Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 25
Boundary Value Problems - p2

(Refer Slide Time: 00:26)

e Edit View Run Kemel Tabs Settings Help

+ B t c ShowtX MWovpstX M lec2 R UntitleX ™ UntiteX @ Untite X @ bifurcaX = W lec16ijX  ® lec13iX

M/ - /nptel codes / lec24 / B +XD0O» e C» Cde v Python3 O

N x = np.linspace(8,2,N); dx = x[1] - x[e];

_ AL = np.zeros((N, N)); b = np.zeros((N,1));
12 - p.zers( (1, );

alpha = -2 - dx**2;

dv = alphanp.ones((N,));

dvl = np.ones((N-1,));

AL = np.diag(dv) + np.diag(dvl,1) + np.diag(dvl,-1);
Al[,:] = 0; Al[N-1,:] = ©;

A2 = np.diag(dv) + np.disg(dvl,1) + np.diag(dvl,-1);
R2[8,:] = 0; A2[N-1,:] = 8; =

A1[8,0] = 1; A2[8,8] = 1;
A[-1,-2] = -1; Al[-1,-1] = 1;
A2[-1,-1] = alpha; A2[-1,-2] = 2;
bfe] = 1;

£ = np.dot(np.linalg. inv(A1), b);

g = np.dot(np.linalg.inv(A2), b);

plt.plot(x, f, label="First order BC");

plt.plot(x, g, label="Second order")

plt.plot(xe, ye, ‘ok', label="Exact");

plt.legend(); plt.xlabel("$x$"); plt.ylabel("$f(x)$")

[37]: Text(s, 0.5, 'SF(x)$")

18 @ Python3|ide Saving completed Mode:Edit © Ln24,C

Hi everyone. Welcome to this lecture. So, in the last class, we had looked at how to solve
an ODE and | had mentioned that we will look at some other means of finding out the

inverse of the matrix.



(Refer Slide Time: 00:54)

ile Edit View Run Kemel Tabs Settings Help

+ B t c ShowtX MWoypstX M lec24ii® X UntitleX M UntileX M UntitleX M bifurcaX W lectoipX B lec13iX

B/ - /nptel_codes / lec2d / B+X0D0O»eC» Cide v Pyton3 O

Name

B lec24ipynb

18 @ Python3|ide

Type hese to search

So, let me take this particular code. Let me yeah let me get rid of the cell. I do not need
this cell as well. So, let me get rid of all the A 2s. We do not need the A 2 bit alright. So,

let me quickly run this entire sheet again. So, what we will try to do first is to time this

particular cell.

(Refer Slide Time: 01:29)

[13]: [N = 10;

x = np. Linspac ; dx = x[1] - x[o];

b = np.zeros((N,1));

plt.plot(x, g, lab
plt.plot(xe, ye, *
plt.legend(); plt.xlabe

~

ModeEdt © $h1s,c~ Nl

F "

Saving completed

ile Edit View Run Kemel Tabs Settings Help

- B t c
M/ - /nptel_codes / lec24 /

Name

[ lec24ipynb

18 @ Python3]ide

Type hese o search

Show!X MWbvpstX [ lec24j® R UntitleX @M UntileX [ UntitleX M bifurcaX [ lect6iyX W lec13iX

B +X0O0O»® C» Cde Python3 Q

PLT.pIOT(X, g, 1avel="decond order )
plt.plot(xe, ye, "ok, label="Exact");
plt.legend(); plt.xlabel("$x$"); plt.ylabel("$f(x)$")

Text(9, 8.5, '$F(x)$')

101 @ —— First order BC
~— Second order
- o Bt

(2 A

Mode:Command @ =/ ¢

VBl 3

Saving completed



(Refer Slide Time: 01:37)

ile Edit View Run Kemel Tabs Settings Help

- B * c Show!X MWovpstX [ lec24j® ®UntileX M UntitleX [ UntitleX M bifurcaX M lect6igX W lec13iX
M/ - /nptel_codes / lec2d / B +XDOp»wC» Code v Python3 O

Name 4

[ lec24ipynb

[4]: | Witine
N =16
x = np.linspace(8,2,N);

diag(dvl,1) + np.diag(dvl,-1);
=0;

18 @ Python3|ide Saving completed Mode:Edt @ Ln1,Ce

Type hese to search

So, what does timing a particular cell mean? It means that it will tell us how much time it
took for that particular cell to run. In particular, we are more concerned with this

particular ,nd. So, let me not write time over here; let me split this cell.

(Refer Slide Time: 01:57)

ile Edit View Run Kemel Tabs Settings Hell  (Cutcells X
' E
+ B t c showiX | RuntitleX M bifuraX = B lectbigX B lec13iX
Paste Cell " v
W/ - /nptel_codes / lec4 / B+xi ™ Gl Relom Python3 QO
Naise a Delete Cells oo | 77
(B lec24ipynid Split Cell, CtrisShift+-
X y  MergeSelected Cells Shift+M
3 Create New View for Output
&
. Clear Qutputs
a
Clear All Outputs
dy
dy  Enable Scrolling for Qutputs
i Disable Scrolling for Outputs
Undo Cell Operation z
A Redo Cell Operation Shift+Z
A Restart Kemel
5] New Console for Notebook
£ Show Contextual Help Curl+!
pl
p-
pIE pIot(Xe; e, "ok™; TabeI="Exact");

18 @ Python3|ide

Ty

Saving completed




(Refer Slide Time: 01:59)

le Edit View Run Kemel Tabs Settings Help

+ B . c Show!X MWhvpstX M lec24ii® M UntitleX M UntileX M UntileX M bifurcaX [ lect6gX W lec13iX

W/ - /nptel codes / lec24 / B +X00 » Code v Python3 QO

Name dx = x[1] - x[e];

B lec24ipyn AL = np.zeros((N, N)); b = np.zeros((N,1));

alpha = -2 - dx**2;

dv = alpha*

18 @ Python3|ide

Typehese o search

Saving completed

So, let me split this over here and let me split this over here. So, let me run this cell first.
Now, before running this, let me do percentage-percentage time. So, it will give me how
much time it took for that particular cell to evaluate. It is 0 nanosecond, because | have

taken a very low grid count.

(Refer Slide Time: 02:22)

ile Edit View Run Kemel Tabs Settings Help

+ B t c Show!X ®WovpstX [ lec24ij® [ UntitleX M UntitleX [ uUntitleX @ bifurcaX [ lect6ipX B lec13iX
W/ - /nptel codes / lec24 / B +XDDO» =« C» Cde v Python3 O
Name i i ! - ’

x = np.linspace(®,2,N); dx = x[1] - x[e];
- N, N)); b = np.zeros((N,1));

alpha = -2 - dx**2;

dv = alpha*np.o

vl,1) + np.diag(dvl,-1);

Wtime
f = np.dot(np.linalg.inv(Al), b);

Wall time: 46.9 ms
' [4]: plt.plot(x, f, label="First order BC");

18 @ Python3|ide Saving completed Mode:Command © Ln1,Co'

Tipehese o search

So, let me take 1000 ok; let me run it. So, it took 46.9 milliseconds to perform the

inversion.



(Refer Slide Time: 02:34)

e Edit View Run Kemel Tabs Settings

18 @ Python3|ide

Type hese to search

4]: plt.plot(x, f, label="First order BC");

Help

A UntileX M uUntiteX ®bifurcaX W lecibigX W lec13iX

Python3 Q

X = np N); dx = x[1] - x{e];
AL = np.zeros((N, N)); b = np.zeros((N,1));

alpha = -2 - dx**2;

) + np.diag(dv1,-1);

Ktime
f = np.dot(np.linalg.inv(A1), b);

Wall time: 10.3 s

Mode:Command @ Ln1,Col

Saving completed

And as time, as the number of grid points increases, so | have made it from 1000 to

10000. So, for 1000 grid points, it took 46.9, let us say 50 milliseconds; let us see how

much time it takes for 10000 grid points. This may take a while. If it is linearly scaling, it

will take almost 5 seconds or rather point. So, it was 50 milliseconds. So, yeah. So, it

took 10 seconds. So, it is not at all scalable. So, then why is it not scalable ok?

