to run this over multiple processors , but what is the use, I mean the true power

of PETSc comes in when you are running it on multiple processors.

So, you must use this particular MPI ch or rather MPI exe. So, you must use this
particular MP1 exec to run your program on how many processors you want, alright. So,
we will look into this a bit later. But this PETSc dir and PETSc arch they will be

prompted to you once you start installing, alright.

So, you can fetch which MPI version you are using. But, yeah, | mean if you are building
it like this you will have to use this particular MPI, otherwise it will not sort of because it
is not come the MPI that is already installed its not compiled with PETSc. Rather PETSc
is not compiled with that it will not run it on multiple processors. Well, this is a very

easy work around, you can go to your bash hash file and you can declare the MPI exac

version to be this particular version instead of the default version. But anyway all those
are minor issues, alright.

(Refer Slide Time: 07:48)

 Please obtain PETSc via the repository or download the latest patched tarball
» To extract the sources use petsc-<v

ersion number).tar.gz | tar -xof -

* We highly recommend instal asareg user, perhaps in /h

Table of Contents:

o Example usages
« Specify compilers and compiler options used to build PETSc [and perhaps external packages)

* BLAS and LAPACK problems
o MP1 problems / | don't want MPl
o Installation location” in-place or out-of-place.
ariables PETSC DIR and PETSC ARCH
piles o1 a job scheduler

Example Usages:

o Examples are at config/examples/*.py. We use some of these scripts locally for testing - for example one can update these files and run as

Jeontig/examples/arch-0sx-16.8.py

o e ¥oanes 3re oL currently ins!

So, nowadays you have PETSc running on iOS or Android. So, it is really going
scalable. You can use GPUs and NVIDIA, AMD GPUs. So, they have done a wonderful
job of creating a massively scalable library. And it is not a recent library, it is | think the
first release came from the year 1994. So, it is something which is quite old and it has
been developed over decades, alright. So, yeah. So, let me go back to let me create a new
folder in C. So, let me go to my, let me make a new directory, alright.

So, now | have created a new directory, and you can do two things, you can of course,
work within this terminal if you are comfortable with it you can use any editor. So,
suppose | want to create a file, let us say like 29.C.

So, or let us give it something more descriptive. So, the first example that | want to do is
finding out the value of an exponential using a series approximation, a MacLaurin series.

So, what | can do is | can use emacs and | can say Taylor, no, not Taylor. exponential
approx.C.

(Refer Slide Time: 09:58)

PETSc

Documentation:

o Manual pages and Ust
Manual

o Citing PETSc

o Tutorials

o Installation

o SAWs

o Changes

© Bug Reporting

o Code Management

° FAQ

o License

o Linear Solver Table

o Nonlinear Solver Tabl

o TAO Solver Table
« Applications/Publications BEACIIBLI
* Miscellaneous
» External Software
 Developers Site

So, what this does is it will open the editor inside the terminal itself and if you are
comfortable using emacs. You can do all the programming here itself. But if you are not
comfortable doing this you can go to your drop box directory. I mean see not everyone
may be comfortably doing things in the terminal, but you can go to the drop box folder,

you can create the file over there and you can compile it simply on the terminal.

(Refer Slide Time: 10:33)

PETSc

Documentation: £

* Home
* Download
* Features
* Documentation

@ Citing PETSC
o Tutorials

o Installation
o SAWs

© Changes

© Bug Reporting

o Code Management
o FAQ

o License

o Linear Solver Table e
© Nonlinear Solver Tablgits
o TAO Solver Table
» Applications/Publications
* Miscellaneous

* External Software

» Developers Site

(Refer Slide Time: 10:35)

PETSc

Documentation: EESEEE

¢ Home
» Download
* Features
+ Documentation

o Citing PETSc
© Tutorials

o Installation
o SAWs
o Changes
o Bug Reporting
© Code Management
° FAQ
o License
o Linear Solver Table [
© Nonlinear Solver Tabldiy
© TAO Solver Table
+ Applications/Publications
» Miscellaneous
* External Software
* Developers Site

(Refer Slide Time: 10:45)

* Features
* Documentation
© Manual pag
Manual
o Citing PETSC
o Tutorials

o Installation

© Bug Reporting

o Code Management
© FAQ

o License

o Linear Solver Table i
© Nonlinear Solver Tabidi
© TAO Solver Table
+ Applications/Publications
* Miscellaneous

* External Software
« Developers Site

So, what | mean is now | can go to the terminal, and | can create a new file over here. So,

| can call it something like this.

