Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture — 23
2D Random walks

(Refer Slide Time: 00:30)

+ B 1 c SIX Wux Hex Blax

ile Edit View Run Kemel Tabs Settings Help The wthon gpqﬁg¢t§Vg:;i6téBg\oks 8an

W/ - /nptel_codes / lec23 / B+X0D0)» s cC» P}} |
Name - S

ea—

112 @ Ppython3|ide

Type hese o searc

Saving completd ™ '

Hello and welcome to this lecture in which we are going to begin with 2D Random

walks.

(Refer Slide Time: 00:42)

de Edt View Run Kemel Tabs Settings Help

* B t c ShX MleeX BlaX MWleeX HleeX EmeX HNleeX WrarX ®WunX WpifX HWlecX WlecX
W/ -/ nptel codes / private B+ XD 0O » = C» Makdowny Python3 O
Name

A ising_metropolisipynd g from scipy.optimize import curve_fit

def fitfunc(x, a, b)

@ lorenz_attractor.py

% mandelbrotpy

xvals = bins[@:-1]; yvals = counts;
A nonlinear_equationsipynb opti_pt, _ = curve_fit(fitfunc, xvals, yvals);
print(opti_pt)

A monte_carloipynb

octave_sandboxipynb

A oneD_flows.ipynb

Bl phaseportrait 2d ipynb vals, yvals, ‘ok’, label='Raw data');

@ pi_approxpy plt.legend(); plt.xlabel('x'); plt.ylabel('$f(x)$")
B rand_walk100000png [9.53587522 -1.06962461]
@ randomwalk_2d.py Text(9, 8.5, '$F(x)$')

A randomwalks.ipynb
= Normal dist. fit
i 0.04
: i ® Rawdata

R rolling_average.ipynb

% strogatz_examplepy
A Untitledipynb

A Untitled1.ipynb

§ 11 @ Python3|idee

pe

Mode:Command @ Ln1,Col1 ra

And before going into 2D random walks, | just want to go back to our discussion and |
think 1 had forgotten you to show how we can fit the normal distribution. I am just going

to quickly browse through the program for that.

(Refer Slide Time: 01:15)

So, imagine you want to find out whether a given set of points. In this case, the black
points they fit to a normal distribution. Well, how to go about doing that we know that a
normal distribution has this particular form. So, the first thing we will do is create a
function which will be the type of function that we are trying to fit, alright. So, it will
take as an input x, it will take two parameters a and b.

So, the whole purpose of the fitting is to find out the appropriate parameters which will
minimize the error between the fit and the raw data, alright. So, then this is the data we

had from the histogram xvals and yvals. So, x values and y values is what we have.

Then, we call the function curve fit which is inside scipy.optimize. We pass the function
handle which will do the function evaluations. We will pass the data that is the x values
and y values. The output is the set of parameters in the fitting function. The second

output we do not worry about, alright.

Once we have that we can use the same function, but now we pass the output of the

curve fit function as the two parameters. So, over here | am assigning a as the output 0 of

the output of the curve fit function, while I am assigning b as the output of the curve fit.

This the second value of the output.

So, once | do that | plot it and | give it a label, and I also plot the raw data and after a lot
of iterations or when you move ahead in time significantly, you will see that the
distribution of locations does satisfy the normal distribution. There is something which |
said | would discuss in the last class, but then I forgot about it. But anyway, it is not that
difficult. It is there in the HTML that | have uploaded on my website and you can
download it from there. The description is also there.

(Refer Slide Time: 03:50)

So, now let us move on to 2-dimensional random walks. So, let me create a new file,
alright. So, what are we trying to do? So, in 1-dimensional random walk we had a
random walk in which we had a walker or a particle and it would choose the step that it
would take on the line, either it would sample from a step size distribution. So,

p(AXx) versus Ax, so it would sample from this distribution and then decide whether it

has to go over here or here or how much it has to go over here.

So, now, when we extend this idea to 2-dimensions, we obviously, are dealing with a 2-
dimensional plane rather than a line and we can pose certain questions. For example,
what are the number of steps taken before a given random walk exits a certain diameter.
So, if I define this as the crossing boundary a Lakshman Rekha if you like. So, after how

many steps does the particle exit and | am interested to find out the total or the

distribution of steps.

So, for example, | choose particle number O it maybe took 25 steps, particle 1 maybe it
took less steps maybe it went straight ahead particle 2 maybe it take it took more steps.
So, once | have say 10000 particles, | have a bunch of total steps the particle has taken,
then I can find out the histogram of this to find out the pdf of N that is the number of

steps.

Alternately, I could also ask the question after; so, here we are asking how many steps it
took or we could equivalently ask that at a fixed time t what is the distribution of the
locations that is the radial distance from the origin; so, if this is the origin at a given time
t what is the distribution of locations of the particle. So, I am interested in the distance
rather than the coordinates. So, these are some of the questions which are quite important

from various physically naturally occurring phenomena like foraging.

(Refer Slide Time: 06:32)

So, if you have heard of lions, and say you are in the savannah and you are hunting for
food. So, what do predators do? They move a large distance, then they look around, they
look around. Then, if they find something well and good, then they know that the area is
depleted in resource and they will make a nice jump again and then they will again look

around.

So, there are these large jumps and there are these small foraging, ok. So, this foraging
behaviour does appear to have such a pattern. And as you will see such kinds of patterns

are common for what are called as levy flights, ok.

But for example, if you are trying to figure out how an insect on the surface of a pond is
moving you track the insect and you will see that it has all sorts of behaviour going on.
But then what dictates that behaviour or what governs that motion of the insect? Is it the
presence of some other insect? How does the motion get altered in the presence of other

insects? How long how many steps?

Does it take for the insect to reach? For example, say a source of food. So, these are
some of the questions and depending on the problem at hand. It is usually how you
would define the random walk. There is no universality to how you would go ahead and

define the random walk, ok.

(Refer Slide Time: 07:57)

Name =

Fixed point iterations in 1D

inear equation
exp(x) - 3x” =0,

] 12 @ Ppython3|idee Saving completed

(Refer Slide Time: 08:01)

ile Edit View Run Kemel Tabs Settings Help

+ B t c SIX WuX Hie® BleX HleX MleX MmX WX WX Wux WbxX HexX Hex
W/ - /nptel codes / lec23 B+X0D0O»wC» Cde v Python3 QO

Name -

e [1]: |import numpy as hp
| :

] 12 @ python3]idee Saving completed

So, with this background let us begin. So, we will need the opening bit of code and I will

copy it from pardoning. I will copy it from one of the previous programs, alright.

