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Lecture - 24
Boundary Value Problems
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Hello everyone in this particular week we are going to study about Boundary Value
Problems. So, far we have considered equations which evolved in time and they are
classified as initial value problems; because the initial conditions are known and then the
system state and things such as plotting the state in the phase diagram, they are the
evolution of the parameters in accordance to how they are governed and their initial

value problems.

But in a different category of problems we can have a domain such as a string and then
you can impose certain conditions. For example, we can have a displacement of the
string like this and this end of the string is left free things like that. So, things which we
are familiar with things pertaining to vibrations and all these things or displacements and

they all fall within the purview of boundary value problems.

So, without any delay let us look at a particular very simple boundary value

2

problem = f . So, itis a linear ODE and we have to define over what domain is this

X2



particular equation valid. So, let us take it over the domain 0 to 2 and at x = O; let us say

f(x) is equal to | mean directly right. The first boundary condition as f (0) =1, second

condition could be f'(2)=0.
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So, this in a solid mechanics viewpoint this would be a prescribed displacement and this
would be a free or unconstrained member. So, something which maintains a slope, but it

does not define what the displacement will be ok.

So, it has to just maintain a slope it could go from something like this also | mean not
this much, it could go something like this all it has to do is maintain this displacement
there is no prescription for it. And maybe if we have to find that out as a part of the

solution who knows.

So, these are the two conditions and this condition is known as the Dirichlet condition
and this particular condition is known as the Neumann boundary condition. So, here the
value of the function is specified at the end point one of the endpoints and over here the
derivative is specified. And so, this is how you distinguish between a Dirichlet and a

Neumann.

Alternately you could have the situation where you have a mixture of both that is

something like f'(2)+2f(2) =a, or something. So, it is a mixture of first derivative and



the specified value of the function and this kind of boundary condition is known as the

Robin boundary condition ok.

So, how do we go over approaching this problem? Well, first thing we could do is obtain

the analytical solution. So, what is the solution for this? So, f = Acoshx+ Bsinhx and
that is the straightforward solution. I mean you could write the solution for this
as f = Ae* +Be™, that is a linear combination of e*and e where the constants A and B

are determined using the boundary condition.

So in fact, let us use this hyperbolic form. So, we have f = Acosh x+ Bsinh xusing the
first boundary condition f (0) =1. So, 1 so when once you substitute x = 0 this term will

become 1; so, this will be A. And this particular term will become 0, because sin h of 0 is

0. So, A becomes equal to 1.

And similarly using the Neumann boundary condition so what do we

have? 0 = Asinh x|,_, +Bcosh x|,_,; this becomes Asinh2+Bcosh2cand A is already

equal to 1 and this implies B = —sinh2.
cosh 2
. . . i - —sinh 2
So, combining this so this is the solution ok where A is this and B = oshZ So, we

could write down the expression by substituting all this over here, but because we are
going to plot it in python anyway or octave as you like. So, we are not going to bother
much about that.
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import numpy as
import matplot
plt.rcParam

%config InlineBacke

1, -2%epty[1]+yle]]

def be(ya, yb):
return [ya[0]-0.9, yb[8]-1.9]

plt.plot(xplot, yplot, ‘--k');
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plt.rcParam
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from ipywidgets import i

ye = A*np.cosh(xe) + B*
plt.plot(xe, ye, label="Exac

, — Bactsoln
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So, let us go and create a new file. So, let me copy this bit of code alright. So, let me then
create a linspace between 0 and 2. And let me in fact, let me call it xe this is for x exact
and y exact is ye = A*np.cosh(xe) + B*np.sinh(xe) we can send this to the next line
because we need to define the constants A and B.

So, A is 1 while B = -np.sinh(2)/np.cosh(2). Alternately you would have written it as -
np.tanh(2), but anyway this is fine. So, with this let us do a plot.
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So, this is how the exact solution looks like and the value of the function at the other

endpoint that is X = 2 appears to be something which is near to 0.3, but less than 0.3. So,
this is what we have from the exact same, but now we are interested to solve this

numerically. So, how do we go about solving it numerically? Let us see.
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So, the first thing that we do the first very first thing that we go over doing is to
discretize the domain into a bunch of points. So, this is x = 0 and this is x = 2. This is



going to be so, we make a linspace out of this. So, this will be 0, 1, 2 all the way to N-1.