(Refer Slide Time: 10:55)

» Download
» Features
* Documentation
© Manual pages
Manual

o Citing PETSC
> Tutorials
o Installation
o SAWs
o Changes
o Bug Reporting
o Code Management
o FAQ
o License
o Linear Solver Table
o Nonlinear Solver Tabl
> TAO Solver Table
» Applications/Publications
* Miscellaneous
* External Software

Displ. ulating - g
« Developers Site -
ﬂ P e s 0 5 A E i

(Refer Slide Time: 10:59)

And | can use any editor that | want, notepad + + is a very light editor and | can create
the code over here as well, alright. So, if | save this, | should be able to see the file over

here as well, ok.

(Refer Slide Time: 11:30)

i & @ s
€3 0 (i mmgpe File Edit Opt:

PETSc

Documentation:

o Citing PETSc
© Tutorials

© Installation
o SAWs
© Changes
o Bug Reporting
© Code Management
o EAQ
@ License
o Linear Solver Table
o Nonlinear Solver Tabl
© TAO Solver Table
+ Applications/Publications
» Miscellaneous
* External Software

 Developers Site

All L1

So, if I do emacs expo. So, | have the hash include stdio.h over here, alright. The color
contrast is a bit off, but that is ok. So, let me exit. So, I will do it in over here, no
problem. And we will just use the terminal to compile our things. So, let me clear all
this,.

(Refer Slide Time: 11:44)

o Nonlinear Solver Table |
o TAO Solver Table * Read the errc

+ Aoeiaions PubNiciloes o Read help . /¢commic =y e e, 1

R Refer to example usages (e.g., build PETSc with

R o make problems? Just copypaste make commal
o Developers Site optoss

* Check the bug-reporting section

So, we want to create a file which will help us approximate an exponential.

(Refer Slide Time: 11:57)

So, the MacLaurin series is as follows. So, e = Z(l) . This is the way you have to define
n=0 n

it. So, let us first create a C program which will help us to do this without using PETSc,
and then we will see the PETSc version later. So, let us include math.h. So, int main,

return 0. So, now, we need to declare some variables, alright. So, int i, double e.

So, let us store the solution inside e, and yeah, let us declare it as 0, let us initialize it as
0. So, let me change the theme, alright. This is a much better contrast. So, what we can
do is inside this program we must do a loop over this. So, we must declare what n is
going to be. So, this sum is obviously, we cannot do till infinity. So, let us do the sum till
capital N, alright. So, let me declare N as a integer as well, right. So, now, we must do

fori=0,i< N,i++.

So, then we must do e = e + 1.0 divided by; so, you must do a factorial of i, alright. So,
we must not define what the factorial function will be because we do not have those
predefined in C as such. | mean of course, we can use the gnu scientific library that is
there is something called as the GSL, which also gives you a host of libraries which are
useful for computations, but anyway we do not need to do that. So, we need to define

what this is, and in the end, let us we have to print.

So, we will do print f, % f \ n and we have to print e. So, so far, we have not defined

what factorial will be. So, we must declare it is a long int, and the reason | am using long

int because factorials tend to become really large after a while the values of factorials it
becomes really large. So, we will declare fact and it will take as an input integer, let us
say a, alright. So, it must return something, so return r. So, long, ok; so, we do not need
to do this. So, the way to do a factorial is if a = 0, right or a = 1, then we must return 1,

else we must return a times fact of a - 1.

So, this is a recursive way how to defining the factorial of a number a, alright. So, this is
nothing but recursion because once a is large is neither 0 or 1, it will simply suppose a is
3. What happens suppose a is 3? So, it will call 3!. So, when we call 3! it will check
whether 3'is 0 or 1, if it is not then it will go to this. So, it will then return 3 x 2!, but 3 x

2! will involve 3 x 2 x 11. So, if you unroll the function stack this is what you will see.

