
Tools in Scientific Computing 

Prof. Aditya Bandopadhyay 

Department of Mechanical Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture - 25 

Boundary Value Problems - p2 

 

(Refer Slide Time: 00:26) 

 

Hi everyone. Welcome to this lecture. So, in the last class, we had looked at how to solve 

an ODE and I had mentioned that we will look at some other means of finding out the 

inverse of the matrix. 
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So, let me take this particular code. Let me yeah let me get rid of the cell. I do not need 

this cell as well. So, let me get rid of all the A 2s. We do not need the A 2 bit alright. So, 

let me quickly run this entire sheet again. So, what we will try to do first is to time this 

particular cell. 
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So, what does timing a particular cell mean? It means that it will tell us how much time it 

took for that particular cell to run. In particular, we are more concerned with this 

particular ,nd. So, let me not write time over here; let me split this cell. 
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So, let me split this over here and let me split this over here. So, let me run this cell first. 

Now, before running this, let me do percentage-percentage time. So, it will give me how 

much time it took for that particular cell to evaluate. It is 0 nanosecond, because I have 

taken a very low grid count. 
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So, let me take 1000 ok; let me run it. So, it took 46.9 milliseconds to perform the 

inversion. 
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And as time, as the number of grid points increases, so I have made it from 1000 to 

10000. So, for 1000 grid points, it took 46.9, let us say 50 milliseconds; let us see how 

much time it takes for 10000 grid points. This may take a while. If it is linearly scaling, it 

will take almost 5 seconds or rather point. So, it was 50 milliseconds. So, yeah. So, it 

took 10 seconds. So, it is not at all scalable. So, then why is it not scalable ok? 
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So, before going into the scalability and all that thing, let me make N to be 6, just to 

show you how again I mean just to show how A looks like. So, let me just print A over 

here; sorry, this should be A 1. 
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So, A 1 is said to be a sparse matrix; meaning, most of the entries in A are zeros and it is 

a diagonal sparse matrix meaning, most of the elements of A are concentrated around the 

diagonal. So, now, there are a host of different algorithms which exist for dealing with 

sparse matrices. And the fact of the matter is you do not really need that much of an 

memory overhead or algorithmic overhead. Because you know you are just keeping a 

count of elements which are non-zero ok. So, A is like this.  
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So, let me do this. So, let me import scipy dot ok. So, let me import scipy as sp alright. 

So, sp.sparse. So, this is the name of the ,nd and let me dot csc matrix. So, it is 

compressed yeah. So, what is the full form?  
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So, it is again, we can simply have a look at the yeah csc stands for compressed sparse 

column matrix. 
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So, what it does is instead of storing all the information, it will simply store the data and 

it will store which row and column it belongs to. So, it helps us introducing the memory 

overhead. So, I will pass the numpy matrix A 1 to this and let me just assign it to A s, 

meaning a sparse. Let me then go ahead and print A s. Scipy has no attributes sparse ok. 
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If I think need to from scipy import sparse yeah ok. So, this is how the matrix is stored. 
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And just for your reference, I will also print out what A 1 was. 
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So, look 0, 0 is 1; 0, 0 is 1; 1, 0 is 1; 1, 0 is 1; 1, 1 is this. So, there you go. It is a very 

efficient way to representing the matrix, and other elements are 0. 
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And the point is once the matrix becomes larger, there are the number of zeros are going 

to grow by N
2
, by an order of N

2 
because most of the things lie on the matrix and lie on 

the diagonal. And the diagonal can be interpreted as being a line in an area right.  

So, as the size increases, the number of zeros increases quadratically rather than linearly. 

So, why do we bother with converting to this csc format? So, once we have converted 

this, we can use these sparse matrix algorithms to find the inverse more efficiently.  
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So, let me import it alright. So, we have imported this sparse.linalg module and now, we 

are going to take a dot product. So, A s is already of csc format. 
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So, now we can write f = s l.dot A s , b sorry. 
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So, it should be A s .dot b. So, that is the way of achieving this dot product ok. 
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So, A s has an attribute, it is a csc matrix and it has certain, not attributes. 