So, if we have a linspace which has an elements. So, let us do that and see.
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So and let us keep this code over here and let us write this here. So, x =
np.linspace(0,2,20) and let us say we take 20 points. And yeah so let us print x just for
good measure. So, this is how x looks like the Oth point is 0. And the last point so 0 will

be 0 whereas, 19 will be 2. So, it is going all the way from 0 to N - 1 alright.

So, now our task is to discretize this particular equation over on this grid. So, we have

d*f

what
X2

= f . So, how do we discretize a function at a point? So, | must write the

function in terms of the neighboring points. So, the very easy way of doing it is writing a

central difference approximation alright.

So, I mean | whether or not it is clear how to do this I will just give you a gist of how it is

2 2 _
done. So, we have f (x) = f(x,)+ | A)(erf_2|X A 5o, now 1X=T(X)
dx dx? ™ 2! AX

gives
. af . . .
us a good estimate of what i |, s going to be. But we have neglected the other terms,
X 0

but the magnitude of the other term. So, | have divided everything by Ax . So, this will be
+0O(AX) .



Meaning whatever | am neglecting is going to be proportional to the Axthat I have over
the grid, if Axis small then this approximation is also good if Ax is large this
approximation is not going to be good. So, how do you go about finding the central

difference approximation? Well you have on one hand the approximation for f of near X.
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And similarly, you can write an approximation of f. So, what we have? This is X, this is |
mean well. So, | just write an approximation for f(-x) that is the point on the other side.

df 2, AX®

df
SO! f(—X) :f(XO)_&L(O A d .2 | Ay

X02|

So, as you can imagine if | add these 2 equations the odd terms will cancel out because

Ax3term will be there and here it will be - Ax®. So, all these odd terms will cancel out.

2

So, finally, we have f(x)+ f(-x) = 2f(x,) +(;f—2 |, Ax* +O(Ax*)and so on.
X 0

f (x) - 2f(x,) +f(~x)

And so, this gives us a good measure of the second derivative as N
X

And so, the error will now be order Ax*because | have divided everything by Ax*. So,

this also is gets divided by Ax .

So, such an approximation is said to be second order accurate because as Ax becomes

small, by say a factor of half the error is expected to reduce by a factor of one-fourth



which is in stark contrast to the forward difference approximation for a single derivative.

Well | have rub that now.

But similarly, I could so what we had earlier£| _ 109 -10x,)
dx " AX

choose whatever x and -x is to be a point coinciding with the neighboring grid. So, now x

+0O(AX). And now | can

becomes x; and -x becomes x-1. Because f(-x) is simply the - firsth node and this x will

become the first node, if this node is the Oth node.
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So, this approximation was first order accurate, but you can actually evaluate a second
order accurate derivative and the way to do it is; is going to be f (i+ 1). So, if I call
df | F () —fx,)

this—|,
dx 2AX
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Essentially it is saying and if this is a function if this is 1 point i. So, if you want to

approximate the slope at this point which is something like this, I can discretize the grid
over which it is defined. So, this is i this is i +1, this is i - 1. So, this point is f(x, ,) this
point is f (x,,,). So, | can approximate it by taking a difference between these two points

that is the central difference | can approximate it between these two points this is the

finite the forward difference.

| can in fact, approximately using these two points as well that is the backward
difference. So, depending on the scheme that you use 1 will arrive at an approximation to
that particular derivative which will have some order of accuracy. And as to what that

accuracy will be is a matter of what your choice is alright.
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2
So, let us get rolling with this so yeah. So,%z f . So, I can do a finite difference

approximation at the ith node. So, what this will be? Will befi—lLfi;f”l

=f,. So
AX

obviously, the left hand side is order Ax”accurate. Now, let me collect the terms

containing I mean let me segregate the terms f_,, f, and f,,.

So, I have f_, ok.So, f,_,is obviously, referringto fatxi-1 ok. So, this is just a small

shorthand for writing f_, + f,(~2—Ax*)+ f,,, =0. So, you have many nodes and here is 0

and you have many nodes and here you have N - 1 ok here you have N - 1.

So, now this particular discretization let me call it as A. So, this is valid for the interior
nodes because we must treat the boundary conditions a bit a bit differently. In the sense

that | know that f (0) is = 1 and g—f l,_,=0.
X
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Now, while we are added let us have sort of discretization for this fellow as well. So, this
is quite trivial this is simply going to be f(0) is going to be 1 this is going to be. So, let

me take a backward difference at the final node. So, backward difference at the final

node will involve N -1 and N - 2 fine. So, this will bew =0, alright.
X

So, this is for node number O this is for node number N - 1, but what about the inner
nodes. Let me substitute i = 1 over here. So, what do | have? | have f (0) + f (1). So, let
me call this as « alpha because; it is not going to change over the equations because we
will have a regular grid meaning Ax is not changing across various locations on the grid.