And something like this you might have done in your first year programming or even
11th, 12th. But regardless | am just showing you how one would go about doing this for
those of you have not done it. But | highly recommend you grab hold of a C
programming book to understand what is really going on. So, this is the factorial way of
writing it and |1 am assuming some working knowledge of C programming in this this is
not really a course where you will learn C programming, alright. So, yeah, that is pretty

much it.

(Refer Slide Time: 17:24)

o Nonlinear Solver Table

o TAO Solver Table
* Applications/Publications
s

(Refer Slide Time: 17:36)

o Nonlinear Solver Table o
TR « Read the error message from . confi A3

+ Applications Publications * Read belp)./com
+ Miscellaneous

o Exteral Software UL P

 Developers Site options 5 < 3 i1 Golit det2 "
o Check the bug-reporting section >

Then we will go to our terminal let us do GCC, and let me clear the screen. So, GCC

® Refer

expo, alright. Let us simply do this, PETSc if there is some error there is no error . \ a .
out. But I have not defined what N is, so there will be an error, ok. So, | have not defined
what N is. So, I must define N as a certain number of terms. So, let us say 5, let me save

this. So, it gives us an approximation of 2.70833.

(Refer Slide Time: 18:12)

. 718281525573192
»

o Nonlinear Solver Table 2
o TAO Solver Table * Read the error message from . /confi JRE

o Read help
o Refer to ex:
« makeprobl

* Applications/Publications
* Miscellaneous
* External Software

* Developers Site opie

o Check the bug-reporting section

(Refer Slide Time: 18:48)

o Nonl Solver Table
able

So, if I increase this let us say to 10, let me recompile and let me run the file, we get a
much better approximation. In fact, let us increase the number of decimal places that we
can print, so let us say 3.15 f. So, we will get 15 decimal places. So, let me recompile,
alright. So, this is what the approximation is. So, this is how you can evaluate an

exponential using plane C language.

So, we have not done anything fantastic. In fact, we can use int argc char star star argv.
We can pass command line arguments to do certain things. So, through this command
line argument we can avoid doing this, and we will simply declare N to be an integer, but

what we will do is we will pass how many number of terms we would like.

So, N would be a to i of argv 1. So, argv will be storing as strings the things you will
pass. So, argv 0 is always the name of the function, argv 1 is the first argument that you
give to the function. So, that is why; so, everything else will be treated as string, so you

have to use a to i; so, argument to integer, alright.

So, let us compile this and see how we can do this. So, let me save this. So, let me do
GCC, ok. And well, the reason we have this error is we have not included the standard
library. So, hash include stdlib . h, alright. So, now we should be fine, excellent.

(Refer Slide Time: 20:15)

%xiﬁ;f(z/

:
éxix \ﬂd({)

|
0 \l
© Nonlinear Solver Table
o TAO Solver Table * Read the error message from ./confi
+ Applications Publications * Read help . /configure --help
» Miscellaneous o Refer to example usages (e.g., build P|
© Etemal Sl o make problems? Just copy/paste mak N’
- 7S
* Developers Site options =
 Check the bug-reporting section B o 5 ~

So, now, when we do this, we must pass the number of arguments. So, | can pass 20 as
the argument. So, if I set 2, | get an approximation of 2, because when we have N = 2,

what we have is e = 1 over 0 factorial + 1 over 1 factorial, whichis 1 + 1 is 2.

(Refer Slide Time: 20:34)

] l-¢-/8T=0 b
PEiSe S
o4
77777 =2 i‘ 2
---- =2l s
4 (3)
%X“ﬂgf(z/

Nonlinear Solver Table

o TAO Solver Table * Read the eror
« Applications/Publications © Read help . /configure --help
* Miscellaneous ® Refer to example usages (e.g., build P|

« Exteriil Soltware * make problems? Just copy/ paste makl

* Developers Site options
* Check the bug-reporting section
<

So, as we increase the number of terms. So, if | make it 5, we get this. If | make it 20, we
get this. If I make it 50, we get this. And yes, this it does converge to the value of the
exponential.

(Refer Slide Time: 21:13)

> Nonlinear Solver Table 5
T « Read the error message from . /coni &3

« Applications/Publications © Read help . /configure --
» Miscellaneous * Refer to example usages fe.