(Refer Slide Time: 08:10)

de Edt View Run Kemel Tabs Settings Help

ShoX WUnti® HEle2X MWuntiX BlawrX WlecdX Wle2X HWmorX MlecdX WrancX ®WuntiX HobifuX ®lechX W lect X

B +X0OO0 » e C » Code v Pyhon3 Q

9

import numpy as np;
import matplot
plt.rcPara
%onfig InlineBacken
from ipywidgets impor

def get_angle(N):
return np.rand

def get_stride(N):
return np.ones(size=(N,))

N = 208;
X8, y8
X = np. 2,N);

for i in np.arange(8,N):

File "cipython-input-3-f3b595482b03>°, line 12

SyntaxError: unexpected EOF while parsing

I 138 Ppython3|idle
Type hes

Saving completed Mode:Command @ Ln1, Colgg

()

So, now, how do we go about this? Let us look at the simplest random walk what is
called as the Pearson walk.

(Refer Slide Time: 08:23)

So, Pearson walk is you start from the origin, and you have a sort of uniform, not a
uniform, but you have a fixed distance that you would take. So, each time a step is taken
the length of the step r is fixed it is equal to I, but the direction can vary between 0 and
2 7. So, the direction is uniformly distributed, but the step size is fixed. So, in terms of
writing down the pdf of this if it is 1-dimension, so you would say p(r) = &(r—1), right.

So, this is the delta function. And accordingly you can find the cumulative distribution of

this function as well. So, the cumulative, so c(r):'[or p(r)dr'and so this will

becomej'or5(r’—l)dr'.

(Refer Slide Time: 09:57)

So, now, if the domain is O to r, right, if the domain of integration, so if I liesin 0 to r
then this integral is going to be 1; if | it does not belong it is outside O to r, then the
integration will be 0. So, the cumulative distribution for such function it will be 0 and
then suddenly 1. So, now if you look back and on how to sample a certain random
number from a given probability density function, you would uniformly you would draw

uniform number between 0 and 1, project it on this curve and then project it back.

Because it is a vertical line all your samples will fall at r = | and obviously, these are

properties of the Dirac function, Dirac delta function, ok. So, | have used the important
property thatle f(x)o(x'—a)dx’, lower limit and upper limit or | ; to u 4, this is going

to be f(a), if a lies between |1 and I ,. If a does not lie in the domain then it will be 0. So,

these are just some properties of delta function.

So, now, this is, ok. I mean this is quite easy to implement. You can imagine, you have a
fixed increment r, so you are starting over here. You know you have a fixed increment,
so your trajectory will lie somewhere on the circle at the next time instant, but as to
which angle it will take it depends on the sampled value between 0 and 27z ok. So, if it is
0 it will move over here, if its 7 it will move over here, if it is z/4it will go over here

and so on. And after you raise this point you will again do this.

So, if it is after reaching this point if it is 7/ 2it will go something like this. So, let us try
to implement this. So, first things first, we can borrow certain things from the previous

lecture.

(Refer Slide Time: 12:22)

ile Edit View Run Kemel Tabs Settings Help

+ B b4 c X ELX WkX ELX BLX BX BkX Hax BkX EeX EUX EbX WkX ®iX
W/ - /nptel_codes / lec22 / B +XDO» =« C» Cde v Python3 Q
Name =
B lec22 pythontmi e el

import matplotlib.pyplot as plt;
Xconfig InlineBackend.figure_format = “svg"
from ipywidgets import interactive

def get_steps(N):
return np.random. randint (0, 141, size=(N,))*2-1

Np = 100000; Nt = 204;
x = np.zeros((Np, Mt));

for i in np.arange(1,Nt):
steps = get_steps(Np)
x[:,i] = x[:,i-1] + steps;

if np.mod(i,20)==0:
s = x[3,i]
binsp = np.arange(np.min(s), np.max(s), 2.8)
counts, bins = np.histogran(s, bins=binsp, density = True)
plt.plot(bins[@:-1], counts);
plt.xlabel('x"); plt.ylabel('$p(x)$'); plt.title('Probability density function of lo|

Text(@.5, 1.9, 'Probability density function of locations')

§13 @ Ppython3|ide

Type hese tosearch

Saving completed Mode:Command @ Ln1, Col

(Refer Slide Time: 12:25)

ile Edit View Run Kemel Tabs Settings Help

+ B b4 c X BHLX Hex WX BLX Hix WX Hpx Wix
W/ - /nptel_codes / lec22 / B +XDO» = C» Cde v

L
Name : 2 5 X

WrX BELX BEbXx Wix ®iex

Python3 @

-4 -0 0 0 0

B lec22_pythonhtmi
Untitledipynb

[21]: |def get_steps(N): -
return np.randon.uniforn(-1, 1, size=(N,))

Np = 100000; Nt = 200;
x = np.zeros((Np, Nt));

for i in np.arange(1,Nt):
steps = get_steps(Np)
x[:,i] = x[:,i-1] + steps;

,20)==0:

»]

binsp = np.arange(np.min(s), np.max(s), 2.8)
counts, bins hi

plt.plot(bi

istogram(s, bins=binsp, density = True)
-1], counts);

Text(0.5, 1.8, 'Probability density function of locations')
Probability density function of locations

A

§ 13 @ Python3|Busy

Type hese tosearch

Saving completed Mode:Edit @ L2, Col g

So, let me open that file as well. So, we will use the uniform distribution code. So, here

we will say get angle and it will go from 0 to 27 . And so, what is the work flow that we
are looking over here?