So, that kind of a grid is called as a uniform grid or a regular grid no problem.

So, its going to be f,a+ f, =0. Now, what I can do is | can write it for i = 2, 3 and so on.
So, thisis fori = 1, i =2 i will have f + f,a+ f,=0 and so on. Why = 0; obviously, i
have f (0) =1 and for fsorry ori =N - 1 i have f_, —f, , =0because Axcan go on the

right hand side and it will be; obviously, 0.
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Now, what | can do is write down these equations. So, for N equations | have N
unknowns. The N unknowns are fq, f 1, f, all the way to f . 1. And how many equations

do we have? We do have an equation starting from1=0toi=N - 1.

So, its a set of linear algebraic equations. So, we have converted the ordinary differential
equation into a set of linear equations alright. So, if | can go ahead and write this in a
matrix form how will this particular set of equations look? So, over here | have fo f, f,

all the way to f 1. So, f y-2 comes on top and this will be equal to something.
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So, this kind of equation will always come out in the form Ax = b. Where a is like the
mass matrix | mean it borrows its nomenclature from solid mechanics or structural
mechanics its stiffness matrix ok. So, b this is the right hand side ok let us not alert to
that no increase or not. So, we simply obtain this set of equations say Ax = b forgotten

most of structural mechanics.

But yeah you do get an equation of this particular form over there as well alright. So, this
IS a matrix, this is a vector, this is a vector. So, let us populate those vectors. So, what do
we have. So, fy so for the first node f, = 1. So, thiswillbe 100000 = 1. So, thisis 1 x
f1 =1 over here we have 1 «1 then all Os this is going to be equal to O over here we

have.

So, there is no f o over here. So, this becomes 0 is « thisis 1 is a1 and everything else
is going to be 0. Again, 1 sorry thisis 0 1 « 1 0 so, this continues on. So, apart from the
first row and the last row this keeps on continuing this tridiagonal set keeps on
continuing up until the last node upon which we have a backward difference to take care

of alright.

So, the backward difference in this case is quite simple it simply implies f y_.1 =f n.2.
So, this is - 1 over here and this is going to be 1 and this is equal to 0. Why is it - 1? So,
all these are going to be 0 is - 1 xf ., + so, basically this particular term + 1 x f .1 is

equal to O alright great.

So, now our task is to construct the matrix A and the vector b and then solve for x ok. So,
solution x | mean over here | am writing it as x, but it will be really f great. So, let us go
over here in fact, yeah. So, we do have an expression for x. So, now, what will be the

size of the matrix A? So, A has to be A square matrix having the same size as x.

So, it will be np dot zeros and the size will be. So, let me soft code it as N; where N will
be the number of points. So, N = 20 alright great. So, A has been initialized to 0s. Now
what will be b? So, b will be np dot zeros. So, its N rows and 1 column alright. So, A has
been initialized b has been initialized. Now it is a matter of constructing the appropriate
structure for A. So, what we could do is run a loop from i =0 to N - 1 and based on this

particular logic we can assign all the different members of the matrix.
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So, we are not going to do it like that, but I am just going to outline how to do it in case
you are doing it in ¢ or something where vectorization is not possible this is how you

would do it for i = 1 sorry for i in 1 np.arrange O, N.

So, A so what do we have? So, if i =0, then you will say AO,0=1else;i=N-1or
rather yeah = n - 1, then what will we do? We willsayaN-1,N-2=-1AN-1,N-1
=- 1 rather 1.

So, these two if else statements take care of the boundary conditions rather the boundary
nodes; if they are not the boundary nodes then we continue as normal else A N or rather
A1, i. Well I could have written this in terms of i as well i - 1, | think it is better to write

it in terms of i.
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Because its already doing the check whether i is = N - 1. So, | do not need to write it in
terms of N - 1 i can simply write it in terms of i yeah. | think that is much better. So, Ai,
i will be = ¢ A oopsi,i-1isgoingtobelAi,i+ 1isalsogoing to be 1. So,

essentially it is assigning the three values and you can figure it out whether how this is

going to work.