¢ i Salas o makeproblems? Just copy/ paste mak IEREEY

* Developers Site optns
 Check the bug-reporting section

So, suppose now you want to print out all the variables, not the variables, but the
intermediate values as well. So, let us say you want to print the partial sum, alright. So,

we go over here we say print f partial sum = % 3.15 f\ n and we will pass e, alright.

(Refer Slide Time: 21:30)

> Nonlinear Solver Table
T « Read the error message from . confi 3

+ Applications Publications o Read help . jcontigare —-hal
+ Miscellaneous

o Refer to example usages (e.g., build PJjg
» make problems? Just copy/paste mak il }

* External Software

. D!VE‘D(K’S Site options
o Check the bug-reporting section

(Refer Slide Time: 21:32)

o Nonlinear Solver Table
TR et + Read the error message from . /confi i3

o Read help . /con
o Refer to ex

+ Applications/Publications
+ Miscellancous
+ External Software

« Developers Site opdas
o Check the bug-reporting section 3 WO o

* make probl

So, let me recompile. So, that is the partial sum. So, the partial sum converges quite
quickly. So, let us also print the iteration number, iter % d \ t and I will print the iteration

number over here. So, this will allow us to see how those partial sums are evolving.

(Refer Slide Time: 21:58)

> Nonlinear Solver Table
o T « Read the eror message from . /coni A3

« Applications/Publications
* Miscellaneous
* External Software = Aok ¥ e — - = _H

* Devel s Site pe == == = i 4

So, let me compile it let me take 10 terms. So, first term 1, 2, 2.5, 2.6, so very quickly

you see you get 10" ° accuracy after just 9 terms, alright. So, what happens when we do
not use long int? | want you to find this out. If I do not use long int and let me just give

you a quick answer to that, but you should ideally go ahead and print them out.

(Refer Slide Time: 22:32)

o Nonlinear Solver Table
TR b + Read the error message from . /confi]

+ Applications Publications S ReAl e e
* Miscellaneous * Refer to example usages (e.g.

* make problems? Just copy/paste makli

* External Software

o Developers Site options
® Check the bug-reporting section

So, let me just print out percentage Id \ n, and I will set % d \ t and print i and | will print

i!, alright.

(Refer Slide Time: 23:01)

o Nonlinear Solver Table

¢ TAO Solver Table * Read the error message from . /confi S
+ Applications/Publications &Read e o S
ke * Refer to example usages (e.q., build P

« External Software * make problems? Just copy/ paste mak W

* Developers Site options g0 2 7 G " i 1
o Check the bug-reporting section .

(Refer Slide Time: 23:07)

o Nonlinear Solver Table
o TAQ Solver Table

+ Applications/Publications

* Miscellaneous

» Bxternal Software

» Developers Site

« Read the error message from ./
« Read help . /eonfigure --nelp

options
Check the bug-reparting section

So, let me comment out this line, we do not need the partial sum. | am just trying to show
you how large those integers are. Still, it is not that large. So, maybe for 20, ok. So,

integers quickly become quite large.

If you do not use the long int you will run into floating or rather overflow exceptions
because you are overflowing the range that you can represent using the number of bytes

GCC allocates to integers. So, that is why you need to use a long int, great.

(Refer Slide Time: 23:32)

o Nonlinear Solver Table
© TAO Solver Table * Read the error message from ./confi 2

« Read help
* Refer o ex:
o makeprobl

+ Applications/Publications
* Miscellaneous
* External Software

o Developers Site opticns
o Check the bug-reporting section

So, one thing which 1 forgot to show we can find out the actual error. What we can do is
we can write down the exact value as returned by the math library as exp (1) and we can

print out the error the absolute error as % e - exp (1).

So, let us save this, let me compile. So, the error is 10" 7 forgot to back \ n the (Refer
Time: 24:20) carriage (Refer Time: 24:22) compile. So, the error is 10 -7, ok.

(Refer Slide Time: 24:35)

* Applications/Publications
* Miscellaneous
» External Software

« Developers Site = —— = — |

So, for 10 terms that is. So, that means, 20 terms 10" ‘6 is machine precision. So, this
small program helps us get the job done. We have not made use of any multi-processor
things we just created a function and it uses recursion to find out factorials and you used

a very simple accumulator.