(Refer Slide Time: 03:15)

le Edit View Run Kemel Tabs Settings

18 @ Python3|ide

Type hese o seach

Help

stX Wlec24ij® X UntiteX M UntitleX M UntitleX M bifurcaX [ lecibigX M lec13iX

» m C » Code v Python3 Q

X =np ] - x{e);
1 = np.zeros os((N,1))
alpha = -2 - dx**2;

dv = alpha*np.o

dv1 = np.on

print(Al

[[1. o e o o @
[1. 2161 o 8 @
[e. 1. -2161 o @
[e. o 1 2161 8

Saving completed Mode: Command



So, before going into the scalability and all that thing, let me make N to be 6, just to
show you how again | mean just to show how A looks like. So, let me just print A over

here; sorry, this should be A 1.

(Refer Slide Time: 03:29)

Mode:Command ©  Ln1,Co

0~

So, A 1is said to be a sparse matrix; meaning, most of the entries in A are zeros and it is
a diagonal sparse matrix meaning, most of the elements of A are concentrated around the
diagonal. So, now, there are a host of different algorithms which exist for dealing with
sparse matrices. And the fact of the matter is you do not really need that much of an
memory overhead or algorithmic overhead. Because you know you are just keeping a

count of elements which are non-zero ok. So, A is like this.



(Refer Slide Time: 04:13)

ile Edit View Run Kemel Tabs
+ <] t c

W/ - /nptel_codes / lec24 /

Name .

@ Python3|Idle
o

Settings  Help

ShowtX ®hvpstX Wlec24ij® X UntiteX M uUntileX M uUntileX M bifurcaX M lectbX ®lec13iX

B +XDO» = C» Cde v Python3 O
alpha = -2 - dx**2;

dv = alpha®np.ones((N,));

ag(dv1,1) + np.diag(dvl,-1);

import scipy as sp
As = sp.sparse.csc_matrix(Al); print(As

AttributeError L Traceback (most recent call last)
<ipython-input-14-13e61c7fde3a> in
1 import scipy as sp

----> 2 As = sp.sparse.csc_matrix(Al); print(As)

AttributeError: module 'scipy’ has no attribute ‘sparse’

Wtine
£ = np.dot(np.linalg.inv(Al), b);

\
Saving completed Mode:Command @  Ln1, ¢’

So, let me do this. So, let me import scipy dot ok. So, let me import scipy as sp alright.

So, sp.sparse. So, this is the name of the ,nd and let me dot csc matrix. So, it is

compressed yeah. So, what is the full form?

(Refer Slide Time: 04:46)

ile Edit View Run Kemel Tabs Settings Help
+ B t c Show!X ®pvpstX Mlec24ii® ® UntileX MuntileX [ UntitleX @ bifurcaX [ lect6igX M lec13iX
M/ - /nptel_codes / lec24
= Docstring:
Name - print(value, ..., sep=" ', end="\n', file=sys.stdout, flush=False)

N lec24ipynb

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments

file: a file-like object (stream); defaults to the current sys.stdout.
sep:  string inserted between values, default a space.
end:  string appended after the last value, default a newline.

flush the stream.
-_method

flush: whether to forci
Type:  builtin funct

Saving completed

So, it is again, we can simply have a look at the yeah csc stands for compressed sparse

column matrix.



(Refer Slide Time: 04:53)

[ si?yore [ oas [ scbyvio eferece uie | sprsemavies scpypare ) JRN s [ moies T next [ previs |

scipy.sparse.csc_matrix Previous topic
class scipy.sparse.cSC_matrix(arg?, shape=None, dtype=None, copy=False) [source]
Com, Next topic
This can be instantiated in several ways:
Quick search
cs¢_matrix(D)
with a dense matrix or rank-2 ndarray D
€sc_matrix(S) search

with another sparse matrix S (equivalent to S.tocsc())
esc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d

csc_matrix{(data, (row_ind, col_ind)), [shape=(M, N)])
where data, row_ind and col_ind satisfy the relationship
a[row_ind[k], col_ind[k]] = data[k]

csc_matrix{(data, indices, indptr), [shape=(M, N)])

So, what it does is instead of storing all the information, it will simply store the data and
it will store which row and column it belongs to. So, it helps us introducing the memory
overhead. So, I will pass the numpy matrix A 1 to this and let me just assign it to A s,

meaning a sparse. Let me then go ahead and print A s. Scipy has no attributes sparse ok.

(Refer Slide Time: 05:31)

le Edit View Run Kemel Tabs Settings Help

+ B t c Show(X MbypstX Mlec24ii® ® UntileX MuntileX [ UntitleX ® bifurcaX [ lectoigX M lec13iX
W/ - /nptel_codes / lec24 / B +X0D0O»w C» Cde v Python3 Q
e from scipy import sparse

As = sparse.csc_matrix(Al); print(As)

Eleczup/nb @®, 0 ¥

(1, o) 1.0
1,1 -2.16
(2, 1) 1.0
1,2 1.0
(2,2 -2.16
3,2 1.0
(2, 3) 1.0
(3, 3) -2.16
3 1.0

]: Mtine |
f = np.dot(np.linalg.inv(Al), b);

l Wall time: 10.3 s

Saving completed

18 @ Python3|idee

pe hese o sear

If I think need to from scipy import sparse yeah ok. So, this is how the matrix is stored.



(Refer Slide Time: 05:49)

ile Edit View Run Kemel Tabs Settings Help

+ B t c Show!X ®WbvpstX [ lec24j® & UntileX M UntileX [ UntitleX M bifurcaX [ lect6igX M lec13iX
M/ - /nptel codes / lec24 / B +X0O0O»®C» Cde Python3 QO
Name =
s from scipy import sparse I
pipbins gy G

print(A1

(8, ©) 1.8

(1, 0) 1.0

1,1 -2.16

(2, 1) 1.0

(1,2 1.0

(2, 2) -2.16

3,2 1.0

(2, 3) 1.0

(3, 3) -2.16

(4, 3) 1.9

(3, 9) 1.0

(4, 8) -2.1

(s, 4 -1.8

(4, 5) 1.0

(5,5 1.8
[[1. e o o o 8]
[1. 216 1. o 8 6 ]
[e. 1. -2161 e o ]
fe. 6 1. -2161 8 ]
[e. o o 1. -2161 ]
[e. 6 6 o -1 1 1]

' itine
18 @ Python3|ide Saving completed Mode:Command @ Ln1,Ce!

Type hese to seacch

And just for your reference, | will also print out what A 1 was.
(Refer Slide Time: 05:53)

The python and octave notebooks can be downloaded from hitp

Show(X MbvpstX Miec24ij® X UntieX MWuUntitleX M UntitleX M bifurcaX [ leci6igX M lec13iX
W/ - /nptel_codes / lec2d / B+X0O0»=C» Cude v Python3 O

1.0
1.8
-2.16
1.0
10
-2.16
1.0
1.0

Name &

lec24ipynb

HFroe®®

time
£ = np.dot(np. linalg.inv(A1), b);

Wall time: 10.3 s

plt.plot(x, f, label="First order BC");
18 @ Python3|idee Saving completed Mode: Command @ L3, Co!

Type hese to search -
— OO N i

So, look 0,0is1;0,0is1;1,0is 1; 1, 0is 1; 1, 1 is this. So, there you go. It is a very
efficient way to representing the matrix, and other elements are 0.



(Refer Slide Time: 06:12)

vyw;facyvet;.iﬁkgpaac.in/~adityab/lecture_list.html as.a.quick reft

ShowtX MbvpstX [MWiec24iyX M UntieX M UntileX M uUntitleX M bifurcaX M lectoigX M lec13iX

W/ - /nptel codes / lec24 B+XD0O» e C» Cde v Python3 QO
Name 4
2 Al[e,e] = 1; A2[e,0
W lec24ipynb ALl
b[e] = 1;
[16]: |from scipy import sparse
As = sparse.csc_matrix(Al); print(As)
print(A1L I
(e, 8) 1.0
@1, o) 1.8
1, 1) -2.16
(2, 1) 1.0
1,2 1.8
(2, 2 -2.16
1.9
1.0
-2.16
1.0
1.8
-2.16
-1.8
(4, 1.0
(5, 5) 1.8
[[1 e e o o o]
[1. 2161 6 o @ ]

18 @ Python3|ide

Type hese to search

Saving completed

And the point is once the matrix becomes larger, there are the number of zeros are going
to grow by N?, by an order of N? because most of the things lie on the matrix and lie on

the diagonal. And the diagonal can be interpreted as being a line in an area right.

