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In which, we are going to study about Regular Perturbation. As applied for boundary 

value problems. Now, obviously this technique has a whole lot more applicability than 

just two point boundary value problems, but in this particular lecture we are going to 

focus on using regular perturbation for bvp. Let us consider this particular bvp. So, 

2 0y yy     subjected to y(0) 0 and y(1) 1 . So, it is defineid on the domain 0 to 

1 i.e. [0,1]x .  

Now, we see the presence of a small parameter . And usually physical problems are 

defined in terms of various dimensionless parameters. For example, if you are studying 

fluid flow you will end up with Reynolds number, it may either be high, but it may either 

be low and depending on what the magnitude of Reynolds number is. 

We know physically that you will either have what is called a Stokes flow or more 

generally called as higher Reynolds number flow which encompasses boundary layer 

theory or turbulence and all these things.  



So, these this kind of a physical bifurcation if you like because of the presence or rather 

characterization of the equation through a parameter is quite common in various aspects 

of physics. 

And so, if  is small can we do something about this equation? Well in this particular 

case the equation is not at all difficult to solve in fact, we can try to solve this directly. 

So, what is the solution for this? Because it is a homogeneous equation we can assume 

the solution is of the form xe , but in this particular case we can choose the solution to be 

sinh x  and cosh x  that is a linear combination of sinh x  and cosh x .  

In terms of the D operator I could have written it as I mean, for the d operator I could 

have simply used a solution of the form mxe . So, what do we have? So, the derivation the 

double derivative will give me 2 2 0mx mx mxm e me e   . So, we have 2 1 02m m   

right. So, 
22 (4 4)

2
m

  
  that is the root. So, these are the two roots. 
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So, m is 
2( 1)m      I mean, m is either the plus root or the - root. 

So, you could write the solution y as Ae to the power. So, if I call this as m1 and m2, so 

1 2m x m xBy Ae e . And we know that if a solution is of this particular kind we could also 



write it in terms of sinh x and cosh x because a linear combination of these two terms is 

also equivalent to a linear combination of those two terms ok. 

So, let us simplify this further. So, this becomes
2 2( 1) ( 1)x xx xy Ae e eBe
      . We 

have these two terms and now we can utilize the boundary conditions in order to find out 

the constants. 

So, y(0) 0  and y(1) 1 . So, substituting x = 0 we have 0 = A+B. So, this is everything 

becomes this implies A = - B and the second term. So, substituting x = 1, 

1 Ae e e eB      . So, substituting A = - B, so what do we have? 

[ ]1 Be e e    .  
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So, we obtain B
e

e e 



 and A B  . So, the analytical solution that we obtain is y = 

simply this expression with the appropriate constraints.  
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So, let us look at let us go towards plotting this. (Refer Slide Time: 06:59) 

 

So, let me create a new file, let me copy the usual modules we will need. So, let me 

create x = np.linspace(0,1,20), let me define A as rather let me first define ep = 0.1 small 

number, then what do we have? We have B.  

So, let me define alpha = (ep**2 + 1)**0.5. Let me then define B = np.exp(ep)/(np.exp(-

alpha) - np.exp(alpha)). Alright and A = -B. 

So, the solution y will be y = np.exp(-ep*x)*(A*np.exp(alpha*x) + B*np.exp(-alpha*x)) 

alright. 



So, now let us plot this, ok. 
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So solution looks something like this. Let me wrap everything inside a function which 

we can call later on. 
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So, I will just take this whole lot def analytical and it will take the input x,  and 

  and it will evaluate all this and finally, it will return y. 



So,  we will pass be   also we will pass. In fact, we just need to pass  because   we 

can evaluate inside straight forward. So, outside the function we will just define this and 

we will say y = analytical(x, ep) alright. Yeah great. 
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So, this is how the plot looks like and well in this particular case if the equation was 

rather simple and we could find analytical solution, but usually such kinds of parameters 

which we call as a perturbation parameter. And the reason why we call it a perturbation 

parameter is because it is magnitude is usually small. 
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And the effect of that particular term is like a perturbation to some kind of a base term 

ok. And it will be clear why it behaves like a perturbation on top of some base solution 

once we do the expansion.  
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But ok so, for now we need to remember that you will have some kind of a base solution. 