So, this e is actually an accumulator e because it is accumulating the partial sum ok. This
is finding out the partial sum. This is how we have to work. So, now we will move on to
the parallel implementation using PETSc. Let us create a new file and we call it expo
PETSc . c. So, we are going to use the inbuilt PETSc data types and commands to find

out the approximation for exponential.

(Refer Slide Time: 25:36)

(Y

calls MPI_Init() if that has yet to be called, so this routine should always be called near the

£d

Initializes the PETSc database and MP]
beginning of your program -- usuats=#

Synopsis
0

So, first things first hash include PETSc . h int main and yeah int argc char star star argv,
for that we sort of PETSc code that you write has to eventually finished with return
PETSc finalize. So, this command helps you to gather all the threads. So, because you
will be using the MPI either explicitly or implicitly PETSc, you have to do this PETSc

finalize.

If you do not do this you will get very weird behavior now and do not forget to do this,
and it is sort of almost magnetic. But then, the next thing we will have will be PETSc
initialize rather before initializing let us declare some variables. The first variable will be
the inbuilt data type PETSc error code ierr, and the PETSc error code is something which
is 0. If everything is working properly if it does not work properly then it will return 1, 2,

depending on the error type that you encounter.

So, it is ordinarily of type int, but there is some additional data structures associated with
the data type PETSc error code. So, this is something which you will be using as well.
Then we need int rank to hold the rank of the processor that we are working with.

Additionally, we will need i for running a loop. So, why do we bother with the rank?

(Refer Slide Time: 27:33)

] f-¢-/mT20 L]
SALN o
ez =gl gan
x =1 ¥ A T— = T
(CHKEDDN : = : ol ||
CO
B ‘; i 5
P = nl
n=0 N|
3
{ 1 | \
i T W SR
OL \ 2) g"l
NS
= | N E
0 1 2
o

So, suppose you want to find e = summation 1 by n factorial for n = 0 to 3, so essentially
what we will have e:&+ﬁ+%+§. So, what our strategy will be is to declare 4

processors or 4 processes and each of these 4 processes will have a certain rank because
there will be some process with rank 0, rank 1, rank 2, rank 3, right.

(Refer Slide Time: 28:08)

So, once you do have these ranks then what will happen? We would like to find the

factorial of this one or rather 1 by factorial of this one, 1 by factorial of this one, 1 by

factorial of this one and 1 by factorial of this one. When we have; once we have these 4
factorials and then gather all the data that the different processes have, so, it will simply
sum over all these. But essentially it is a reduction operation over going from 4 processes
to one central process, ok. This is what the strategy is. So, hence we need to hold the

rank of the process inside this, alright.

Then what we will do is ok we need a double data type for the e approx and the local
factorial, ok. So, we will see what it means just in a moment. Then, what we will do is
initialize the; so, we will initialize PETSc meaning it will create all the MPI back it will
run background on the MPI initialization steps PETSc initialize the arguments we

initialize will be and.

So, the address of argc, the address of argv then the PETSc database in this case it is null,
then the help text, alright. So, this is how you initialize. So, most of the initializations
which will look like this, nothing much will change, ok. And you can look in the

function reference to see exactly what it does, ok.

(Refer Slide Time: 30:01)

(Refer Slide Time: 30:03)

] &) x 0 + - o x
€3 cC Y X
td
petsc-3.14.3 2021-01-09
Report Tvpos and Errors
IR T
PetscInitialize
Initializes the PETSc database and MPI. Petsclnitialize() calls MPI_Init() if that has yet to be called. so this routine should always be called near the
beginning of your program - usually the very first line!
Synopsis
#include “petscsys.h”
PetscErrorCode PetscInitialize(int *argc,char ***args,const char file[],const char help[])
Collective on MPI_ COMM_WORLD or PETSC_COMM WORLD if it has been set
——

Input Parameters

arge- count of number of command line arguments

args- the command line arguments

file - [optional] PETSc database file, also checks ~/.petscre, .petscre and petscre. Use NULL to not check for code specific file. Use -
skip_petserc in the code specific file (or command line) to skip ~/.petscre, .petscrc and petserc files.

help- [optional] Help message to print. use NULL for no message

If you wish PETSc code to run ONLY on a subcommunicator of MPI COMM_WORLD, create that communicator first and assign it to
C_COMM_WORLD BEFORE calling PetscInitialize(). Thus if you are running a four process job and two processes will run PETSc and have

PetscInitialize() and PetscFinalize() and two process will not. then do this. If ALL processes in the job are using PetscInitialize() and PetscFinalize()

then you don't need to do this, even if different subcommunicators of the job are doing different things with PETSc.