So, let me define what « is. So, alpha we had defined as - 2 - Ax?. So, - 2 x - dx°. So,
what is going dx going to b?e dx is going to be x 1 - x O its simply the difference
between 2 nodes alright. So, let me run this and let me show you how A looks like. In

fact, let me reduce the number to something manageable like 5 alright. So, this is how A

looks like.
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So, look its 1 over here and all Os and 1 - 2.25 1, 1 - 2.25 1 and the boundary nodes are

different, but everything else is like a tridiagonal matrix.
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for i in np.arange(9,N):
if i =6
Ali,i] =

elif

Afi,i
else:
A[i,i] = alphe; A[i,i-1] = 1; A[L,i#1] = 1;

=L AlLE] = L

I [12]: print(A
1. e o o @]
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And actually, boundary value problems where you are discretizing with the nearest
neighbor it does resemble a tridiagonal matrix alright ok. So, yeah this is what you can
do to construct A, but its actually looping over all the elements and doing and we can
alternately take a great shortcut. Let me comment [FL] I cannot comment over here ok.
But let me split cells and keep it for later. So, what we will do is we will use the np dot

diag function. So, what is the np dot diag function?
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So, let me show you. So, let some small a be 1 2 3 right. So, A = np .diag a, 0. So, now,
let me sorry let me show what A is. So, it will take a vector and it will push all the vector
elements to the diagonal elements. So, | have to pass a vector which is having the same
size as the length of the square matrix alright. So, over here it is 3 and so on. So, this
gives us an idea. So, because all of them are going to be « except the zeroth node and

the N - 1 N node I can handle them easily ok.

So, let me write this. So, diagonal vector is going to be alpha times np dot ones the size
is going to be N rows and its just a vector dvl is the offset ok. So, dvl is the offset
meaning if b is = 5, 6 and | write B = np.diag b , 1 then let me print B its going to take

the vectors and it is going to put the vectors in the shifted location to the diagonal.

The shift is specified by this. So, over it is inserting b the elements of b into the matrix
capital B and having a shift of 1. So obviously, it has to have 1 less element the more you
shift the lesser elements you should have great that gives us a different idea.
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So, this simply going to be np.ones N - 1 ,. So, yeah that is it. So, now, a will be
np.diag(dv) + np.diag( dv 1, 1) + np.diag(dv 1, - 1). Where | have used the fact that the
upper shifted diagonal and the lower shifted diagonal have the same value to be inserted
ok.
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,2,N); dx = x[1] - x[e];
, N)); b = np.zeros((N,1));
dx**2;

else:
Ali,i] = alpha; A[4,i-1] = 1; A[i,is1] =

2, 3]; A = np.diag(a,8); print(A) =
= [5, 6]; B = np.diag(b, 1); print(B)
[110 0] |y =

-
| 7 { Pthon3.. Savingcom.. Mode.. @ Ln8C.. Untitld... g ¢ " s Deae ,%
y

(Refer Slide Time: 32:43)

fle Edit View Run Kemel Tabs Settings Help

| —_—
B+ X000 » = C » Cde v Pthond3 C P ] :FM

N=S5;

x = np.linspace(8,2,N); dx = x[1] - x[e];
A = np.zeros((N, N)); b = np.zeros((N,1));
alpha = -2 - dx**2;

dv = alpha*np.ones((N,));

dv1 = np.ones((N-1,));

A = np.diag(dv) + np.diag(dvl,1) + np.diag(dvl,-
print(A)

1=-1 AlLi] =3

else:

§7 Python.. Savingco.. Mode:Co.. @ Ln7.. Untitle ; s 40

So, having done this let us print what A is. Let me reduce this to 5. So, great we have the

tridiagonal matrix as we want. Now, | will unset the boundary nodes to be zeros.
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So, A0, all is going to be 0; AN -1, all is also going to be 0. Let me print and show

that we have indeed unset these 0 and the last node great.
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So, now we can simply incorporate the boundary condition. So, A 0, 0 is going to be 1

and the other boundary condition is goingtobe AN-2,N-1isgoingtobe-1AN-1,

N or we do not need to write N - 1. | am just being silly over here.
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Because we can simply write A-1,-2is=-1and A-1,-1=1. And we have seen this
in the very beginning that - 1 is simply same as N - 1. Let me in fact, print A and

convince you.