(Refer Slide Time: 12:53)

/ 8T%C
e Edit View Run Kemel Tabs Settings Help s =Y ¢ :f 53 o
L ,
ShoX MW Unti®@ Mle2X MUntiX BlaurX WiecdX Wi _ “ _S’ 71/, L,IJ\).
B +XDO0O» = C » Code v ‘i\ J A

1: | def get_angle(N):
return np.random.uniforn(8, 2*np.pi, size=(N,) Y 0

M- U8
A = Jond

J

] 3@ Ppython3|ide Saving completet "= * -

So, the work flow will be we initialize the vector that is x,, so this is at t = 0. So, this is

time, this is X, this is y, alright. Then, we want to find an increment. So, we will we know
that in this case the radius the step is fixed, so it is I, we will sample theta and we will

sample some &, ok. So, & belongs to a uniform distribution between 0 and 27 .

(Refer Slide Time: 13:36)

! Vi L] I .
dit un abs ngs Help 4 il £~ ! 3‘ 0 &
L /
X Hunti® Ele2X MuntiX BlaurX HNiedX Niec2 ! J\).
Sho Unti @ lec: ti al & ec _ \ S % <1/
_ = \
B+ X000 » =« C » Cde v N |
00 : U A

import numpy as np;
import matplotlib.p:
plt.rcParan:
%config InlineBacken
from ipywidgets import interactive L

3

01 2 N
[2]: |def get_angle(N): # N is the time steps 2
return np.randoa.uniforn(8, 2*np.pi, size=(N,) ¥l 0 AX ;\2 _,\j \\\L
U | O
def get_stride(N): 1 f Y]
return np.ones(size=(N, 5 \/O A \ JU J\\j A‘yn,&
= 7
0
X, vj
for 045% Y2105
D b\f(_s D+A ‘~L§J,?u 3
&\ = [oNY
J

Saving completef "> ©

] 3@ Python3|idee

Now, based on this the Ax=1cosé@, Ay =1sind. So, at this; so at the first step, so instead

of calling it Atdelta t | will just call it 1, it will be some Ax, , Ay,. Then at time 2, it will

be Ax,, Ay,, and so on for n, it will be AX,, Ay, . So, at the end of this the trajectory will

be the cumulative sum up until that point. So, suppose | want to find out the trajectory up
until 3, so it will be simply 0+ Ax, + AX, + AX, .

This will be the x coordinate, the y coordinate will be 0+ Ay, + Ay, +Ay,. So, if | sort of

plot the cumulative sum all the way, | should be able to find out the trajectory. Well, let
us find out. So, over here what is N? It is not the particle number. It is the time instances

that we want, ok.

Unlike the previous problem where N was the number of particles that we were
initializing here we are fixing our attention on one particle finding out all the mutually

independent steps that it will take and then we make a cumulative sum, alright.

So, N over here is representing the time steps, ok. So, let me just put a comment, alright;
def get_stride(N), it should simply returnnp.ones((N,)), right. So, it has to just return a
bunch of ones, alright. So, these are the two functions that we want well. Now, | can

focus on one particle.

So, | will say how many time steps do you want. So, let us say we want 200 time steps,
alright. So, then what do we do? For i in np.arange(0,N), now we have to define the

initial value or the initial location. So, Xo, Yo=0, 0, that is fine.

Now, what we will do is we will create the increment array. So, if we have 200 steps
what will be; so, let us make the increment array to look something like this. Let this be
the increment array, alright. So, the increment array we will say as just let us call itx =
np.zeros((2,N)). So, now, it has to be of 2 rows and N columns, alright, so, yeah. So, we
have created x which has 2 rows and N column. So, and obviously, we are initializing

with 0, so Xg Yo it does not make sense.

(Refer Slide Time: 16:47)

Typekrror Traceback (most recent call last)
<ipython-input-5-ce@5c76147d8> in

Mode: Command @ Ln1,Cg

@~

So, now we will do for i in np.arange(1,N), because the first point is already the origin,
so we do not need to worry about that. Now, what we will do is we will write down the
logic. So, X, so for the ith column the first let me just do this. So, this will be Ax, so this

has to be 0 and this has to be Ay .

Basically if I am over here the Oth row, ith column, this will be that particular increment
and this will be this particular increment. So, the increment in y will have row number of
1, whereas, the increment in x will have a row number of 0. Now, deltax = I*np.cos(th),

anddeltay = I*np.sin(th). But now what is | and what is 87

So, | will be; in fact, we do not even need to run this in a loop we do not even need to run
this in a loop, we can simply pass N and obtain all the steps that we need, fine, and then
we can augment it with 0s, ok. So, well because | have written it so far, let me just, so we
will just call one angle and one stride at a given time | equal to get stride one element and

theta equal to get angle one element.

So, | am not vectorizing the code. | am asking it for each time step give me one stride
and one length. And obviously, the stride will be one and the angle will also be one. So, |

am not vectorizing anything.

(Refer Slide Time: 19:09)

Nlec0X MWle2X MWmorX MWleclX MrancX HWUntiX WbifwX NlechX WlecX

Python3 Q

TypeError Traceback (most recent call last)
<ipython-input-5-ced5c76147d8> in

11 for i in np.arange(1,N)
--=> 12 1 = get_stride(1
3 th = get_angle(1);
deltax = 1'np.cos(th); deltay = 1*np.sin(th

<ipython-input-5-ced5c76147d8> in (N)

4 def get_stride(N
---->5 return np.ones(size=(N

7N =200

TypeError: ones() got an unexpected keyword argunent size’

I 38 Python 3 | Idle Saving completed Mode:Command @ Ln1, Cg

So, let me run this, and there is a error, sorry, ok.

(Refer Slide Time: 19:18)

e Edit View Run Kemel Tabs Settings Help

ShoX Wunti® HMle2X MWuntiX BlawrX WiecdX Wle2X HWmorX MWlectX MNrancX WuntiX HMobifwX ®lechX W iect X

o™

B+ XD >» 8 C » Code v Python3 @

def get_angle(N): # N is
return np.random. unifors|

def get_stride(N
return np.ones((N,))

= 1*np.sin(th);

= np.cumsum(yinc); I

Saving completed

So, now, let me show you. So, after this we have generated a series of x and y
increments. So, let me do the following. Let me do a cumulative sum. So, xtraj or xinc =

X[0,:] andyinc = x[1,:], alright. Now, we must do a cumulative sum.

So, xtraj = np.cumsum(xinc) andytraj = np.cumsum(yinc), alright, so far so good. Now,
we will plot x and y and that should give us the trajectory for the single particle. So,
plt.plot(xtraj, ytraj), ok.