So, as the size increases, the number of zeros increases quadratically rather than linearly.
So, why do we bother with converting to this csc format? So, once we have converted

this, we can use these sparse matrix algorithms to find the inverse more efficiently.

(Refer Slide Time: 06:50)

fle Edit View Run Kemel Tabs Settings Help

+ B t c Show!X WhypstX M« X UntieX W UntileX [ Untile X M bifurcaX (W lect6ijX W lec13iX
W/ - /nptel codes / lec24 B+XD0O» = C» Cde v Python3 @
Name

from scipy import sparse
import scipy.sparse.linalg as sl
As = sparse.csc (A1);

)$7)
ext(9, 0.5, '$f(x)$
"4 — Fistorder BC
\, = Second order
\ & Co.oe
§8 @ Python3|Busy Saving completed Mode: Command @  Ln1,Col”
"l

Type hee 10 search




So, let me import it alright. So, we have imported this sparse.linalg module and now, we

are going to take a dot product. So, A s is already of csc format.

(Refer Slide Time: 07:34)

dle Edit View Run Kemel Tabs Settings Help

+ B 2 c Show'X WovpstX M lec24i® X UntileX MuntileX [MuntileX ®bifurcaX [ lect6igX ® lect3iX
W/ - /nptel codes / lec24 B+XBO»uC» Cde v Pyton3 O
Name A

Mg

from scipy inport sparse

1g as sl
-_matpix(Al);

f = sl.dot(As,b,

AttributeError Traceback (most recent call last)
<ipython-input-18-180eebe10996> in

2 import scipy.sparse.linalg as sl

3 As = sparse.csc_natrix(Al);
-—---> 4 f = sl.dot(As,b)

AttributeError: module 'scipy.sparse.linalg’ has no attribute 'dot’
[18]: Xxtime
f = np.dot(np.linalg.inv(Al), b);
' Wall time: 10.3 5
plt.plot(x, f, label="First order BC");

|8 @ Python3|idle Saving completed Mode: Command @  Ln1, Col™
-

seach

So, now we can write f =s l.dot A s, b sorry.

(Refer Slide Time: 07:49)

ile Edit View Run Kemel Tabs Settings Help

+ B t c Show'X MWbypstX M lec24ii® M UntileX M UntileX [ UntileX @ bifurcaX [ lect6igX M lec13iX
M/ - /nptel codes / lec24 / B+X0D0O» = C» Cide v Python3 O
Name b[e] = 1;

W lec24ipynb

from scipy import sparse
import scipy.sparse.linalg as sl

As = sparse.csc_matrix(Al);
f = As.dot(b
[10]: XXtime
f = np.dot(np.linalg.inv(Al), b);
] Well tine: 10.3 s

plt.plot(x, f, label="First order BC");

plt.plot(x, g, label="Second order”)

plt.plot(xe, ye, "ok’, label="Exact");

plt.legend(); plt.xlabel("$x$"); plt.ylabel("$f(x)$")

Text(9, 0.5, '$F(x)$')

101 Q — First order BC
\ = Second order
- o Bt
)8 A5
18 @ Python3|idee Saving completed Mode:Command @ Ln1,Co!
-

So, it should be A s .dot b. So, that is the way of achieving this dot product ok.



(Refer Slide Time: 07:59)

ile Edit View Run Kemel Tabs Settings Help

+ B o c Show!X MWbypstX [ lec24j® & UntileX M UntileX M UntitleX M bifurcaX [ lect6iyX W lec13iX
+ / nptel_codes / lec24 / ’

Type: csc_matrix
+ | string form:

(e, 0) 1.8
0,0

) 1.0
(1,1) -2.16
2,0 1.8
(1, 2) 1.0
(2,2 -2.16
3,2 1.0
.8
3,3 -2.16
(4, 3) 1.8
3,4 1.0
(4, 8 -2.16
(s, 4) -1.0
(4, 5) 1.8
(s, 5) 1.8
File: f:\anaconda\lib\site-packages\s:

Docstring:
Compressed Sparse Column matrix

This can be instantiated in several ways:

esc_matrix(D)
with a dense matrix or rank-2 ndarray D

esc_matrix(s) ~
1: & Saving completed Show
-
~ /l
(Refer Slide Time: 08:00)
ile Edit View Run Kemel Tabs Settings Help
+ B * c Show!X HWbypstX [ lec24j® [ UntitleX M UntileX M UntitleX M bifurcaX [ lect6ijX M lec13iX

W/ e /nptel codes /lec24 / File: f:\anaconda\1ib\site-packages\scipy\sparse\csc.py

+ | Docstring:

Compressed Sparse Column matrix
W lec24ipynb

This can be instantiated in several ways:

esc_matrix(0)
with a dense matrix or rank-2 ndarray D

esc_matrix(s)
with another sparse matrix S (equivalent to S.tocsc())

csc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.

¢

¢_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where ““data”, “"row_ind’* and ““col_ind " satisfy the
relationship ~“a[row_ind[k], col_ind[k]] = data[k] .

c

¢_matrix((data, indices, indptr), [shape=(M, N)])
is the standard (SC representation where the row indices for
colum i are stored in indices[indptr[i]:indptr[i+1]]"
and their corresponding values are stored in
data[indptr[i]:indptr[i+1]]"". If the shape parameter is
not supplied, the matrix dimensions are inferred from
the index arrays.

Saving completed

So, A s has an attribute, it is a csc matrix and it has certain, not attributes.



(Refer Slide Time: 08:02)

ile Edit View Run
+ [ t C
W/ - /nptel_codes [ lec2d /

Name »

(Refer Slide Time: 08:06)

ile Edit View Run
+ b t C
W/ - /nptel_codes [ lec2d /

Name 4

Kemel Tabs Settings Help

Show'X MovpstX M lec24ii® ®untileX [ untileX [ Untile X B bifurcaX

Attributes
dtype : dtype

Data type of the matrix
2-tuple

Shape of the matrix
ndim : int

Number of dimensions (this is always 2)
nz

Number of stored values, including explicit zeros
data

Data array of the matrix
indices

CSC format index array
indptr

(SC format index pointer array
has_sorted_indices

Whether indices are sorted

shage :

Notes

Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSC format
- efficient arithmetic operations CSC + CSC, CSC * (SC, etc

Saving completed

Kemel Tabs Settings Help

Show'X HMovpsuX M lec24ii® M untileX [ untitleX [ UntileX B bifurcaX

Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSC format
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the (SC format
- slow row slicing operations (consider (SR)
- changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

»»> import numpy as np
»»> from scipy.sparse import csc_matrix
»»» cse_matrix((3, 4), dtype=np.int8).toarray()
array([[e, 8, &, 8],
[e, 8, o, @],
[e, 8, 0, 8]], dtype=int8)

> row = np.array([@, 2, 2, @, 1, 2])
»» col = np.array([e, @, 1, 2, 2, 2])

53y data = o arcav(i1 9 3 4 & 1)

Saving completed

W lect6ipX M lec13iX
[
Show.
oA
W lectoipX M lec13iX

But some additional functions associated with it which include the dotting with a vector

ok. It is not mentioned in this contextual help. But you can take a dot products with

something like this. So, A s .dot will give you the required dot product and so, what we

will do is we will take this bit of code.



(Refer Slide Time: 08:36)

ile Edit View Run Kemel Tabs Settings Help

+ B $ c ShowiX WbypstX W lec24ij®@ X UntileX W uUntitleX [ UntitleX M bifurcaX [ lect6igX M lec13iX
W/ - /nptel_codes / lec24 / B +XDO0O0» wC» Cde v Python3 QO
Name = b[e] = 1;

lec24ipynb

from scipy import sparse

import scipy.sparse.linalg as sl
As = sparse.csc_matrix(Al);

f = As.dot(b)

1: | ¥time

As = spi

f = As.dot(b
| Wall time: 10.3 s

plt.plot(x, f, label="First order BC");

plt.plot(x, g, label="Second order")

plt.plot(xe, ye, 'ok’, label="Exact");

plt.legend(); plt.xlabel("$x$"); plt.ylabel("$F(x)$")

Text(9, 0.5, '$7(x)$")

101 Q — First order BC
= Second order
i 0 Bt [,
18 @ Python3|ide Saving completed Mode:Edit @ Ln4, Col?”
-

1o seaech A
~

And let me copy this. Let me comment out this old program, let me paste this and let me

see how much time it takes.