So, A0 O has beensetto 1; A-1hasbeensetto-1and N -1 -1 has been setto 1. So,
now, | must also set the b matrix. So, b is going to b. So, b 0 is simply going to be 1 that
is it. So, now, we do have the system of equations say A x = b and its just a matter of

solving it.
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p (dvi, =
-
p.dot(np.ini(A), b
Attributerror Trace
back (most recent call last)
<ipython-input-24-a4582d7a8776> in
13 b[0] = 1; >
---> 15 £ = np.dot(np.inv(4), b); - {/t
F:\anaconda\lib\site-packages\nuspy\ _init_.py
in (attr)
a7 return Tester
218 else
== 219 raiss Attri vy
§7 Python.. Savingco.. Mode:Co.. @ Ln7,.




So, how do you solve? | mean because its a very trivial case we take an inverse of A and
multiply it. So, A*A f = A b and but AA is going to be the identity matrix. So,

1T=A%and IT=T.So the solution f = A .

So in fact, let us do it | mean its not the most efficient way of doing it most way, but let
us do it regardless. So, f is going to be np dot inv A and now we have to do a matrix

multiplication.
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Attributerror Trace &
back (most recent call last)
<ipython-input-24-a4582d7a8776> in
13 ble] = 3; R
<==> 15 £ = np.dot(np.inv(4), b);
F:\anaconda\lib\site-packages\numpy\ _init_.py
in (attr)
return Tester
28 else
--> 219
odul as no attribute
{ir}".format(_name_, attr))
AttributeError: module 'numpy’ has no attribute ,k/
‘inv'
[13]: for i in np.arange(8,N):
ifi=0
AL il vy
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for i in np.arange(8,N):
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So, np.dot A * b there is there appears to be an error np. inv. So, that the function inv
actually lies inside the linalg sub module yeah.
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9]
alpha = -2 - dx**2;

dv = alpha*np.ones((N,));

dv1 = np.ones((N-1,));

A = np.diag(dv) + np.diag(dvi,1) + np.diag(dvl,-1);
Al8,:] = 0; A[N-1,:] = &;

F = np.dot(np.linalg.inv(A), b);
plt.plot(x, f

[<natplotlib. lines.Line2D at @x2clfdce7arer]
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So, now that we have done this we can plot it. So, plt.plot x , f. Well let us try to

superpose this with the earlier solution what was it xe and ye.
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plt.legend(); plt.xlabel("$x§"); plt.ylabel("$f(x)$")
Text(e, .5, '$5(x)$')
[13]: for i in np.arange(8,H)
ifi==e0:
Ali,
elif i = 2
A1) = -1 A[L] = 15

else:
Ali,i] = alpha; A[4,i-1] = 1; A[i,i+1] = 1;

a=[1, 2, 3]; A = np.diag(a,®); print(A) A
b = [S, 6]; B = np.diag(b, 1); print(B) ]

100
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So, let me give this a label of approximate or numeric plt.plot(xe, ye, 'ok,
label="Exact"); plt.legend(); plt.xlabel("$x$"); plt.ylabel("$f(x)$").
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Text(0, 0.5, '$F(x)$")
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So, there appears to be some error; | mean not some error, but it is exact at the end, but

here there is a great deal of error. In fact, oh 1 reason could be the very ridiculously low
number of grid point.
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[13]: for i in np.arange(8,N)
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Ali,i] = 1; 3
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So, let me take 50 grid points maybe it makes things better it makes things much better
the numeric and the exact solution do a does appear to match, but at the end point there is

still something its not really matching exactly.
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N = 100;

x = np.linspace(8,2,N); dx = x[1] - x[8];
A = np.zeros((N, N)); b = np.zeros((N,1));
alpha = -2 - dx**2;

dv =

A=n .diag(dvl,1) + np.diag(dvl,-1);

plt.plot(x, f, label=
plt.plot(xe, ye, label="E: H
plt.legend(); plt.xlabel("$x$"); plt.ylabel("$F(x)$")
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Well maybe if | make it a 100 points its much much much better, but well why is does it
not match as good as the other points? So, over here for example, you can hardly discern
that there is some error, but why is this | mean let us go back to our workout working.
So, the backward difference this has a truncation error of delta x of order delta x.

(Refer Slide Time: 37:52)
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Whereas the central differencing that we have used for the interior nodes it is order

AX? the truncation order is order Ax*. So, we must now come up with an approximation



of the boundary condition at the end node at N - 1th node which is order Ax*and the way

to do it is again a central difference scheme.