(Refer Slide Time: 20:31)

e Edit View Run Kemel Tabs Settings Help
ShoX :Unh.r Mle2X MWuntiX BlawrX WlecdX Nle2X MWmorX MlectX WrancX ®WuntiX HMbifuX WleciX M lect X
B+XD0D0O» = C» Ce v Python3 Q
xine = x[8,:]; yinc = x[1,:];

xtraj = np.cumsu
plt.plot(xtraj, ytraj);

] 13 @ Python3|idee Saving completed

So, this is how the trajectory looks like. It started over here and it is doing this random
walk, ok. So, if I run this again | will get a new random walk. So, let me because it is
going to sample a new variable again, alright. So, let me do that, great. So, it is going in
the other direction.

(Refer Slide Time: 20:55)

e Edit View Run Kemel Tabs Settings Help

ShoX MWunti®@ MWie2X MuntiX BlarX WiecdX Nle2X MmorX WlectX NrancX WuniX MbifwuX NleciX M lect X

&

B+XD0O» s C» Ce v Python3 O

ytraj = np.cumsun(yinc);

] 3@ Ppython3|ide Saving completed

So, let us now wrap this entire program, so that we can run it for a few more particles.

(Refer Slide Time: 21:07)

ShoX MW uUntiX ®Wle2X [®UntiX Laux WlecdX Mle2X MWmorX MWlectX ®rancX N bifurX & lectiX :(X

a+§\[:>|c»(’,odev Python3 Q

for j in np.arange(1,Np)

113 @ Python3ide

Type hese o search

(Refer Slide Time: 21:43)

e o v e s v v The python and octave notebooks can b

ShoX MWuUnti® Mle2X MWuntiX BlauwrX WlecdX MWle2X MWmorX MWleclX ®WrancX WuntiX WoifwX WlechX M lect X

B +XDOO0» = C» Code v Pyon3 Q
x[1,i] = deltay

xinc = x[8,:]; yinc = x[1,:];
xtraj = np.cumsum(xinc); ytraj = np.cumsum(yinc);
plt.plot(xtraj, ytraj);

1138 Python3|ide

Saving completed

Mode:Command @ Ln1,Col1

So, let me copy this. Let me go over here and let me, so let me do it for more particles.
So, let me write Np = 10 and over here | will write for j in np.arange(1,Np). So, I will do
the whole initialization for each particle and eventually I will do the plot. So, now, let me
run this and see what happens. This has to be comma.

So, great, we have 10 trajectories using the Pearson walk. But now | have this data, but
now | really what I really want to know is | do not want to know the trajectory. | just

want to know what radial location the particles are at the end of 200 steps. So, how do |

go about doing that? I do not want to find the trajectories. | do not want all these. So, that

IS quite easy.
(Refer Slide Time: 22:20)

e Edit View Run Kemel Tabs Settings Help

ShoX MWUnti® Mle2X MWuntiX @lawX MNiecdX Wie2X MWmorX MWlecdX MWrancX WUntiX ®bifuX WlectX Wlect X

B+ XDO0O» m C» Code v Python3 Q

J7 [OeT geT_angie(n): ¥

return np. rando

def get_stride(N):
return np.ones((N,))

r § in np.arange(1,Np)
19, y0:=0,0
x = np.zeros((2,N));

for i in np.arange(1,N):
1 = get_stride(1);
th = get_angle(1);
deltax = 1*np.cos(th); deltay = 1*np.sin(th);
x[8,1] = deltax
x[1,i] = deltay

xinc = x[@,:]; yinc = x[1,:];
xtraj = np.sum{xinc); ytraj = np.sun(yinc); rorigin = (xtraj**2 + ytraj**2)*8.5;

§13 8 Python3|ide Mode:Edit @ Ln11,Cqg

So in fact, let me preserve this bit of program. Let me go over here. And so, we still have
this. We still have number of particles and what we will do is we will wrap all of this. In
fact, we do not need a cumsum because cumsum is required to find out the entire
trajectory, we just need a sum and the sum will give me the final point, ok. The sum will

give me the final point.

Once | have this, 1 will find out the rorigin = (xtraj**2 + ytraj**2)**0.5 it is the distance
from the origin and | do not need to plot it. So, what I have over here is a function is a
need function which will give me the final distance from the origin. So, | will cut this. |

do not need all that. | will define a function.

(Refer Slide Time: 23:22)

So, I will define get final location and | will pass N, that is the total number of time
steps. So, over here | have to do the same declarations. And eventually |1 must return
rorigin, ok. So, it is abstracting that bit of code that you have to find the trajectory blah
blah blah, but no I do not want to know all that. | just want the final distance. So, | will
simply go over here and I will simply call the final get final location.

So, | will say get final location loc and | will pass N that is for a large number of
particles np, | will pass that | want to know the final location for N number of steps that
is 200 number of steps, I will assign it to an array r, alright and | will say r that is the
final location is equal to np dot Os and it will be of size, yeah N rows and it is just N rows

it is a vector, ok.

(Refer Slide Time: 24:57)

ShoX WuUnti® HMle2X MWuntiX BlawrX WiecdX Wle2X HNmorX MWlectX NrancX WuntiX HNhifuX ®ilechX M lect X

B +X0D » m C » Code v Python3 Q

array([8. 2
7.9424225
0. o. , 8
o 520 28 0 0.
° , o , @] , @
0. , o , o] , .
] 5 05 , 8 o. , o
0. 8. , o e , o
[} 8 518 8 5710
(] ® , @))
e , o , o ° 0.
e 8. i 0 °. 0.
e 0. , o e. °.
e. , 0. , o))
8. 58 , 8. 0. , o
[, o , 8. 8. , 0.
] 3 s , 8))
] , o , 8] 0.
[, 8 , o] 0.
° 58) ° 0.
, o °. 8. °.
(] s °. [) 8.

] 3@ Ppython3|idee Saving completed Mode:Edit @ Ln1,Col1

So, let me run this, ok; it seems to have run. So, let me print out r, sorry it has to be Np.
It does not have to be N, it obviously has to be Np. It has to be number of particles, ok,

great. So, let me print out r.