And if that perturbation parameter were to be 0 ok, if this particular parameter epsilon it 

were to be 0.you would obtain 0y y    and so, the base solution is sort of 0y y   . 

But the moment you have a non zero , but small the solution will be sort of some 



correction to this base solution. Because the limiting condition of zero  you will have a 

solution which is like the base solution. 

So, I am not going to do this specifics of regular perturbation, but in general what I am 

about to show it will work for a host of equations and eventually you will see that you 

can avoid doing very complicated analytical solutions, but obtain very nice 

approximations to the scientific solutions, ok. 
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So, let me grab this equation. Let us begin with this. So, this is subjected to y(0) 0  and 

y(1) 1 . So, let us make an assumption that we can represent the solution y as a series of 

2 3

0 1 2 ( )y y y y O   . Meaning each successive term is of a decreasing order of 

magnitude. And the fact that we could write the solution in this particular form, 

automatically assumes that each of these terms y 0, y 1, y 2 they are of order 1. 

So, the order of this entire term is not governed by the order of y 1, y 2, y 3 and so on, but 

it is governed by the pre factor  right. So, the order of magnitude of this is expected to 

be order  not order 2  or something. If it were to be ordered 2  we would have to 

rescale y1 so, that the orders of each successive terms are preserved. 

And first of all it need not be even , 2  it could be log  and there can be a whole 

variety of gauge functions, but in this particular case we observe that the equation does 



have a floating  over here and in this particular it works out. But usually the choice of 

such an expansion has to be motivated to the physics of the problem.  

And some intermediary scalings that may arise because of considerations from the 

governing equation or the boundary condition that will give rise to a natural sequence 

like this, but I digress in this particular case it will be quite straightforward. So, now let 

us take this particular expansion and substitute it over in this equation. So, what do we 

have? 
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So, the first term is y . So, 
1 2

2 3

0 ( )y y Oy y     . What about the second term? 

So, it is 2 y . So, this will be what? 

So, let me first write down what y  will be. It will be 2

0 1

3

2 ( )y y y O   . But now, 

if you multiply everything by  what will happen? Well it will look something like this 

3

20

4

1

2 ( )y y yy O     . 

So, in the term involving y  there is no term which is devoid of . This sequence 

naturally starts with the lowest order of magnitude being . So, now I need to multiply 2 

as well that is straightforward alright. What about the last term? Is 

2

9 1 2 ...y y yy       and so on. 



So, now let us add all of this. So, we have 2 yy y    and this will be let us now, write 

the right hand side in terms of various terms collected in orders of magnitude of . So, 

10

0 0 0

2 3

1 1 2 1 2[y ] [y ] [y ] ( )2 2y y y y y o       and so on. 

So, through this particular exercise we are able to form an entire hierarchy of equations 

of order 1 order  order 2  and so on, right. We are able to form a hierarchy and because 

this will be equal to 0 each of these terms have to be also 0. 
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Meaning 0 0y 0y   , 01 1y 02y y     , 2 1 2y 02y y    . But what about the 

boundary conditions? Well that is also straightforward to do. Let us write down the 

boundary condition, so what do we have? y(0) 0 and y(1) 1 . 

So, similarly we can write, over here 2

0 1 2(0) (0) (0) 0y y y    and we can 

write 2

0 1 2(1) (1) (1) 0y y y   . So, now if each of this is 0; then we equate all the terms. 

So, this naturally implies. So, all this naturally implies 0 (0)y =0, y 1(0)y = 0, 2 (0)y = 0 and 

so on. 

So, all the hierarchy of boundary condition, so this equation this particular equation is an 

equation for 0y , this particular equation is an equation of 1y . And why is it not an 

equation for 0y ? Because once we have obtained a solution for 0y , we would substitute 



it simply over here right. And what are the boundary conditions which this equation is 

subjected to? 