(Refer Slide Time: 08:44)

ile Edit View Run Kemel Tabs Settings Help

+ [ 4] b 4 c Show(X MbvpstX [ lec24ii®@ M UntileX M untileX [ UntileX M bifurcaX [ lecioigX M leci3iX
W/ - /nptel_codes / lec24 / B +XMDOO»u C» Cde v Python3 O
Name 4 \
lec24ipynb )4

0 025 0% 07 .00 1.5 130 1.7 200
space(0,2,N); dx = x[1
Al = np.zeros((N, N)); b = np.zeros|
1) + np.diag(dvl,-1);

bfe] = ,

18 @ Python3|ide Saving completed Mode:Edit © Ln1,Col®
-

Typehee tosearch

So, 10000 was the number that we had used. So, let me run this.



(Refer Slide Time: 08:52)

View
+ B ;3 c R UntiteX @ UntiteX M UntitleX ®bifucaX 0 lectigX B lect3ix
m/ nptel_co » Code v Python3 O
Name
lec24ipynb
bfe]
from scipy import sparse
import scipy.sparse.linalg as sl
As = sparse.csc_matrix(Al);
£ = As.dot(b)
$F(x)$")
I ~
18 @ Python3|ide Saving completed Mode: Command ©  Ln4, Col
Tiperee tosecn -
F ]

So, for 10000, it took 10 seconds; so let me see how much time, it takes say 667
milliseconds. So, obviously, the sparse solver runs much faster than the numpy inversion
alright. So, we forgot to take the inverse ok. So, probably that is why it runs so much
faster. | forgot to completely take the inverse.

(Refer Slide Time: 09:17)

e Edit View Run Kemel Tabs Settings Help

+ B t c ShowtX MWhvpstX M lec24ii® M UntitleX M UntileX [ UntileX M bifurcaX [ lect6igX M lec13iX

2
W/ - /nptel_codes / lec24 B+X0D0O» e C» Cde v Python3 O

Name

from scipy import sparse

import scipy.sparse.linalg as sl
As = sparse.csc_matrix(Al);

f = As.dot(b)

3 plt.ylabel("$f(x)$")

18 @ Ppython3|ide Saving completed Mode:Command @ Ln4,Col> /\

So, s | dot inv is the way to do the inverse ok. So, let me run this now. So, the (Refer
Time: 09:27) was 10 seconds for numpy. Let us see how much time it takes for scipy

inverse. Maybe it is not, it took 11 seconds. So, it took much more time. So, it took the



same amount of time and it is not clear as to why this has happened this way; but it
should have happened faster, maybe for much more larger matrices. But something

which will run faster will be the solver. So, let me get rid of this.

(Refer Slide Time: 10:07)

e Edit View Run Kemel Tabs Settings Help

+ -] t c ShowiX MbypstX M lec24ii® [ UntiteX @ UntiteX [ UntitleX M bifurcaX [ leci6igX B lec13iX
W/ - /nptel codes /lec2d B +XDO»uC» Cde v Pyhon3 Q

Name

B lec24ipynb

from scipy import sparse

import scipy.sparse.linalg as sl
As = sparse.csc_matrix(Al);

f = As.dot(b)

18 @ Python3|ide Saving completed
Tpeheetosen

In fact, let me make it sparse. We need it to be sparse and so, there is a solver called as
s1.sp solve. So, sp solve stands for sparse solve, it lies inside the sparse dot linear algebra
sub module and it takes inputs as the sparse matrix in csc format and the matrix b. So, let

me run this. This should run much faster ok.

(Refer Slide Time: 10:46)

e Edit View Run Kemel Tabs Settings Help
+ B t c R UntiteX @ UntitleX @ Untitle X ® bifurcaX W lect6igX B lect3iX
W/ - /nptel codes /lec24 XD » Code v Python3 Q

Name

W lec24ipynb

ValueError Traceback (most recent call last)
<ipython-input-24-634f8d2f8ebf> in

1 plt.plot(x, f, label="First order BC");
----> 2 plt.plot(x, g, label="Second order"

3 plt.plot(xe, ye, ‘ok', label="Exact");

4 plt.legend(); plt.xlabel("$x$"); plt.ylabel("$f(x)$"

F:\anaconda\lib\site-packages\matplotlib\pyplot.py in (scalex, scaley, data, *args, **kwarg
s)
2759 gdocstring. copy(Axes.plot
plot(*args, scalex-True, scaley=True, data-None, **kwargs):
return gca().plot
*args, scalex=scalex, scaley=scaley, **({"data": data} if data
is not None else {}), **kwargs)

E:\anaranda\lih\cita_narkasac\matnlntlib\avac) aves nu in (<ol cralav cralav dad

18 @ Ppython3|ide Saving completed Mode:Command @  Ln1, Co!

Type hese tosearch



So, that took 690 milliseconds. So, yeah, let us plot it and see whether it is fine or not.

There is a bunch of errors and what is error? x and y.

(Refer Slide Time: 11:01)

ile Edit View Run Kemel Tabs Settings Help
+ B t c ShowtX WhvpstX Wlec24j® M uUntitleX WUntitleX W UntiteX ™ bifurcaX M lecibifX W lect3iX
W/ - /nptel codes /lec24 B +X0OO0O»® C» Cde ~ Python3 Q
Name A from scipy import sparse
Pl
£ = As.dot(b)

f = sl.spsolve(As, b

Hall time: 698 ms

£, label="First order BC");
, ye, 'ok', label="Exact");
); plt.xlabel("$x$"); plt.ylabel("$f(x)$")

plt.pl
plt.pl
plt. leg:

Text(e, @.5, "$f(x)$')

= First order BC
® Euct

18 & Python3|ide Saving completed Mode: Command @  Ln1, Col*
.

So, let me get rid of g, we do not need g for now. Yeah, ok.

(Refer Slide Time: 11:05)

ile Edit View Run Kemel Tabs Settings Help

+ B : (¢ Show!X ®WbvpstX [ lec24j® R UntileX M uUntileX M UntitleX M bifurcaX [ lect6ijX M lec13iX
M/ - /nptel codes / lec24 / B +XDO» e C» Cde v Python3 Q
e X R\ ATT
® bt
9

18 @ Python3|ide Saving completed Mode: Command @  Ln1, Co! A

pe hese 1o e

So, with 10000 points everything matches quite well ok. Let me reduce the number of

points.



(Refer Slide Time: 11:14)

e Edit View Run Kemel Tabs Settings Help

+ B t ¢ ShowX MbypstX & R Untite X @ UntiteX M UntitleX M bifurcaX M lectbigX B lec13iX

W/ - /nptel codes / lec24 / B +XDO»n C» Cde v Pyhon3 O

MemoryError Traceback (most recent call last)

18 @ Python3|ide Saving completed Mode:Command @  Ln3,Co!

(Refer Slide Time: 11:17)

e Edit View Run Kemel Tabs Settings Help

+ B t c Show!X ®bvpstX ®Wlec24ii® X uUntiteX ®UntileX M UntitleX ®bifurcaX M lectbgX M lec13iX
W/ - /nptel codes / lec24 | B +XDO»wC» Cde v Pyhon3 O

Name

MesoryError Traceback (most recent call last)
<ipython-input-26-22d7ea9184cd> in
1 N = 100000

2 x = np.linspace(0,2,N); dx = x[1] - x[8];
-===> 3 Al = np.zeros((N, N)); b = np.zeros((N,1));

S alpha = -2 - dx**2;

MemoryError: Unable to allocate 74.5 GiB for an array with shape (100000, 106000) and data type
float6d

[18]: from scipy import sparse
import scipy.sparse.linalg as sl
As = sparse.csc_matrix(Al);
£ = As.dot(b)

18 @ Python3|ide Saving completed Mode:Command @  Ln3,Cc

In fact, let me increase it by a million and this is memory error ok; unable to allocate
74.5 GiB. The series might be 32 gigabytes. So, this is where Sc outperforms, you do not
really need to worry. But if you define A to be originally a sparse matrix, you can avoid
this error. So, the fact is | am creating a numpy array out of this and that it its initializing

a whole bunch of zeros, where you do not really need to initialize zeros.