(Refer Slide Time: 25:06)

dit un
Sho X Unti @ Mlec0X MWie2X MmorX MWlectX MrancX ®WUntiX ®bifwX ®WlectX K leclX
B+X00» Python3 O
x[@

xine = x[0,:]; yinc = x[1,:];
xtraj = np.sun(xinc); ytraj = np.sum(yinc); rorigin = (xtraj**2 + ytraj**2)**e.s;
return rorigin

So, these are the distances at the end of 200 steps. Why is, this has to be from 0 ok. So,
these are the distances at the end of 200 time steps. If I increase the number of time steps
I will get more distance from the origin. Let me let me see. So, over here you see a bunch
of 15, 7s, 24, but when I make 500 steps | should get a larger distance, ok. So, now we

are interested to find out the distribution, right, the distribution of the r.

(Refer Slide Time: 25:47)

ile Edit View Run Kemel Tabs Settings Help
Rle2X MWuntiX BlawrX HMiecdX MWle2X HWmorX MWlectX MrancX ®untiX HNbifuX WlectX WlectX

® C » Code v P“\".I"?XVZ C
[6,i] = deltax
x[1,i] = deltay

xinc = x[8,:]; yinc = x[1,:];
xtraj = np.sum(xinc); ytraj = np.sum(yinc); rorigin = (xtraj**2 + ytraj**2)*e.s;
return rorigin

for j in np.arange(8,Np)
r[j] = get_final_loc(N)

bins,counts,_=plt.hist(r, bins = 48, density=True

§ 3@ Python3|ide

Mode:Command @ Ln1,Col 1

So, let me make it 10000. Let me make this as 200, so 10000 particles | should be able to
then it will take a while to run because the code is not vectorized. And in fact, | will ask
you to vectorize it as a part of your home task. It is not going to be an assignment, but
you should go ahead and try to do that I will tell you what the logic will be.

Well, the program has run by now. Let me just it is a big array, so let me just plot it. So,
bins,counts, =plt.hist(r, bins = 40, density=True). So, it gives me this kind of a

distribution, ok.

(Refer Slide Time: 26:37)

Anodic protection-Principle

If I want a better fit to this | will probably use more number of particles and it will show
this kind of distribution. And it will be more illustrative when we do this in a log scale;
on the x axis if | take it in a log it will be it will show some of some kind of a power law,
this decaying tail may show some kind of a power law.

And that is for you to explore, once you start learning about random walks and the
distributions that you get from multi-dimensional random walks. But this gives a very
clear cut overview of what is going on, right and, ok. So, how do you go about
vectorizing this? It is quite easy. Well, we have created the get angle and get stride

function. So, and I will just give an outline. I am not going to implement this.

(Refer Slide Time: 27:33)

def get_angle(N): # N is the time steps X X X
return np.random.uniform(8, 2*np.pi, size=(N,)

def get_stride(N)
return ones((N,

So, because you know the number of steps, so then you will ask for get angle for N
values, so you will get a bunch of angles ranging from 0 to 7, ok. You have a bunch of
angles, you have a bunch of lengths. And then using the formula Ax=Icosé

Ay =lsin@you will have a bunch of increments, ok. So, then you augment this array

with a 0 and then you first simply find the sum.

So, in case you are just trying to find the sum you do not even need to augment the error
with 0. You just find the sum of these matrices, ok, and that is it. And let me just for

completeness show you how I will do that.

(Refer Slide Time: 28:22)

ile Edit View Run Kemel Tabs Settings Help
ShoX MWunti® Hle2X MWuntiX BlauwX HlecdX Wle2X HWmorX MWlectX ®rancX HuntiX HWbifuX NiechX ®lectX

B +X0O0O» e C» Cde Python3 O
105

[0.89297774 384378552 0.8236556 3.33288829 4.94078046 0.83538009
3.8493175 185311749 3.99537223 2.75438672]
1.1.L.1.1L.11111] -

] 13 @ Python3|ide Saving completed Mode:Edit @ Ln5,Col20

Type hese o seac

So, let me say s1= get_angle(10). Let me just do it for 10, and s2=get_stride(10), right.
So, let me print those. So, these are the angles and these are the strides. Then, you will
saydx = s2*np.cos(sl), dy = s2*np.sin(sl)and so, then you will have dx and dy and then
you will say Ix = np.sum(dx) and ly = np.sum(dy) and that is it. I mean with the help of

this you will have the final location, ok.

(Refer Slide Time: 29:33)

ile Edit View Run Kemel Tabs Settings Help

ShoX HWunti® HWle2X MWuntiX BlawX HledX Nle2X HWmorX MWlectX ®rancX HuntiX HNbifuX WilectX MlectX
B+X0O O »>»mCw» Cide v Pyhon3 Q
005

s1= get_angle(18)
s2=get_stride(10);

dx = s2*np.cos(s1); dy = s2*np.sin(s1);
1x = np.sun(dx); ly = np.sun(dy);
print(1x); t(ly);

Saving completed

Mode:Command @ Ln1,Col 1~

1138 Ppython3|ide
Type hese to search

=

So, you do not need to run all those things in a loop, ok. And in fact, |1 will do the
modification once we go to the levy walk the Cauchy distribution. But for now it gives a
very clear overview of how you go about this. So, just you do not need you can avoid

this loop all together.

Well, I will let you do that well. Now, that we have looked at a bounded distribution, we
can turn our attention to a levy walk. Well, let me reuse this program. So, now, instead of

having a unit length as the stride, let us do it for a Cauchy distribution.

(Refer Slide Time: 30:24)

So, Cauchy distribution looks something like this. It is usually 1 upon pi times 1 plus x
square and this is for 1-dimension. So, this is the p(x) for a Cauchy distribution and it is a
symmetric distribution about the origin, ok, about the origin it is a symmetric
distribution. But now | am interested in the absolute value. So, we are more bothered

with sampling the radial stride in a random walk using a Cauchy distribution. So, for that

the distribution is actually ———.
zrd+re)

And the reason is because once you try to find the cumulative of a step size distribution
in 2-dimension it will not be simpIyJ' p(x")dx", but rather it will beJ' p(r)2zr'dr’, if

everything is symmetric because it needs to find the area. So, this is the area in 1D, this

is the area in 2D. So, then what is the cumulative of r? It will bejr%zﬁr’dr'.
O z°r'(d+1r'7)

So, this & cancels out.