(Refer Slide Time: 08:02) 

 

(Refer Slide Time: 08:06) 

 

But some additional functions associated with it which include the dotting with a vector 

ok. It is not mentioned in this contextual help. But you can take a dot products with 

something like this. So, A s .dot will give you the required dot product and so, what we 

will do is we will take this bit of code. 
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And let me copy this. Let me comment out this old program, let me paste this and let me 

see how much time it takes. 
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So, 10000 was the number that we had used. So, let me run this. 
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So, for 10000, it took 10 seconds; so let me see how much time, it takes say 667 

milliseconds. So, obviously, the sparse solver runs much faster than the numpy inversion 

alright. So, we forgot to take the inverse ok. So, probably that is why it runs so much 

faster. I forgot to completely take the inverse. 
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So, s l dot inv is the way to do the inverse ok. So, let me run this now. So, the (Refer 

Time: 09:27) was 10 seconds for numpy. Let us see how much time it takes for scipy 

inverse. Maybe it is not, it took 11 seconds. So, it took much more time. So, it took the 



same amount of time and it is not clear as to why this has happened this way; but it 

should have happened faster, maybe for much more larger matrices. But something 

which will run faster will be the solver. So, let me get rid of this. 
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In fact, let me make it sparse. We need it to be sparse and so, there is a solver called as 

s1.sp solve. So, sp solve stands for sparse solve, it lies inside the sparse dot linear algebra 

sub module and it takes inputs as the sparse matrix in csc format and the matrix b. So, let 

me run this. This should run much faster ok. 
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So, that took 690 milliseconds. So, yeah, let us plot it and see whether it is fine or not. 

There is a bunch of errors and what is error? x and y. 
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So, let me get rid of g, we do not need g for now. Yeah, ok.  
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So, with 10000 points everything matches quite well ok. Let me reduce the number of 

points.  
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In fact, let me increase it by a million and this is memory error ok; unable to allocate 

74.5 GiB. The series might be 32 gigabytes. So, this is where Sc outperforms, you do not 

really need to worry. But if you define A to be originally a sparse matrix, you can avoid 

this error. So, the fact is I am creating a numpy array out of this and that it its initializing 

a whole bunch of zeros, where you do not really need to initialize zeros.  

And once we do things in PETSc, it will be clear how you can avoid this model. So, 

PETSc is much more efficient in this regard. I am sure you could substitute or rather 



declare the A 1 matrix to be a bunch of zeros rather than declaring them as a bunch of 

zeros, you could simply define it as a sparse matrix, where everything else is 0 by 

default.  
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So, let me dial it down 1000, yeah almost 8 milliseconds to plot it, great. 
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So, let me make it 10, just to show that it is giving that old error. 
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That is that you imagine because of the first order nature of the boundary condition. So, 

yeah, I mean with this in mind, we go to the next part of this lecture which is to use the 

inbuilt functions of scipy to solve boundary value problems. 
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So, let us continue our journey. So, again, I have created a new file. I have imported the 

usual things and I have created the analytical solution of the problem that we had 

considered in the previous lecture.  

(Refer Slide Time: 13:15) 

 

And the solution looks something like this. At x = 0, it is 1; at x = 2, the slope is = z. So, 

we made a nice finite difference program and we were able to you solve it. And once we 

have done that, we were able to show how we can implement the second order solution 



with the cost node. So, now we are going to use the inbuilt function of scipy to solve the 

ODE. 
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So, first things first let us import another from scipy. integrate, let us import solve bvp. 

So, like solve ivp, there is another function called a solve bvp. It stands for solve 

boundary value problem alright. So, let me import this. So, what does this function 

contains?  
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So, let us have a look at the contextual help. So, it takes as an input the function the 

boundary condition the x array, it is the domain; the y which is the solution array, p 

stands for parameters, function Jacobian, boundary condition Jacobian, tolerance, max 

nodes, verbose blah blah blah. 
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So, function is callable ok. So, let us create the function. So, def function and it will take 

inputs as x and y and it will return something. So, let us go to the previous program right. 

(Refer Slide Time: 15:00) 

 



In fact, let me show you what the equation was. It was
2

2

d f
f

dx
 . 
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So, we have to first split the problem into two into a series of first order equations. So, let 

me instead of f, let me call it
2

0
02

d
y

dx

y
 . Let 0

1

dy
y

dx
 . This implies 1

0

dy
y

dx
  and this is a 

very simple splitting of the equation. This particular equation into these two particular 

equations alright.  

So, we have to return what 
1y and 

0y  fine. So, I will go over here, I will return 
1y  and I 

will return over here 
0y  alright. Now, I have to define what? I have to define the 

boundary condition. So, define the boundary condition. So, here the boundary conditions 

are implemented as y a and y b and a, b are identified as the sort of end points of the 

domain.  