And once we do things in PETSc, it will be clear how you can avoid this model. So,

PETSc is much more efficient in this regard. I am sure you could substitute or rather



declare the A 1 matrix to be a bunch of zeros rather than declaring them as a bunch of

zeros, you could simply define it as a sparse matrix, where everything else is 0 by

default.

(Refer Slide Time: 12:15)

ile Edit View Run Kemel Tabs Settings Help

W lec24iy®

+ B b4 c Show X ® byp stX & Untitle X
M/ - /nptel_codes / lec24 / B+XD0O» = C» Coe
Name = . 0% 0 L
lec24ipynb

N = 1600;
X = np.linspace(9,2,N); dx = x[1]

- x[e

A Untite X M Untite X @ bifurcaX = [ lec16iX M lec13iX

Python3 O

100 1% 150 1.7 200

i

Al = np.zeros((N, N)); b = np.zeros((N,1));

alpha = -2 - dx**2;

dv = alpha*np.ones((N,));
dvl = np.ones((N-1,));

AL = np.diag(dv) + np.diag(dvl,1) + np.diag(dvl,-1);

AL[0,:] = 0; AL[N-1,:] = 8;

A1[0,0] = 1; A2[0,0] = 1;
M[-1,-2] = -1; AI[-1,-1) = 1;

ble] = 1;
: from scipy import sparse
import scipy.sparse.linalg as sl

As = sparse.csc_matrix(Al);
f = As.dot(b)

18 @ Python3|ide

Trpe

Saving completed

(Refer Slide Time: 12:19)

ile Edit View Run Kemel Tabs Settings Help

A lec24i@

+ B * c Show(X M byp_stX & Untitle X
M/ - /nptel codes / lec24 / 5 C » Code
Name . ((N-1,));

AL = np.diag(dv) + np
Al[0,:] = ©; A[N-1,:] = §;

lec24ipynb

A1[0,8] = 1; A2(0,0]
A[-1,-2] = -1; Al[-1

be] = 1;

from scipy import sparse

import scipy.sparse.linalg as sl
As = sparse.csc_matrix(Al);

£ = As.dot(b)

As = sparse.csc |
f = sl.spsolve(As, b)

Wall time: 7.98 ms

plt.plot(x, f, label="First order BC");
plt.plot(xe, ye, ‘ok', label="Exact");
plt.legend(); plt.xlabel("$x§"); plt.ylabel("$f(x)$")

18 @ Python3|ide

Type here to search

Saving completed

Mode:Command @  Ln3, Co!

W UntiteX [ UntileX M bifucaX @ lect6ifX W lect3iX

Python3 QO

(dv1,1) + np.diag(dvl,-1);

Mode: Command ©  Ln1,Col



(Refer Slide Time: 12:23)

ile Edit View Run Kemel

+ <] b4 c

/ nptel_codes / lec24 /

Name

§8 & Python3|ide

Type hese to search

Tabs Settings Help

Show!X MWbvpstX [ lec24j® X UntileX M uUntileX M UntitleX M bifurcaX [ lect6igX M lec13iX
B+XD0O» = C» Ce v Python3 O

plt.plot(xe, ye, “ok’, label="Exact");
plt.legend(); plt.xlabel("$x$"); plt.ylabel("$F(x)$")

Text(e, 0.5, '$f(x)$')

= First order BC
® Eact

Saving completed Mode:Command @ L1, Co!
e

P

So, let me dial it down 1000, yeah almost 8 milliseconds to plot it, great.

(Refer Slide Time: 12:32)

ile Edit View Run Kemel

+ B

nptel_codes / lec24 /
Name

lec24ipynb

18 @ Python3|ide

Tpe!

=3

c

Tabs Settings Help
A bifurca X A lec13iX

Python3 O

N lec2di® A Untitle X [ Untitle X N lecibip X

»  Code

Show (X X Untitle X

B+X0DDO

R bvp st X

0.50 L0

N = 10;
x = np.linspace(8,2,N); dx = x[1] - x[e];
AL = np.zeros((N, N)); b = np.zeros((N,1));

alpha = -2 - dx**2;

dv = alphatnp.ones((N,));
dv1 = np.ones((N-1,));

AL = np.diag(dv) + np
A[0,:] = 0; AL[N-1,:

ag(dv1,1) + np.diag(dvl,-1);

A1[0,0] = 1; A2(0,0] = 1;
M[-1,-2] = -1; A1[-1,-1] = 1;

ble] = 1;
from scipy import sparse
import scipy.sparse.linalg as sl

As = sparse.csc_matrix(Al);
f = As.dot(b)

Mode: Command @ Ln3, Co'

I

Saving completed

]

So, let me make it 10, just to show that it is giving that old error.



(Refer Slide Time: 12:36)

ile Edit View Run Kemel Tabs Settings Help

- B t (¢ Show!X MWovpstX [ lec24j® & UntitleX M UntileX [ UntitleX M bifurcaX [ lect6ijX M lec13iX
W/ - /nptel codes / lec24 / B+XD0O» = C» Cde v Python3 O
Name =

. A1(0,0] A2[0,0]
B lec24ipynd A1[-1,-2

b[e] = 1;

from scipy import sparse

import scipy.sparse.linalg as sl
As = sparse.csc_matrix(Al);

f = As.dot(b)

f = sl.spsolve(As, b)

Wall time: 1.01 ms

I plt. legend(); plt.xlabel ("$i8"); plt.ylabel ("$¥(x)$")
Text(8, 0.5, '$F(x)$')
“{ L —— First order BC I
I8 @& Python3|idee Saving completed Mode:Command @ Ln1,Col |

Type here to seach

(Refer Slide Time: 12:37)

ile Edit View Run Kemel Tabs Settings Help

+ B t c ShowtX W byp_stX Wlec24i® RuUniteX R UniteX B UniteX B bifucaX N lect6ifX B lec13iX
M/ - /nptel codes /lec24 / B +XD0O» = C» Cde v Python3 Q
Name 4
P plas, 7, o, o).

plt.legend(); plt.xlabel("$x§"); plt.ylabel("$F(x)$")

Text(o, 0.5, '$F(x)$')

~—— First order BC
L=

18 @ Python3|ide Saving completed Mode:Command @ Ln1,Co'

Type hese o searc

That is that you imagine because of the first order nature of the boundary condition. So,
yeah, | mean with this in mind, we go to the next part of this lecture which is to use the

inbuilt functions of scipy to solve boundary value problems.



(Refer Slide Time: 12:59)

e Edit View Run Kemel Tabs Settings Help

+. B k4 c ShowtX ®bypstX HNiec24iyX X UntiteX @ Untitle® M uUntitleX M bifurcaX M lectbigX M lec13iX

W/ - /nptel codes / lec25 B +XDO» =« C» Cde v Python3 Q

import nuspy as

%config InlineBackend.f: t
from ipywidgets import interactive

xp(-4]); €2 = C1*np.exp(4);

) + C2*ny  e);
plt.plot(x.e, £ e); plt.xlabel("$x5"); plt.ylabel(*F(x)");

f(x)

18 @ Python3|ide Saving completed Mode:Edit @ Ln1,Col1

jpe hese 1o search

So, let us continue our journey. So, again, | have created a new file. | have imported the
usual things and | have created the analytical solution of the problem that we had

considered in the previous lecture.

(Refer Slide Time: 13:15)

le Edit View Run Kemel Tabs Settings Help

+: B t c ShowtX MhbvpstX Mlec24iyX M UntiteX ® Untitle® M UntitleX ®bifurcaX M lectoX M lec13iX

W/ - /nptel codes / lec25 B +X0DD0O C » Code v Python3 O

Name - plt.plot(x.e, ¥ e); plt.xlabel("$x$"); plt.ylabel("F(x)");

f(x)

§8 & Python3|idee Saving completed Mode:Edit @ Ln1,Col1

Type here to search

And the solution looks something like this. At x =0, it is 1; at x = 2, the slope is = z. So,
we made a nice finite difference program and we were able to you solve it. And once we

have done that, we were able to show how we can implement the second order solution



with the cost node. So, now we are going to use the inbuilt function of scipy to solve the
ODE.