!’

So, it is r going from 0 to r prime going from 0 to r. So, this becomesgj.

So, this
7 1+r

7

is the same as finding out or a sampling a variable from the Cauchy distribution in 1-

dimension, ok. So, that gives us something to work around. So, instead of having

np.ones, we can now have np.random.Cauchy.

(Refer Slide Time: 32:24)

ile Edt View Run Kemel Tabs Settings Help

ShoX MWUnti® Mle2X MWuntiX BlawX WiecdX Wie2X MWmorX MWleclX ®rancX WUntiX WbifwX WlecX W lect X

B +XDOO0 » s C » Code v Python3 @

return np.random.uniforn(®, 2*np.pi, size=(N,))
def get_stride(N):
return np. abs(np.random. standard_cauchy(size=(N,))

N = 209;
X8, yo = 0, 0;
x = np.zeros((2,N));

for i in np.arange(1,N):
1 = get_stride(1);
th = get_angle(1);
deltax = 1%np.cos(th); deltay = 1*np.sin(th);
deltax

[0,:]; yinc = x[1,:];
J sum(xinc); ytraj = np.cumsum(yinc);
plt.plot(xtraj, ytraj);

Saving completed Mode:Edit ® Ln1,Col 1
Q- o

|13 @ Python3|Busy

So, let us look at what the syntax for standard Cauchy is.

(Refer Slide Time: 32:34)

ile Edit View Run Kemel Tabs Settings Help

Shox M Unti® HleedX MuntiX BlarX HledX Wle2X WmorX FleclX MrancX HUntiX HEbifuX WlectX Bleci X

Docstring
standard_cauchy(size=None)

Drau samples from a standard Cauchy distribution with mode = 8y,

Also known as the Lorentz distribution

.. note::
New code should use the ~standard_cauchy ™ method of a ~~default_rng()
instance instead; see "random-guick-start’.

Parameters

size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ""(m, n, k)", then
‘m*n* k" samples are drawn. Default is Nome, in which case a
single value is returned.

Returns

samples : ndarray or scalar
The draun samples.

See Also

Generator.standard_cauchy: which should be used for new code. Ox

-,
138 Saving completed shov e ‘
Type here to searen o B M N y
s

(Refer Slide Time: 32:36)

ile Edit View Run Kemel Tabs Settings Help

shoX MWunti® Mie2X MWuniXx BlarX MWiecdX MWie2X MmorX MWilectX MWraneX Wuntix Mpifux Wit [lect X
size : 1nt or tuple of ints, optional
Output shape. If the given shape is, e.g., ""(m, n, k)*", then
m*n*k samples are drawn. Default is Nene, in which case a
single value is returned.

samples : ndarray or scalar
The drawn samples.

See Also

math:: P(x; x 8, \gamma) = \frac{1}{\pi \gamma \bigl[1+
(\frac{x-x_B}{\gamma})"2 \bigr] }

and the Standard Cauchy distribution just sets :math: x_8=0" and
:math: " \gamma=1

The Cauchy distribution arises in the solution to the driven
oscillator problem, and also describes spectral line broadening. Tt
also describes the distribution of values at which a line tilted at

a random angle will cut the x axis |

| RERC] Saving completed Shows

So, mode 0, no problem, and this is the distribution, standard Cauchy is with

X, =0andy =1, no problem. So, we need to just give the size, alright, to get. So,

size=(N,) and let us save it. So, now, but wait; so, the Cauchy distribution will give you

negative values as well. So, we need to x or return the absolute value of this, alright.

(Refer Slide Time: 33:18)

e Edit View Run Kemel Tabs Setings Help

ShoX MWUnti® HEle2X MuntiX BlawrX WiecdX Wle2X HWmorX HWlecdX WrancX ®WuntiX HoifuX ®lecthX B lect X

B+ X0O0» s C» Cde ython3 O

x[1,i] = deltay
xinc = x[8,:]; yinc = x[1,:];

xtraj = np.cumsum(xinc); ytraj = np.cumsum(yinc);
plt.plot(xtraj, ytraj);

Saving completed

Mode:Edit @ Ln1,Col 1
YT

] 3@ Python3|ide

So, we have returned the absolute value. Well, let us run this, let us see what happens.

So, boom. Now, we have what is a levy walk. So, it starts over here, it makes huge

jumps, huge jumps then wanders around, his huge jump wanders around, huge jump

wanders around, huge jump wanders around and things like that.

(Refer Slide Time: 34:01)

e Edit View Run Kemel Tabs Settings Help

ShoX HWuUnti® Mle2X MWuntiX BlawrX WiecdX Wie2X HWmorX NlecdX WrancX ®untiX WbifuX ®iechX W lect X

B +X0O0)» = C» Cide v Python3 Q

[1 |def get_angle(N): 2 N is
return np.random. uni:

def get_stride(N)
return np.abs(np.random. standard_cauchy(size=(N,))

Mode:Edit @

Saving completed In’5, Col 56

Q- st

] 13 @ Python3]ide

(Refer Slide Time: 34:04)

fle Edit View Run Kemel Tabs Settings Help
ShoX WuUnti® HEle2X MWuntiX BlawrX WlecdX HWle2X HWmorX MWlectX ErancX ®untiX HoifuX ®lechX W lect X

B +X0OO0 » = C » Code v Python3 O

[13 @ Ppython3|idee Mode: Edit @

Saving completed Ln1,Col 1

So, it is a classic foraging behaviour. In fact, let me now run this program for np number

of particles.

(Refer Slide Time: 34:12)

NlecdX HWle2X MWmorX MWleclX MWrancX HWuntiX WoifwX NlectX MWlectX

Python3 O

] 3@ Ppython3|ide

So, let me grab hold of this program. So, the beauty is we can reuse program. | mean you
do not need to be rigid about it. We just need to change how we sample the distribution,
ok. So, now, let me run this. So, these are, so let me make the aspect ratio, correct. So,

alright, so, one of the distributions really flew off.