It initialize the database and MPI, and it has to be the very first line. Takes in inputs as
argc argv, and the point is to run the address of those, then the database file and the help
file, ok.

(Refer Slide Time: 30:25)

i x 9 + =
€3c ENTY) Ly
Initializes the PETSc database and MPI. PetscInitialize() calls MPI_Init() if that has yet to be called, so this routine should always be called near the
beginning of your program ~- usually the very first line!

Synopsis
#include “petscsys.h”

PetscErrorCode PetscInitialize(int *argc,char ***args,const char file[],const char help[])

Collective on MPI_COMM_WORLD or PETSC_COMM_WORLD if it has been set
Input Parameters
arge- count of number of command line arguments
args- the command line arguments
file - [optional] PETSc database file. also checks ~/.petscre. .petscre and petscre. Use NULL to not check for code specific file. Use -
skip_petscre in the code specific file (or command line) to skip ~/.petscre, .petscre and petscre files.
help- [optional] Help message to print, use NULL for no message —

If you wish PETSc code to run ONLY on a subcommunicator of MPI COMM_WORLD. create that communicator first and assign it to
PETSC_COMM_WORLD BEFORE calling Petsclnitialize(). Thus if you are running a four process job and two processes will run PETSc and have
PetscInitialize() and PetscFinalize() and two process will not, then do this. ITALL processes in the job are using PetscInitialize() and PetscFinalize()
then you don't need to do this, even if different subcommunicators of the job are doing different things with PETSc.

Options Database Keys

I fintro] - prints help method for each option: if intro is given the program stops after printing the introductory help
message

~start_in_debugger) .

[noxterm dbx,dbgd - Starts program in debugger

Hﬂ

You can also pass it as null, but; so, if you type down the executable and write - help it
will push this (Refer Time: 30:35) whatever you would, right ok what we do is we have
initialized this created of the MPI things in the background. So, we do not need to bother

about all these. So, after declaring this we have to usually check for an error. If there is

an error, so the way to do it is CHKERRQ ierr. So, it checks whether there is an error,
ok.

So, now what we will do is we will create the ranks. So, we will create the ranks ierr =
MPI comm rank. So, it will create the different thread, ok. And the way to declare this
PETSc comm world, then will pass the address of rank then, we will as usual check for

error, alright.

Now, this particular line is important. It will create all the threads that we need
depending on how many threads we ask we go as to allocate to this particular program.
So, it will store all the different ranks of the thread inside the address of rank. So, after
this point we will have n number of threads working together, not together but in

parallel, ok.

Now, we will do local fact = 1. So, for each thread the factorial has to initialize with 1 or
i=2,i<rank +1, i+ + then what we will do is local fact = local fact /i, essentially what
we are achieving through this. So, let us look at this. So, suppose the rank is 3, (Refer

Time: 32:55) So, for i = 2; so, let us see local fact is 1 initially.

(Refer Slide Time: 33:10)

So, then, so it enters the loop with i =1, and If = 1, local fact = 1; then i = 2, it tells local

fact = local fact by 1. So, local fact is 1, i is 2 let us the loop will execute from 2 to rank +

1-1.So,i=2i=rank +1,ilessthan4,i+ 4. So, it will execute a loop going from i =2,

i = 3, that is it, because the loop will execute till i less than 4 that is still i = 3.

After this i = 3, the local factorial will become If by i. So, If is already 1 by 2, so 1 by 2
divided by 3. So, it is 1 by 3 factorial. So, this is how we can achieve a local factorial
using example 1. And this all will execute for all the different parallel threads that you
will create it is not running for a single processor. All this will execute for all the

multiple processes that you will create.