So, I will the inputs to this will be y a, y b and I will return the following. So, the 

boundary condition was y(0) = 2, yor rather y is 0 was = 1 and y (2) was = 0. So, y a is 

= 1 essentially and 
by   is = 0. So, the way to implement this is you have to give the 

residue. So, I must give over here ya[0]-1. So, 0 stands for the Dirichlet and here, it will 

be yb[1]-0 which stands for the Neumann condition alright. 
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So, after this, we must create the domain. So, xd = np.linspace(0, 2, 10) andya = 

np.zeros((2, xd.size)). So, it will be simply xd.size and this also works, fine. 
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Now, what we will do is we will call the function. So, residue of this function, let me call 

it res solve_bvp. We will pass the function, we will pass the. So, what did we have to 

pass? Let me function boundary condition x, y; function boundary condition x, y. So, 

yeah that acts as the initial guess that is pretty much it. So, let me run this to see if there 

is an error. There is no error. 
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So, now what does res contain? Let us see if we can have a contextual help on it. 
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So, x contains all these things, essentially it treats it as an optimization problem, which is 

fine ok. 
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So, let me print res over here. So, what does it contain? Iterations, xp array, yp array. So, 

yp is a it is a double array yeah. Sol, so we are more interested in sol; sol is the 

interpolation object. And I think we have used this previously as well whenever you have 

access to an interpolation object might as well use that interpolation object. So, how do 

we go about using it? 
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So, I will create a new grid. So, x interpolate will be np. linspace, this will be min of it 

will be the minimum of xd to maximum of xd. xd and I will take 1000 points. So, then yi 

= res.sol(xi)[0], but now that has to be evaluated over xi alright. 
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So, now, with the help of this, we can simply plot xi , yi. Oops, there is a there is some 

error ok. 
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We just need the residue of the first function that is we need the solution for
0y . Because 

remember, 
0y  was the original function and we made an auxiliary function 

1y to split 

this into a series of first order equation. So, we are more interested in
1y . 
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So, let me plot this boom, there you have it this is the solution that we have been looking 

for. 
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In fact, because I have yi, I can also get the yi derivative which will be yid = 

res.sol(xi)[1] and I can go ahead and plot the derivative as well. Yeah, it is an issue with 

the little string. 
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Because let me use this instead. Yeah, this should work yeah. 
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So, then only just plt.legend and plt. axh line at 0. So, look at x = 2, this slope becomes 0. 

So, with the help of this, we are able to solve the problem I mean in a relatively short 

manner and I have I have showed you how to implement the boundary condition. The 

boundary condition has to be implemented as in the form of a residue ok. It sort of acts 

as an constraint to this optimization problem. 
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So, yeah; let us do one more problem. That means, we do not need this anymore; let me 

place this over here, let us solve this problem. So,
0 0 02 32y y y     ; 



0(0) 1y  and
0(2) 2y   . So, it is a second order differential equation, ordinary 

differential equation, two-point boundary value problem. And because we have 

developed the program before, it is quite easy for us to implement this. 

So, let me make it y naught right and I can write
0 1y y  , this becomes 

1 012 2y 3yy    and these are still the boundary conditions alright. So, it will still 

return y 1; over here, it will return 2y0 - 2. So, essentially, this is 
1 0 1 32 2y y y    . 
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So, its 
1 0 1 32 2y y y     and the boundary conditions are 1 and -2. So, it is already 1 

and over here because it is not a Neumann condition, it is a Dirichlet condition, it was -2. 

So, this has to be +2. So, that the residue. So, the way of writing this boundary condition 

is y b + 2 = 0. So, y b becomes - 2 at the other boundary. The domain does span from 0 to 

2? Yeah. 
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So, yeah, let us solve this and see what happens. So, this is how the solution looks. We 

do not really need the horizontal line.  
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So, this is the solution of the problem and this is the derivative in case someone is 

interested. So, yeah, you can do problems like this; just have a look at the function 

reference for solve bvp and yeah, it clearly says it solves a first order system of ODEs 

like this subjected to two-point boundary conditions like this right.  



So, things become much easier, when things are inbuilt. But even when they are not 

inbuilt, you can write your own program. It is not that difficult to implement really. It is 

just a matter of getting used to. So, with this, let us conclude this particular session. I will 

be back next time with regular perturbation. We will proceed to singular perturbation and 

let us see how we can progress from there. 

With this, I wish you a good day and see you again next time. Bye. 