(Refer Slide Time: 34:28)

A lec2

] 13 @ Python3|ide

So, the thing is Cauchy distribution, ok. So, the Cauchy distribution has that kind of a fat
tail that we had discussed in the previous lecture corresponding to a levy stable
distribution or a Pareto distribution. So, it does have a tail in which there will be a small

yet finite probability to get high jumps, so higher values of Ax or Ar in this case, ok. So,

there will be a chance to get that. In fact, let me just show you, let me just plot the

distribution function.
(Refer Slide Time: 35:06)

ne‘python‘and-octave notebooks can be downloaded from http:/,

ShoX MWUnti® Mle2X MWuntiX BlauwrX WilecdX Wle2X MWmorX WleclX MWrancX WuntiX WoifwX WlechX Wlect X
B +XD0O» e C » Code v Pyon3 Q

B

?z\.

r = np.linspace(8, 18); f = 1/(np.pi**2*r*(1+r**2));

plt.plot(r, f

<ipython-input-33-34cbeee507d>:1: RuntimeWarning: divide by zero encountered in true_divide
r = np.linspace(®, 18); f = 1/(np.pi**2*r*(1:r**2));

[<matplotlib.lines.Line2D at @xladaS1bf100>]

I

I 13 @ Python3|idie Saving completed Mode:Edt @ Ln1,Col1

So, r = np.linspace(0, 10) and f = 1/(np.pi**2*r*(1+r**2)) and then we will
doplt.loglog(r, f), ok.

(Refer Slide Time: 35:36)

ShoX MWuUnti® Mle2X MWuntiX BlauwrX WilecdX Wle2X MWmorX WleclX MWrancX WuntiX WoifwX WlechX Mlect X

B+ XD » Code v Python3 O

[<matplotlib.lines.L1ne2D at @x1adaS1b6+1ee@>]

] 3@ Python3|ide Saving completed

So, it looks something like this. So, the values are not 0 over here. They are small values,
but they are not 0.

(Refer Slide Time: 35:46)

1 from http: //wwwfacweb ntkgp ac. ln/~ad|tyab/Ieeture list. htmlwa'

ShoX MW Unti®@ MWle2X MWuUntiX BlaurX WlecdX Mlec2 N X WpifuX WlecrX N

B+ X0 » 8 C » Code v Python3 @

plt.loglog(r,

<ipython-input-34-ef9ead69739d>:1: RuntimeWarning: divide by zero encountered in true_divide
r = np.linspace(9, 18); £ = 1/(np.pi**2*r*(14r*42));

[<matplotlib.lines.Line2D at @xladaS18bacd>]

] 3@ Python3|Busy Saving completed Mode: Command @ Ln1,Col 1
pha by s 0 = -

(Refer Slide Time: 35:51)

rnf*adltyablleeture hst html as a quick reference

ShoX MW uUnti® Mie2X MWuntiX BlaurX WlecdX Wie2X MWmorX Nlec ranc X A bifuX W lectX MW lect X
B+XD0»n » Code v Python3 QO
[<matplotlib. 11 D at @xlad)

] 3@ Python3|ide

So, let me make it a log log, ok. So, it is small probability, but not 0. So, you will more
often than not sample things which are in the higher probability zone. So, you will
sample small steps. But every now and then you will sample that large step and that
gives rise to this kind of a walk, ok. Let me run it one more time. So, each time you do it

you will get a random walk, ok.

So, now, let me reuse one of our previous programs to find out the distribution of length

for such a random walk. Let me copy this. Let me paste this for now. What | will do is |

will T will make this get final location vectorized, alright. I will make it vectorized. But

before that let me just change the get stride function. I must replace it by this, alright.

(Refer Slide Time: 36:59)

shoX HWunti® Hile2X MWuntiX BlawrX HMlecdX MNle2X MWmorX MWlectX ®rancX MWuntiX HNbifuX NilectX ElectX

B+ X0O0» = C» Cde Pyhon3 Q

[1: |def get_angle(N
return np.ra

def get_stride(N)
return np.abs(np.random.standard_cauchy(size=(N,))

def get_final_loc(N

Saving completed Mode:Edit @ Ln10,Col 10

So, I will remove all these, | will remove this, I will say dx is N, 1. I will say dy is also
this and | will instead of calling it in a loop, | will get In&, I will remove the indentation.
Once | have In @ then, so this is just initialization. So, then dx well you do not really
need to initialize this, you do not need to really initialize this. It is sometimes good to

initialize, ok.

(Refer Slide Time: 37:52)

Nlec0X Wle2X MWmorX MWleclX MWrancX HWUntiX WhifwX ®lectX M lectX

B+ X0O0» 2 C » Cde Python3 O

def get_angle(N): # N is
return np. random

def get_stride(N):

return np.abs(np.random.standard_cauchy(size=(N,)))

s(th); dy = 1*np.sin(th);

xtraj = np.sum(dx); y = np.sun(dy); rorigin = (xtraj**2 + ytraj**2)**a.s;
print(rorigin

return rorigin

So, then dx. So, instead of getting only one stride we will get n strides. And deltax =
I*np.cos(th) deltay = I*np.sin(th). We do not need this. We do not need any of this,
alright; x trajectory will be simply these sum of all increments and the y trajectory will
be simply the sum of all increments in the y direction. And yes, this that is it. This is the

entire function. We have got it down from bunch of lines to only 5 lines, great.

(Refer Slide Time: 38:39)

fle Edit View Run Kemel Tabs Settings Help

Sho X m Nle2X MWuntiX BlaurX WlecdX Hle2X MmorX MlectX RrancX HuntiX HbifwX NleciX NlectX

B+XD0» = C» Cde v Python3 O
r = np.zeros{(Np,)

for j in np.arange(@,Np)
r[j] = get_final_loc(N)

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

The above exception was the direct cause of the following exception:

ValueError Traceback (most recent call last)
<ipython-input-36-c8d1c71b1861> in
5

18 for j in np.arange(8,Nip)
---> 19 r[3] = get_final_loc(N

ValueError: setting an array elenent with a sequence.

Mode:Edit @ Ln1,Col 1

] 3@ Python3|idee Saving completed

e hese o sear

So, let me run this and there is an error. Get final location. So, what is the problem? Let

us let us see what is the problem; so, rorigin. So, let us print out, ok.

(Refer Slide Time: 39:02)

ile Edit View Run Kemel Tabs Settings Help

ShoX WUnti® HMle2X MWuntiX BlawrX WiecdX Wie2X HWmorX HMlectX NrancX ®WuntiX MoifuX ®lechX ®lect X

B+X0O 0O »mC» Cide v Python3 G

3 @ Python3

Mode:Command @ Ln1,Col 1

It is a bunch of, ok.