(Refer Slide Time: 13:47)

fle Edit View Run Kemel Tabs Settings Help
+ B k4 c Show(X MbvpstX Wlec24ijX X UntiteX ® Untile® W UntitleX M bifurcaX M leci6igX M lec13iX
W/ - /nptel codes / lec2S / B+XBO»mC» Cde v Python3 O

Name :

B Urtitiedipynb

1 200
from scipy.integrate import solve_bvp
[71: |def fun(x, y)
return [y[1], y[e]]
def be(ya, yb):
return [ya[8)-1, yb[1]-8
8 @ Python3|ide Saving completed Mode:Edit @ Ln5,Col30

Type hese 10 sea

So, first things first let us import another from scipy. integrate, let us import solve bvp.
So, like solve ivp, there is another function called a solve bvp. It stands for solve
boundary value problem alright. So, let me import this. So, what does this function

contains?

(Refer Slide Time: 14:16)

ile Edit View Run Kemel Tabs Settings Help
+ B : c showiX MbwpstX MiecdiiX ®untiteX ®Untte® [ UntiteX M bifurcaX [ leci6igX B lec13iX
| ] nptel_codes 5
Signature:
Name - solve_bvp
e fun,
x
p=None,
s=None,

fun_jac=None,
be_jac=None,
t01-0.001

verbose=0
be_tol=None,

Docstring:
Solve a boundary value problem for a system of ODEs.

This function nunerically solves a first order system of ODEs subject to
tuo-point boundary conditions: :

dy /dx=f(x,y,p) +S*y/(x-2),ac=x¢=b
be(y(a), y(b), p) = @

Here x is a 1-D independent variable, y(x) is an N-D
vector-valued function and p is a k-D vector of unknown
parameters which is to be found along with y(x). For the problem to be -
18 & Saving completed Show ¢
e - 9 ey ‘




So, let us have a look at the contextual help. So, it takes as an input the function the
boundary condition the x array, it is the domain; the y which is the solution array, p
stands for parameters, function Jacobian, boundary condition Jacobian, tolerance, max

nodes, verbose blah blah blah.

(Refer Slide Time: 14:33)

ile Edit View Run Kemel Tabs Settings Help

- B ; (¢] Show!X MWovpstX M lec2djX & UntileX M Untile® [ UntitleX M bifurcaX [ lect6ijX M lec13iX
W/ - /nptel_codes / lec25 / is handled when solving BVPs numerically.
Name = Problems in a complex domain can be solved as well. In this case, y and p

s cmiaed b comple, ad  ad c re. assmd t b smpsceed

functions, but x stays real. Note that f and b must be complex
differentiable (satisfy Cauchy-Riesann equations [4]_), otherwise you
should rewrite your problem for real and imaginary parts separately. To
solve a problem in a complex domain, pass an initial guess for y with a
complex data type (see below).

Parameters
fun : callable
Right-hand side of the systen. The calling signature is ~fun(x, y)™",
or ““fun(x, y, p)’" if parameters are present. All arguments are
ndarray: “"x"" with shape (m,), 'y'~ with shape (n, m), meaning that
"y[:, i]" corresponds to “"x[i]", and “p" with shape (k,). The
return value must be an array with shape (n, @) and with the same
layout as “'y'".
: callable
Function evaluating residuals of the boundary conditions. The calling
signature is “'bc(ya, yb)', or “be(ya, yb, p)" if parameters are
present. All anguments are ndarray: “'ya'~ and “"yb™* with shape (n,),
and “'p'" with shape (k,). The return value must be an array with
shape (n + k,).
x : array_like, shape (m,)
Initial mesh. Must be a strictly increasing sequence of real numbers
with “*vf@1-2"" and v 11

Saving completed Show ¢

b v )

So, function is callable ok. So, let us create the function. So, def function and it will take

inputs as x and y and it will return something. So, let us go to the previous program right.

(Refer Slide Time: 15:00)

ile Edit View Run Kemel Tabs Settings Help
+ B t c Show!X ®ovpstX MWlec24iX M UntileX M Untitle® [ UntitleX @ bifurcaX = [ lecioiyX M lec13iX
nptel_codes / lec25 / B+ X0OO0O)»wC» Cde v Python3 Q

Name &
= Boundary Value Problems
import numpy as np;
import matplotlib.pyplot as plt; I
plt.rcParams.update({"text.usetex":True});
%config InlineBackend.figure format = "svg"
from ipywidgets import interactive
Let's consider boundary value problems. First, let us consider the steady ordinary differential equation
&f
dx?
which satisfies the boundary conditions
fy=1
=0
for x € [0,2]. The solut the equationis f = Aexp(x) + Bexp(—x). The constants A and B can be
found out through the bondary conditions. The first boundary condition s called as a Dirichlet boundary
condition while the second boundary condition is called as the Neumann boundary condition. There can
a condition which is a mix of both and is called as the Robin boundary condition. Nevertheless, let us
how the solution looks like ...
¥ & = nn_ lincnare/@ ) bt
—_—
o
18 @ Python3|ide Saving completed Mode: Command @  Ln20,Col 15 by




2

f=f.

In fact, let me show you what the equation was. It was —;
X

(Refer Slide Time: 15:14)

mel Tabs Settings Help g8 ll-¢-/8T=0 {3
4] t c Show X vpstX M lec24ijX :{E_ . r ‘ {Qyo ~ MO
N- 5 B+ X ‘Z » 1 C W i(’b’ ‘S( _'Lil %
—ame = = L :
| ) _y |
om0 0 /(/{_7( - J?

So, we have to first split the problem into two into a series of first order equations. So, let

dy,

Wo _ y, . This implies Y Y, and this is a

dx

d’y,

me instead of f, let me call it—=> =
X

Y, - Let

very simple splitting of the equation. This particular equation into these two particular

equations alright.

So, we have to return what y,and y, fine. So, I will go over here, | will return y, and |
will return over here y, alright. Now, | have to define what? | have to define the

boundary condition. So, define the boundary condition. So, here the boundary conditions
are implemented as y , and y , and a, b are identified as the sort of end points of the

domain.

So, | will the inputs to this will be y 5, y, and I will return the following. So, the

boundary condition was y(0) = 2, y’or rather yisOwas =1 and y'(2) was = 0. So, y, is
= 1 essentially and y,’ is = 0. So, the way to implement this is you have to give the

residue. So, |1 must give over here ya[0]-1. So, 0 stands for the Dirichlet and here, it will

be yb[1]-0 which stands for the Neumann condition alright.



(Refer Slide Time: 17:16)

e Edit View Run Kemel Tabs Settings Help

R UntileX ™ Untite® M UntitleX ™ bifurcaX [ lectbigX M lec13iX

+ B t c ShowtX  ® bvp st X
C » Code v Python3 @
050

W/ - /nptel codes / lec25 / B +X0D

vp_sti X 2
O »n
l

from scipy.integrate import solve bvp

[8]: | def fun(x, y)
return [y[1], y[e]]

def be(ya, yb)
return [ya[8]-1, yb[1]-2]

§8 @ Python3|Busy Saving completed Mode:Edit @ Ln8, Col 28

So, after this, we must create the domain. So, xd = np.linspace(0, 2, 10) andya =

np.zeros((2, xd.size)). So, it will be simply xd.size and this also works, fine.

(Refer Slide Time: 17:55)

e Edit View Run Kemel Tabs Settings Help

+ 4] t c Show!X MbvpstX Wlec4iX M UntileX ™ uUntite® [ UntitleX @ bifurcaX [ leci6igX M lec13iX

B+X0D0O0»>»mcCw ke v Pyhon3 O

from scipy.integrate import solve_bvp

def fun(x, y):
return [y[1], y[e]]

def be(ya, yb):
return [ya[

res = solve_bvp(fun, bc, xd, ya);

18 @ Python3|ide Saving completed Mode:Command @ Ln1,Col 1

Now, what we will do is we will call the function. So, residue of this function, let me call
it res solve_bvp. We will pass the function, we will pass the. So, what did we have to
pass? Let me function boundary condition X, y; function boundary condition X, y. So,
yeah that acts as the initial guess that is pretty much it. So, let me run this to see if there

is an error. There is no error.