(Refer Slide Time: 34:38)

So, we have local fact. And so, what we can do now? We can print out what rank of the
thread is and what the factorial it has written. Let us do that. We will use PETSc print f,

PETSc comm self because for each thread that has to execute.

So, PETSc print f has to execute for each step, otherwise it will show some behavior
which is not controllable. We need to pass this definite. Then, as usual % d \ t percentage
If because we directly finding out 1 by factorial, alright. So, \ n then we will say rank and

local fact, yeah. So, that is pretty much it.

(Refer Slide Time: 35:25)

(Refer Slide Time: 35:29)

Initializes the PETSc database and MPL. Petscll] 3 cusesssmeoestensc secmusie vos
beginning of your program -- usually the very fj o« i s te- fesi impar ooy ot e
g ol 2) ¥ =

« BB
Synopsis
o

Now, before compiling this, we need to create a make file. | have already created make
file. (Refer Time: 35:28) with the notepad. The make file contains these lines, it will
always contain these lines, it will contain the variables or rules, and the target will be
first to create the object file and it will link the object file to the executable with the help

of this then it will make use of the libraries of PETSc.

And finally, it will remove the object file we do not because we do not need the object

file, we just care about the exponent exponential about the executive ok.

(Refer Slide Time: 36:08)

Initializes the PETSc database and MPI. Petscnitialize() calls MPI_ 2
beginning of your program -- usually the very first line!

Synopsis
9. ——

Initializes the PETSc database and MPI. PetscInitialize() calls MPI_ 2
beginning of your program -- usually the very first line!

Synopsis

expo_petsc.c:1
¢ S us

So, the way to run this make file is very simple. We have the target name as expo
PETSc. We just say make expo PETSc, ok. There is an error. Let us see what the error is,
so it is unused, no problem. And there appears to be some error, here not called ierr, but,
ok.

(Refer Slide Time: 37:01)

Initializes the PETSc database and &
beginning of your program -- usual .

Synopsis
@ wnpatios

[petsc.h

expo_petsc.c:1

b.gdb....

on_arrar_ottach dehnasgr

(Refer Slide Time: 37:09)

2 a P

Initializes the PETSc database and &
beginning of your program -- usual .

Synopsis

on_arear_ottach dehnasgr

(Refer Slide Time: 37:10)

P -

Initializes the PETSc database and &
beginning of your program -- usual

This should work, great. So, it is just showing a warning because e approximate we have
not yet called, but that is ok. So, now what we can do is we can use MPI to launch those

many number of threads and find out the factorial for each thread.

So, the way to do it, | have shown this earlier as well, PETSc dir we have to use the
appropriate MPI ch, PETSc arch MPI exac - n, let us say 4 threads and the executable is;
so, approx.c PETSc so we have created 4 threads. So, O thread and 1 thread return 1

obviously, 2 returns half, returns 1 by 6.

(Refer Slide Time: 38:07)

- -

Initializes the PETSc database and o
beginning of your program -- usual

psis

So, everything looks fine. You can create more threads despite my computer being
having 4 cores, you can create 8 and create more than that as well, and you can verify all
these are correct. You will notice that the ranks are not printed in sequence. And that is
why that is because once you call a print f. So, all this is remember, after initializing or

declaring the number of threads all this runs in parallel for all threads.

So, whenever a certain thread is able to do this computation first I will go to this print , it
will execute this print state. For threads which will take more time it will appear after a
while, ok. There is no synchronization among the thread. And that is something which

parallel programming you have to always account ok.

There is no synchronization. Once you start doing these kind of things you will quickly
realize you have to do a lot of hard work to synchronize all these things. So, you have to
do lot of thinking, deep learning and all, but anyway. So, for now we have all the
different threads giving us all the different factorials. So, now, we must accumulate all

the different factorials.

(Refer Slide Time: 39:23)

Initializes the PETSc database and| 3 oesssmmoupeor s sscese et
beginning of your program -- usual & B e fer ey ey Sy ek toow B e sk
% - L

Synopsis

So, the way to do that in parallel environments to reduce all the threads to a single
thread, ierr = MPI all reduce. So, now, to all reduce function we must pass the local
facts, the addresses of all the local facts, it is just a local fact. We must pass the address
of the variable where we want to store all the reduction variables. So, after reducing all

the local factorials, we want only one sum and that is e app. So, we must pass the address

of the approximate, then we must pass how many what we call what each local factor,
how many elements each local factor that is 1, then MPI double that is the data type, this

is the data type of; ok it has to be in capitals.