(Refer Slide Time: 39:13)

ile

B+ X000 » = C» Code v

] 3@ Python3|idee

Type heretoseach

Edit

Sho X

View Run Kemel Tabs Settings Help

WNunti® HWle2X MuntiX BlawX WlecdX MWie2X WmorX HWiectX ®rancX HuntiX = ® bifuX

def get_angle(N): # N is the tise
return np.randon

def get_stride(N):
return np.abs(np.random.standard_cauchy(size=(N,)))

def get_final_loc(N):
1 = get_stride(N);
th = get_angle(N);
dx = 1*np.cos(th); dy = 1*np_sin(th);
xtraj = np.sum(dx); y = np.sum(dy); rorigin = (xtraj**2 + ytraj**2)**
print(xtraj
return rorigin

N = 208;
Np = 10000;
r = np.zeros((Np,))

for § in np.arange(9,Np):
r[3] = get_final_loc(N)

114.72474306155541

TypeError Traceback (most recent call last)

Saving completed

(Refer Slide Time: 39:14)

ile

Edit

Sho X

View Run Kemel Tabs Settings Help

Wunti® Hle2X MWuntiX BlawX WlecdX MWle2X WmorX WlectX ®rancX HWuntiX & bifuX

B+XB0O0»>»ECw e v

] 3@ Python3|ide

Type here to search

XTra] = Np-SUM(OX); Y = NP SUM(OY); TOrIgIN = (XTra)™"Z % yIraj™.
print(xtraj
return rorigin

N = 200;
Np = 10000;
r = np.zeros((Np,))

for j in np.arange(s,Np)
r[j) = get_final_loc(N)

114.72474302155541

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

The above exception was the direct cause of the following exception:

ValueError Traceback (most recent call last)
<ipython-input-38-e680e7415082> in
18

18 for j in np.arange(8,Np):
—->28 r(j] = get_final_loc(N)

ValueError: setting an array element 2 sequence.

Saving completed

WlechX WieciX

Python3 Q

WlechX W lect X

Python3 Q

(Refer Slide Time: 39:27)

e Edit View Run Kemel Tabs Settings Help

ShoX WuUnti® HMle2X MWuntiX BlawrX WiecdX MWle2X HWmorX MWlectX ErancX ®WuntiX HWoifuX ®ilechX ®lect X

B +X0OO0»wC» Cde v A3 .Q
e : . stanuary_caut -

9}

urTnpLaUs{np:TEnuO

def get_final_loc(N)

1 = get_sti
th = get.)5
dx = 1*np.cos(th); dy = 1*np.sin(th);

xtraj = np.sun(dx); ytraj = np.sun(dy); rorigin = (xtraj**2 + ytraj**2)**.5;
return rorigin

for j in np.arange(@,Np)
r[j] = get_final_loc(N)

|‘ 13 @ Python3|idie Saving completed
The issue is this has to be ytraj, ok. | do not know why | did that, ok. So, it is running the
program for a bunch of particles. Let it run. It is already run | know, ok. So, it is already
run. We need to do the pdf.

(Refer Slide Time: 40:06)

ile Edit View Run Kemel Tabs Settings Help
ShoX MWUnti® Mlee2X MWuntiX BlawX MWlecdX Wle2X MWmorX MWleclX MWrancX WUntiX B bifwX BleciX Wlect X
B+ XOO0»wCw Ce v Python3 O

for j in np.arange(e,Np):
r[j] = get_final _loc(N)

§ 13 @ Python3|ide Saving completed Mode:Edit @ Ln*\Col

So, let me copy this just to find out the pdf, ok. So, obviously, there are some values over
here, but most of them are still centred around the origin. In fact, let me decide what the
bin locations will be.

(Refer Slide Time: 40:30)

ile Edit View Run Kemel Tabs Settings Help

ShoX Munti® HMle2X HWuntiX BlawX WlecdX MledX MWmorX MiectX HWrancX HWuntiX HbifuX ®lechX N lect X

B +X0OO0O» e C » Code v Python3 O

for § in np.arange(8,Np)
r[3] = get_final_loc(N)

[41]: |binsp = np.linspace(e, 168);
bins, counts,_=plt.hist(r, bins = binsp, density=True)

A 71 80 100 ¥
|13 @ Python3|Idle Saving completed Mode:Edit @ Ln1,Col24 o

Type hese tosearch

(Refer Slide Time: 40:50)

ile Edit View Run Kemel Tabs Settings Help

ShoX MuntiXx HMle2X HWuntiX BlawX HlecdX ®le2X MmorX MlectX HWrancX HWuntiX HbifuX ®lechX M lect X

B +XDOO0» e C» Code v Pyhon3 Q

for j in np.arange(8,Mp):
r[3] = get_final_loc(N)

binsp = np.linspace(s, 568);
bins, counts,_=plt.hist(r, bins = binsp, density=True)

1138 Python3|ide Saving completed
seach o

Type hereto

So, I will call it as bin space bin space equal to np.linspace and let it go from say 0 to
100. So, let us run this, ok. So, the distribution looks something like this. In fact, we can
increase it to 500. Let us see what we have. So, we have something like this. So, it is a
much fatter tail than before compared to the distribution over here. So, it decays down
much faster, but over here it tends to decay much slower. So, at a given point in time
there are majority of the particles over here.

So, the time it took was for 200 time steps. It is peaking around 100. What was the peak
over here? It was something around 10, ok. So, the larger peak is indicative of larger
steps taken because of the Cauchy distribution and the distribution appears to be tailing
off very slowly and these are all highlights of the levy walk. So, if these distributions are

usually a power law distributions, ok.

(Refer Slide Time: 41:42)

Mode:Command @ Ln1, Col 1

So, there are particles which have travelled such a large distances. They are not large in
number, but regardless they are there, ok. So, | would like to conclude this particular
week over here. And lot of things we have seen. And once you start doing a course on
probability and statistics, | really hope you will find all these tools that we have

discussed immensely useful and | hope you will make the best use of it.

With this I will see you again next week. Have a good week. Bye.