(Refer Slide Time: 18:35)

ile Edit View Run K Tabs  Settings Help

+ B 4 c Show'X ®oypstX M jec24iyX [ UntitleX M Untitle® [ UntileX @ bifurcaX [ lect6ipX B lec13iX
M/ - /nptel_codes / lec25 / s BVPResult
| string forn:

message: 'The algorithm converged to the desired accuracy.’
niter: 1
C...> 53921645, ©.44746963,
8377911 , 8.32709144, 0.29249162, ©.27239404, ©.26580397]])

Length: e
File: f:\anaconda\lib\site-packages\scipy\integrate\_bvp.py
Docstring: <no docstring>

Class docstring:
Represents the optimization result.

Attributes
X : ndarray
The solution of the optimization.
success : bool
Whether or not the optil
status : int
Termination status of the optimizer. Its value depends on the
underlying solver. Refer to “message’ for details.
message : str
Description of the cause of the termination.
fun, jac, hess: ndarray
Values of objective function, its Jacobian and its Hessian (if
available). The Hessians may be approximations, see the docusentation
of the function in question.

izer exited successfully.

1s6 8@ Saving completed

So, now what does res contain? Let us see if we can have a contextual help on it.

(Refer Slide Time: 18:37)

ile Edit View Run Kemel Tabs Settings Help

+ b4 c Show!X MbvpstX Wlec24iX ® UntileX M Untitle® [ UntitleX ® bifurcaX [ leci6ifX M lec13iX

W/ - /nptel codes /lec25 / status : int
Termination status of the optimizer. Its value depends on the
Name £ < B s

underlying solver. Refer to “message’ for details.
Description of the cause of the termination.

fun, jac, hess: ndarray
Values of objective function, its Jacobian and its Hessian (if
available). The Hessians may be approximations, see the documentation
of the function in question.

hess_inv : object
Inverse of the objective function's Hessian; may be an approximation.
Not available for all solvers. The type of this attribute may be
either fp.ndarray or scipy.sparse.linalg. LinearOperator.

nfev, njev, nhev : int
Number of evaluations of the objective functions and of its
Jacobian and Hessian.

nit : int

Number of iterations performed by the optimizer.

maxcy : float
The maximum constraint violation.

There may be additional attributes not listed above depending of the
specific solver. Since this class is essentially a subclass of dict
with attribute accessors, one can see which attributes are available
using the “keys()" method.

Saving completed

So, x contains all these things, essentially it treats it as an optimization problem, which is

fine ok.



(Refer Slide Time: 18:55)

ile Edit View Run Kemel Tabs Settings Help

* B t c ShowiX MbypstX Wlec24iiX & UntileX M uUntitle® [N UntitleX ® bifurcaX = [W lect6iyX M lec13iX
M/ - /nptel codes / lec25 / B+X0D0» = C» Cide v Python3 O
Name A ya = np. %

_ Untitiedipynb
res = solve_bvp(fun, bc, xd, ya);
print(res

message: 'The algorithm converged to the desired accuracy.’
niter: 1

p: None

rms_residuals: array

2.42231906e-05, 2

888!

5e-85, 3.70210540¢-85, 3.23734781e-05, 2.80680145¢-05,
7631e-05, 1.84516896e-05, 1.68844152¢-05,

1.64997687e-05
nterpolate. interpolate.PPoly object at @x800001AB4499A6D8>
status: @
success: True
x: array([e. , 0.22222222, ©.44444444, ©.66666667, 0.88888889,
1.11111111, 1.33333333, 1.35555556, 1
y: array([[ 1. , ©.80879791, ©.53921645, 0.44746963,
, 0. 0.29249102, . 971,
1)
yp: array ) B 3, -8. 3, -0.46915097, -0.35396849,
-8.26863539, -0. 1
[1 , 8.82879781, 9.55770083, 0.44746963,
8.377511 , 0.32709144, ©.29249102, 0.26580397]])

18 @ Python3|ide Saving completed Mode:Edit @ Ln1,Col 1

So, let me print res over here. So, what does it contain? Iterations, xp array, yp array. So,
yp is a it is a double array yeah. Sol, so we are more interested in sol; sol is the
interpolation object. And I think we have used this previously as well whenever you have
access to an interpolation object might as well use that interpolation object. So, how do

we go about using it?
(Refer Slide Time: 19:24)

tmi as & quick-reference
- 4] t c

ShowtX MoypstX M lec24igX [ UntileX [ Untite® [ UntitleX @ bifurcaX =~ lect6ifX B lec13iX

W/ - /nptel_codes / lec25 / B +X0O0O»® C» Cde v Python3 O
Name a def fun(x, y):
= return [y[1], y[e]]

def be(ya, yb):
return [ya[8]-1, yb[1]-2]

xd = np. linspace(@, 2,
ya = np.zeros((2, xd.

10);
e));

res = solve_bvp(fun, bc, xd, ya); 1

xi = np. linspace(np.min(xd), np.max(xd), 109);

yi = res.sol(xi

message: 'The algorithm converged to the desired accuracy.'
niter: 1

: array([4.18885995¢-05, 3.70210540e-05, 3.23734781e-05, 2.80680145e-85,
5, 2 1e-05, 1.84516896e-05, 1.68844152¢-05,

erpolate. interpolate.PPoly object at @x2e0881AB4499A600>

success: True

x: array([e 22222, ©.44444444, ©.66666667, 0.88888889, ) 5
4 119111111 2332332 ¢ 1 9797770 2 1)
| 8 @ Python3|idee Saving completed Mode:Command @ Ln1,Col 10 2

Tpe!




So, I will create a new grid. So, x interpolate will be np. linspace, this will be min of it

will be the minimum of xd to maximum of xd. xd and | will take 1000 points. So, then yi

= res.sol(xi)[0], but now that has to be evaluated over xi alright.

(Refer Slide Time: 20:01)

ile Edit View Run Kemel Tabs Settings Help

+ [ <] t c
W/ - /nptel_codes / lec25 /

Name e

18 @ Python3|ide

Type hese o search

RbvpstX Wiec24yX ®UntitleX @ Untite® M uUntitleX M bifurcaX M lecioigX W lec13iX

B+ X000 » e C» Cde v Python3 O

def fun(x, y):
return [y[1], y[e]]

def be(ya, yb):
return [ya[8]-1

xd = np.linspace(8, 2, 10);
ya = np.zeros((2, xd.size));

res = solve_bvp(fun, bc, xd, ya);

xi = np.linspace(np.nin(xd), np.sax(xd), 1600);
yi = res.sol(xi) 1

plt.plot(xi, yi

ValueError Traceback (most recent call last)
<ipython-input-13-a54add384433) in
13 yi = res.sol(xi

---> 15 plt.plot(xi, yi

F:\anaconda\lib\site-packages\matplot1ib\pyplot.py in olt(scalex, scaley, data, *args,
s)
2759 g@docstring. copy(Axes.plot.

7768 def nlnt/*arsc craley=True sralev=True data-Mane *%iwarsc)

Saving completed Mode: Command @ Ln1,Col 10 e

So, now, with the help of this, we can simply plot xi , yi. Oops, there is a there is some

error ok.

(Refer Slide Time: 20:15)

ile Edit View Run Kemel Tabs
+ [ <] & c

| ] nptel_codes / lec25

Name &

"

18 @ Python3|ide

Type hee 1o seach

Settings  Help

RbvpstX Wlec24jyX MuntitleX ®WUntile® M uUntitleX M bifurcaX W leci6igX MW lec13iX

+ XDO0O»nC» Code v Python3 Q
def be(ya, yb):
return [ya[8]-1, yb[1]-8]

vp(fun, be, xd, ya);

ace(np.min(xd), np.max(xd), 1000);
xi)[e]

plt.plot(xi, yi)

[<matplotlib.lines.Line2D at @x1ab45183948>]

A
Saving completed Mode: Command @  Ln1, Col 10
’

A



We just need the residue of the first function that is we need the solution for y, . Because
remember, y, was the original function and we made an auxiliary function y, to split

this into a series of first order equation. So, we are more interested iny, .

(Refer Slide Time: 20:38)

de Edt View Run Kemel Tabs Settings Help

+ B : c ShowX MbvpstX M lec24iX X UntitleX M Untile® MuntileX ®bifuraX @ lect6igX B lect3iX
W/ - /nptel_codes / lec25 / B +XMDOO»u C» Cde v Python3 O
Name 7 i
e

04

06

04

000 05 030 0% 1
I [11]: print(res
I message: 'The algorithm converged to the desired accuracy.’
niter: 1
p: None
|8 @ Python3|idle Saving completed Mode:Command @ Ln1,Col 10

Trpe ese tosewch

So, let me plot this boom, there you have it this is the solution that we have been looking
for.