 It is 0 (0)y  = 0 and from this return this 0 by mistake has to be 1. So, this implies 0 (1)y  

= 1 but it implies 1(1)y  = 0, 2 (1)y  = 0 and so on ok alright. So, that means, that this 

equation is subjected to 0 (1)y  = 0. So, 0 (0)y  = 0, 0 (1)y  = 0. 
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So, let me write it down once again over here. So, at order 1 we have 0 0y y  = 0 

subjected to 0 (0)y  = 0 and 0 (1)y  = 1.What about the equations at higher order ? 

01 1y 02y y      subjected to now 1(0)y = 0 and 1(1)y  = 0. So, 1(1)y  = 0, 1(0)y = 0,  

1(1)y  = 0. 

So, this is called as the base equation which satisfies actually the base boundary 

condition, but the perturbation equation does not satisfy the base boundary condition. It 

satisfies equal to 0 because, it is like a perturbation to human equation and you can have 

a separate case where you are dealing with domain perturbation techniques, where you 

are actually not you are not motivated through the governing equation, but rather by the 

nature of the boundary condition, but that is a completely different story. 

Here we have the governing equation which is split into the base equation and the 

perturbation equation and it is higher order perturbation equation as well. And this 



equation will also be satisfying this ok. So, the chain or the process hierarchy is first find 

out y naught using this then find out y 1 using this, and find out y2 using this so on and 

so. 

You can keep doing this. But usually you will see that after a few terms it itself you have 

obtained an approximate solution of sufficient accuracy. Well, how do you know it is of 

suffering accuracy? Alright you need to know asymptotic analysis, but over here we are 

going to take the leap of faith and hope that the solution satisfies the solution the 

approximate solution also satisfies the analytical solution. 

So, let me oops yeah. So, let me encode this. Let us see how well this works. Well before 

going into coding we need to find out the solutions. 
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So, this is what 0 0y 0y   , the solution is; obviously, 
0

x xeAey B   or equivalently 

we could write the solution as sin h and cos h because, when the basis functions are xe  

and xe  you can equivalently cast it in the form of a linear combination of xe  and xe  

which is sin h and cos h. 
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This is sinh coshA x B x  because ok. So, you can verify that this satisfies this equation. 

And now the boundary condition the first boundary condition is 0 = B and 0 (1)y  = 1. So, 

1 = A sin h 1 so, A = 1/sin h1. So, the solution for 0y  is going to be 
0

sinh

sinh1
y

x
 . So, 

now let us go to the computer and try to plot the zeroth order solution. 
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So, we have y as this y0 = np.sinh(x)/np.sinh(1). So, we are going to put a label 

analytical, alright. 
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So, let us see what we have not bad. 
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So, let me just change the line style to make it a bit more apparent. So, the leading order 

solution we going to show as a broken black line and this solution we going to show as a 

blue line. 
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Well blue let me put as a red line ok. So, now, we see that the base solutions this is the 

base solution and the exact solution which is the red curve they are not far off.  
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 Meaning the overall behavior of this equation is quite accurately represented by the base 

solution for small values of the perturbation parameter epsilon and that is quite obvious. 



(Refer Slide Time: 25:50) 

 

 In fact, if I make it 0 they should exactly match great, they do exactly match. 
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 The perturbation parameter becomes 0.5 maybe they do not match. 
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So well they do not match. So, well and that this information is quite critical because, 

while it does not match well it does encode all the basic information of the monotonous 

increase and so on 

So, now you know that the next correction to 0y which is going to be through 1y , its, is 

going to make the broken line approach the analytical curve. So, we have this base 



solution which was which is arguably very easy to obtain and now what we can do is use 

this equation to find out what 1y  is going to be. 
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So, let me write down the equation for 1y . So, it is 1 0 12 0y yy     . So, now what is 

0y ? 
0

cosh

sinh1

x
y    so, what do we have? 

1 1

2cosh

sinh1
yy

x
   right. 

So, the solution for this, the homogeneous part. So, 
1 1 1h py y y   and; obviously, the 

homogeneous solution is going to be again 1 cosh sinhh A x B xy    this is going to be 

the homogeneous solution.  

What about the particular integral? Look the particular integral has the functional form 

cosh x so; obviously, the particular integral cannot have a form C cosh x i.e 

1 coshpy C x , it cannot because cosh x is or already the homogeneous part. So, it 

cannot have the same form. 
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But it can have and you can use various techniques that you have learnt in a differential 

equations course, it can be of this particular form. And it is because the homogeneous 

and the particular the homogeneous part has the same form as the homogeneous solution. 