(Refer Slide Time: 38:19)

So, you have the N - 1th node, you have the N - 2th node. Now, we have to imagine a
ghost node say the Nth node. So, this is actually not a part of the domain its a extended
ghost node that you sort of have in order to do something with it. So, now, the boundary
condition was df/dx at N - 1 or the N - 1th node is = 0.

fy—f

X N-2 — 0,but because its using the Nth node Nth - second node its order
X

So,
Ax? accurate alright. The truncation order is of order Ax*, but what do | gain with this. |
now have introduced an extra node. So, | can write down the equation that | had for the

interior nodes for the boundary node as well.
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So, now I can have f , +af, ,+ f, =0. So, | can do this, I can use the equation that |

had formulated in the interior, because | have extended the domain by 1 ghost node. So,

this sort of becomes the interior this is the ghost node very spooky.

So, now | have an equation in terms of f \, but from this equation | have what? fy =f .
». S0, substituting this over here | will have2f, +«af,, =0. And now this is the last

equation that I should modify everything to, alright.

(Refer Slide Time: 40:36)
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Text(e, 8.5, '$f(x)$")
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So, let me make a copy of this or in fact, let me change it to A1 and | will make the other
thing as A2. So, that we can plot everything in N 1. So, everything is same for Al and
A2 up until the last point. In fact, we could have used np dot copy, but anyway we have
doing we have done it the hard way no problem. We could have used np dot copy that is
copy make a copy of Al and assign it to A2 but anyway.

So, now what changes is over here. So, this does not change this is still 1; I mean 1, but
over here now what do we have? So, this is « alpha, and this is 2 ok; this is going to be
alpha sorry this has to be written in terms of f N .2. So, | will have A2-1,-1= aand A2

-1, -2 and that is going to be = 2 ok yeah that is pretty much it.

Now, let me make another solution let me call it g this will be the inverse of A2. And we

expect the solution from A2 to be more accurate than Al let me also plot, alright.
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[33]: [N =19
x = np.linspace(@,2,N); dx = x[1] - x[8];
)); b = np.zeros((N,1));

1]_.

.diag(dvl, 1) + np.diag(dv1,-1);

A

a1+ o1
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Ali,i] = 1;
elif i :
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Let us run it we have too many grid points let me make it 10 to highlight the difference

perhaps the exact solution.
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import numpy as np;

import matplotlib.pyplot as plt;
plt.rcParans.upd xt.usetex”:True});
%config InlineBacken _format = “svg”
fron ipywidgets import int

xe = np.linspace(8,2, 6);

A =1; B = -np.sinh(2)/np.co:
ye = A*np.cosh(xe) + B*np.si
plt.plot(xe, ye, label="Exact sol

); plt.legend();

— Bt soln
)
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We can put as a marker and for the exact solution we can take maybe only 6 points. So,
because it is an exact solution we know that the markers will be exactly at the correct

point.
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g ey mep e ey =
1] = alpha; A2[-1,-2]

f = np.dot(np.1i
g = np.dot(np. linalg.
plt.plot(x, f, labe rst order BC");

plt.plot(x, g, label="Second order")

plt.plot(xe, ye, ok, label="Exact");

plt.legend(); plt.xlabel("$x$"); plt.ylabel("$F(x)$")

Text(s, 8.5, '$F(x)$")
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[13]: for i in np.arange(8,N)
ifi=02:

Ali.il =1:

A
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So, look the second order solution is far more accurate than the first order solution. In
fact, let me make it first order. So, just to say that its the boundary condition is of the

first order ok, the second order boundary condition matches quite well.

So, what you can do is give a go of this technique that you learned the ghost node. You
can do it for any you can open up a textbook and find out any equation that you have you

can try to solve it using this technique ok.
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for i in np.arange(8,H):
1f i == 0:
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And | have shown it for a linear equation, but you can extend all this calculation for non-
linear as well. And you now know the tips and tricks to how to implement all of this in
any language really. We are not dependent all we have used is the inverse finding trick
over here. And actually, in the next class before beginning I will discuss a bit about

various other algorithms.

So, you do not really go about finding an invoice these are direct methods. So, to say, but
do it iteratively. I will just make a small note on what techniques do exist and what is
being used because once you have large systems finding an inverse of a sparse matrix is

not that easy ok.

So, go ahead and try different problems from your textbook you have analytical solutions
as well; you can try to plot them to convince yourself everything works ok. So, with this
we end this in the next class we will see how to use some of the inbuilt libraries in
python to do all this thing in a very small | mean wrapped way ok. So, we will be using
the solve BVP ,nd and | will discuss about some solvers. So, with this we conclude this

lecture I will see you next time bye.