(Refer Slide Time: 20:45)

ile Edit View Run Kemel Tabs Settings Help
+ B ;) (¢ Show!X MWovpstX [ lec2djX R UntileX @ Untile® [ UntitleX M bifurcaX [ lect6iyX M lec13iX
W/ - /nptel_codes /lec25 / B+X0D0» = C» Cide v Python3 O
P . def be(ya, yb): )

return [ya[@]-1, yb[1]-2]
==

res = solve_bvp(fun, bc, xd, ya);

xi = np.linspace(np.min(xd), np.max(xd), 1000);
yi = res.sol(xi)[e]

yid = res.sol(xi)[1]

plt.plot(xi, yi, label="f(x)');

plt.plot(xi, yid, label="f\\"(x)"")

File "cipython-input-16-a4714e8f78e4>", line 17
plt.plot(xi, yid, label='f\\'(x)"’

SyntaxError: invalid syntax

I [11]: print(res
message: 'The algorithm converged to the desired accuracy.’
niter: 1
P
rms_residuals [4. 5! -85, 3.70210540e-85, 3.23734781e-05, 2.80680145¢-05 )
2.42231 -05, 1.84516896e-05, 1.68844152e-05,
18 @ Python3|idee Saving completed Mode: Command @ Ln1,Col 10
-




In fact, because | have yi, | can also get the yi derivative which will be yid =
res.sol(xi)[1] and I can go ahead and plot the derivative as well. Yeah, it is an issue with

the little string.

(Refer Slide Time: 21:23)

ile Edit View Run Kemel Tabs Settings Help

+ B t c Show(X MbypstX Wlec24iX & UntileX ®uUntite® [N UntitleX @ bifurcaX [ lect6igX M lec13iX

-

W/ - /nptel codes / lec25 / B +XD0O» = C» Cde v Python3 @

e . return [y[1]; Y[8]]

W untitiedipynb def be(ya, yb):

return [ya[e]-1, yb[1]-2]

xd = np.linspace(@, 2, 10);
ya = np.zeros((2, xd.size));

res = solve_bvp(fun, bc, xd, ya);
xi = np.linspace(np.min(xd), np.max(xd), 1088);

yi = res.sol(xi)[e]
yid = res.sol(xi)[1]

plt.plot(xi, yi, label="f(x)');
plt.plot(xi, yid, label="f

(x)"
[<matplotlib.lines.Line2D at @x1abd53c1138>)

I [11]: print(res

message: 'The algorithm converged to the desired accuracy.’
niter: 1 ®
p: None
rms_residuals: array([4.18885995¢-05, 3.70210540e-85, 3.23734781e-05, 2.89680145e-05
5, 2.09657631e-85, 1.84516896e-85, 1.68844152¢-85, >
1.64357687¢-851) 1

7
]38 @ Python3|Busy Saving completed Mode:Command @ Ln1,Col 10

v e

oAl

Type

Because let me use this instead. Yeah, this should work yeah.

(Refer Slide Time: 21:34)

ile Edit View Run Kemel Tabs Settings Help

+ B : (¢ Show!X ®WovpstX M lec2djX & UntitleX @ Untile® [ UntitleX M bifurcaX [ lect6igX M lec13iX
W/ - /nptel_codes / lec25 / B +XDDO» =« C» Cde v Python3 Q
N . plt.plot(xi, yi, label="F(x)');

plt.plot(xi, yid, label="f"(x)"
Untitiedipynb
[<natplotlib.lines.Line2d at @xlabd53c1138]
100
07
0.5
025
00X
025
-0.50
-0. /
-1.0 / b
0w 30 0% 0 1% 1® LG 20
l [11]: print(res |~

18 @ Python3|ide Saving completed Mode: Command @  (n1,Col 10

-
Type hese 10 search "

[



(Refer Slide Time: 21:37)

e Edit View Run Kemel Tabs Settings Help
+ B s c Show!X MbypstX Wlec24iiX ® UntileX M uUntitle® [ UntitleX @ bifurcaX [ lect6igX M lec13iX
W/ - /nptel_codes / lec25 / B +XDO» = C» Cde v Pyhon3 O
Y10 = Tres soI(x)[1]
Name .
plt.plot(x: "f'(x)"); plt.legend(); plt.axhline(@

<matplotlib.lin

18 @ Python3|ide

Type hese toseach

Saving completed

So, then only just plt.legend and plt. axh line

Mode:Command @ Ln1,Col 10

at 0. So, look at x = 2, this slope becomes 0.

So, with the help of this, we are able to solve the problem | mean in a relatively short

manner and | have | have showed you how
boundary condition has to be implemented a

as an constraint to this optimization problem.

(Refer Slide Time: 22:31)

View Run Kemel Tabs Settings Help

to implement the boundary condition. The
s in the form of a residue ok. It sort of acts

def be(ya, yb.

Saving completed "*

18 @ Python3|ide

' %%ﬂw3g%@2@i%=4

|

4 (=L i
}RL b jZTZUf—QyO:VE
‘ ;: ‘0)‘—1

Hg:oﬁr
| Y(2)=-2
‘ %:%

So, yeah; let us do one more problem. That means, we do not need this anymore; let me

place this over here, let us solve

this problem. So,y,"”+2y, -2y, =-3;



Y,(0)=landy,(2)=—-2. So, it is a second order differential equation, ordinary

differential equation, two-point boundary value problem. And because we have

developed the program before, it is quite easy for us to implement this.

So, let me make it y naught right and | can writey,"=Yy,, this becomes
y,'+2y, -2y, =-3and these are still the boundary conditions alright. So, it will still

return y 1; over here, it will return 2y, - 2. So, essentially, this is y," =2y, —2y, —3.

(Refer Slide Time: 23:46)

W/ - /nptel codes / lec25 B+ X000 » = C » Code v Python3 O

Mode:Edit @  Lns, Col29

So, its y,"=2y, -2y, —3 and the boundary conditions are 1 and -2. So, it is already 1

and over here because it is not a Neumann condition, it is a Dirichlet condition, it was -2.
So, this has to be +2. So, that the residue. So, the way of writing this boundary condition
iISyp+2=0.So, y, becomes - 2 at the other boundary. The domain does span from 0 to
2? Yeah.



(Refer Slide Time: 24:20)

le Edit View Run Kemel Tabs Settings Help

+ B t ¢ Show(X MovpstX Nlec24iX ®UntileX ®uUntitle® [N UntitleX M bifuraX [ lectoigX M lec13iX
W/ - /nptel codes / lec25 / B+XD0O»wC» Cide v Python3 O
Naie plt.plot(xi, yi, label="#(x)")

(x)"); plt.legend(); plt.axhline(8)

<matplotlib.lines.Line2D at @x1ab454508b0>

—
e F(x)
//—\\\
\\
\\\
\
130 21K
18 @ Pyhon3|ide Saving completed Mode:Command ® L1, Col1 "

Type hereto seach

So, yeah, let us solve this and see what happens. So, this is how the solution looks. We

do not really need the horizontal line.

(Refer Slide Time: 24:28)

e Edit View Run Kemel Tabs Settings Help
+ [ 4] t c ShowtX MWovpstX M jec24igX [ UntitleX [ Untitle® [ UntileX @ bifurcaX =~ [ lect6igX B lec13iX
W/ - /nptel_codes / lec25 / Python3 Q

Name

;\\\\ é
15 10 15 2 bl
v

18 @ Python3]ide Saving completed Mode:Command @  Ln1, Col 1

Bethort 7
pe hese to sear = 2

So, this is the solution of the problem and this is the derivative in case someone is
interested. So, yeah, you can do problems like this; just have a look at the function
reference for solve bvp and yeah, it clearly says it solves a first order system of ODEs

like this subjected to two-point boundary conditions like this right.



So, things become much easier, when things are inbuilt. But even when they are not
inbuilt, you can write your own program. It is not that difficult to implement really. It is
just a matter of getting used to. So, with this, let us conclude this particular session. | will
be back next time with regular perturbation. We will proceed to singular perturbation and

let us see how we can progress from there.

With this, I wish you a good day and see you again next time. Bye.