So, now let us use this form i.e. 
1 sinhpy x xC  . So, let us substitute in the equation. 

So, what do we have? What is 
1py ? It is going to be 

1 hc sinhospy x Cx xC   and then 

we take another derivative. So, 
1 sinh h coshsinp C Cy x x xC x    . So, this is what is 

2 csinh oshx x xC C . So, now we actually have a form of 2 sinh x which means that the 

solution has to be not of a cosh form or it has to be of a sinh form. Well yeah, it has to be 

of the form 2 sinh form. 
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So, once we take the derivative this will become sinh x this will become 2xcosh x. Now, 

this second derivative will become this will become cosh, this will become again this 

will become cosh and this will become Cxsinh. So, I request you to do this on your own 

and have a look. So, this becomes 2Ccosh x and this becomes Cxsinh x. So, this is 

essentially 2Ccosh x. 

So, now Cxsinh x is 
1py . So, this is 

1py . So, essentially we had 
1 1py y    = 2Ccosh x. 

But we already know that the particular solution has to satisfy this as - 2cosh x / sinh 1, 

this is equal to - 2 cosh x / sinh 1 equating these two we get an expression for C. So, 

1

sinh1
C


  great. 
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So, now the solution is 
1 1 1h py y y  . So, cosh sinh

sin 1

n

h

si hx
A x B x

x
  , now the 

boundary conditions. So, 1y  is this 1(0) 0y  . So, 0 = A everything else is 0 and at 

1(1) 0y  . So, this what is 0 sinh1 1B  , so 
1

sinh1
B   when A is 0. So, 1y  becomes 

1

sinh
(1 x)

sinh1
y

x
  . A lot of derivation, but yeah. 
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So, y1 = (1-x)*np.sinh(x)/np.sinh(1). So, now with this let me do plt.plot(x, y0+ep*y1, '-

.k', label="$y_0 + \epsilon y_1$"). Well let me yeah. 
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So, what do we see? The red is the analytical curve the broken lines are simply 0y  and 

the broken dot lines are the correction. So, now look because of the corrections the 

solution matches quite well with the analytical solution. 



So, if you are like me if you are not you are not looking forward to analytical solutions 

every time and you look forward to an approximate solution, regular perturbation is a 

great way of getting around things. You will obtain very easy hierarchical equations 

which will entail a very easy solution most of the times. It will help you get rid of 

nonlinearities when the small term multiplies non-linear terms right. 

So, not always, but in many cases. It is quite beautiful how with just 1 correction no of 

course, you can look at higher corrections you have the solution for 1y  you cannot 

substitute this solution into the approximate equation for 2y  and obtain the solution for 

2y  as well and you can make a further tweaking of this ok. 
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So, let me increase the value of  to 0.7 even at 0.7 it matches quite well, ok. 
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And 1 and 1 the significant deviation. Well this whole thing is not supposed to work for 

large values of epsilon it is supposed to work for epsilon the magnitudes of  being 

much less than 1.  
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(Refer Slide Time: 35:02) 

 

So, let me just put it back to 0.3 measures quite well. So, this is all about regular 

perturbation. Keep in mind that the order of the equation, that we are starting with that is 

this it is a second order equation yes y   and this case the small parameter that is  is 

multiplying something which is not the highest order term.  
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 Meaning in the base case we have  = 0. So, this is the base case. So, base case is still 

something like this which is still second order. So, you are not sacrificing the order of the 



equation when you let epsilon go to 0. Now, all such things fall beneath the purview of 

regular perturbation, but if you had something like this 0y yy    . 

If we were to now so, this equation would still be governed by two boundary conditions, 

but now if we let  go to 0 the basic equation becomes this. So, it is a first order equation 

whereas, the actual equation was a second order equation such kinds of things where you 

are causing a dropping of the order they will not fall under the purview of regular 

perturbation, but they will fall in the purview of singular perturbation and we will 

consider singular perturbation in our next lecture. 

Until then it is goodbye, have a nice day, bye.  