Finally, what kind of reduction we must do, there are various kind of reduction, there are
products that are sums we must say that you must sum, finally, we must pass comm
world, alright. Once we have done this, we can check for error, alright. So, with the help
of this function, function call, it will take all the local factorials, do a sum and put it into
e app, alright. So, finally, we can check with print , yeah. So, once we gone obtained a

single thread, because we want to do print f percentage 3.10 f\ n PETSc.

(Refer Slide Time: 41:13)

Initializes the PETSc database and o
beginning of your program -- usual

Synopsis

(Refer Slide Time: 41:17)

. -

Initializes the PETSc database and o
beginning of your program - usual

Synopsis

Ok we will print it again, so ok. So, it is outputting the final print statement a bunch of
times you must do something about it. What can we do about? So, what has happened is
this has it has executed for all the number of threads that we instead of this we will use
PETSc print f, but we will use comm world. So, comm self is using all the different

threads. So, self implies all the different threads that you have done.

(Refer Slide Time: 42:02)

Initializes the PETSc database and| o < amssmeestesc o s s
beginning of your program -- usual & ¢ ies fer fsiey e
x 8 § B [Howo o< 0
Synopsis
®

But we will do this, PETSc print f PETSc comm world. So, once we use world it will use

the merge thread to find to only print it 1, and using this we going to say e approx is

percentage If \ n and we are going to print out (Refer Time: 42:38). So, PETSc print f by
passing comm world we are going to print out only one the output for only one thread,

alright.

(Refer Slide Time: 42:53)

- -

Initializes the PETSc database and o
beginning of your program - usual

Sy

(Refer Slide Time: 43:06)

Initializes the PETSc database and o
beginning of your program -- usual

Synopsis

(Refer Slide Time: 43:10)

and octave notebooks can be downloaded from http://www.fac

Initializes the PETSc database and| o comsssmencsterc s sece -t
beginning of your program —- usual = e e G e ey Tk Mn e 2 ek

Synopsis
0

Let us see ok we can get out of this 2.1 let me (Refer Time: 42:59) more decimals, ok.

Let us see what the, let us copy this, e exact let us print out e exact, right.

(Refer Slide Time: 43:30)

oed fron https/www.incweb. itkgp.ac.in/ -adityab/dyinnylist.ht
Initializes the PETSc database and o ;
beginning of your program -- usual

Synopsis

So, if you use more number of threads, obviously the error will reduce, but, yeah. So,
through this small program I have shown you how to sort of use some simple aspects of
MPI and in case you are not so interested in all this do not worry because once we start

using PETSc, you will quickly see that even running programs using a single thread they
are very fast and very efficient.

So, in the later lectures, maybe we will just focus on one thread. But if you are interested
in speed then always do this MP1 exactly and allocate a large number of threads. But you
know later on because you will be using a bunch of inbuilt solvers, you can pass only
one thread you can get the solution, no problem. In the later programs, we will not be
using this kind of reductions and all this. Typically, we will avoid doing all these

reductions.

So, whatever MPI business needs to be done will be handled by PETSc in an inbuilt
fashion, we will not be exposed to all this kind of declarations, then merging and all. So,
but anyway this lecture, | hope to have shown you how to include PETSc. This includes

all the libraries, inside this header file.

| have shown you how to initialize, how to declare error codes, how to print using
different threads, how to reduce, and how to make a make file. So, make file always will
look something like this; and how to execute; how to compile it using a make file, how

to execute a file.

So, it is a very sort of simple lecture. It may be confusing in the beginning, but once you
start using it, once you get the hang of what MPIs, this particular program will seem very
easy. Even if you have not understood all of this completely; in the next class we will not

be exposing ourselves to all this thread, splitting, thread merging and all.

Well, but all this will still exist PETSc comm world and all, because if you do use MPI,
PETSc will internally allocate to the solver whatever number of threads it has to be, ok.
So, with this I end this particular lecture. And I will see you next time with a new lecture

and we will actually solve a one-dimensional problem using PETSc. Bye.

