Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture — 16
Phase portraits — nonlinear systems

Hi, everyone. In this lecture, we are going to look at nonlinear systems and their phase

plots.
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So, let me create a new file and let us see what the even natural evolution. So, in the
previous two lectures we have looked at behavior of linear systems and the behavior of
linear systems near a fixed point was decided by the nature of the eigenvalues and

eigenvectors.

So, if we have real eigenvalues, then if the eigenvalues are real, so, we can either have a
stable node or unstable node or a saddle node. And, this depends whether both of the
eigenvalues are negative, both of them are positive or either of them is positive and

negative.

Then we have seen that the behavior for the case of imaginary eigenvalues either has a
spiral inwards depending on the real part or spiral outwards, depending on whether the real
part is positive or a closed orbit this is the case where the real part is equal to 0, it is purely

imaginary.



So, now these ideas can be used to analyze non-linear systems as well. In particular, if we
have fixed points then we can perform linearization near the fixed points and see the

behavior. Let us start with an example. So, x =x +e ™ and y = —y.

So, this particular differential equation it is an example from Strogatz and, let us see how
the phase plot for this equation looks like. And, the thing about the phase plots is we can
reuse much of the code that we have made for the linear part we just have to change these
particular so called velocities. So, this specifies the vector flow and our task is to specify

this as the new set of velocities. And, finding out the trajectories is no different.

We can have in the phase portrait if this is x and this is y, we can have different initial
conditions and we can have the evolution of trajectories which are in this case governed
by this non-linear set of equations. There is no analytical solution available even if there
is some analytical solution available it is often quite difficult to make sense or rather to
interpret that equation because it is not clear as to how the variation will occur explicitly
ok.
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So, let us go to the lecture and let us copy this because we need this. In fact, for the 3D
plots we will require maya as well mayavi as well alright. We need to import this and let

us import.
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x = np.Yinspace(-3, 3, 20); y = np.linspace(-3, 3, 20);

% X, Y = np.meshgrid(x, y); T\
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Let us import this particular plot or this particular cell. In fact, let me run this to see

everything is fine ok, everything is fine.
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So, let me now change the flows. So, thisis x + e™.
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And, this is simply going to be - Y alright. Let me change this as well. Let us first see how

the flow looks like ok.
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So, let me get rid of these eigenvectors that we have plotted, alright. So, this is how the

flow looks like ok.
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So, let me increase the density to 1.5 ok. So, write over here let me take this plot to our

notebook over here ok.
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So, let us try to make sense of this. So, if you have a close look there appears to be a
stagnation point over here; meaning, streamlines go like this and like this and like this and
like this. So, things appear to be converging from in this particular line and it appears to
be diverging along this particular line, alright and these two sets of curves appear to
demarcate the entire phase plane into this kind of behavior.

So, as time goes to infinity as t goes to infinity the trajectories are attracted towards the
unstable manifold. So, this appears to be the unstable manifold, while this is the stable
manifold ok. So, as time goes to infinity we see that they are indeed going towards the
unstable manifold.

So, this point appears to be a non-linear version of a saddle point ok. It appears to be the
non-linear version of a saddle point. So, now let us try to make sense of this particular

equation why does it look like this. Obviously, what are the fixed points of the system?
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So, the fixed points correspond to x = 0 and y = 0; that means, y =0 and when y =0, x =
- 1. So, at x=- 1 and y= 0 we do see that there is a saddle point this corresponds to - 1,0,

alright. So, that explains the.

So, what about the behavior, what about the behavior of that point? Ok. So, why does it
appear that this particular point behaves like a saddle node? The saddle node it implies that

one eigen direction towards it is stable and the other is unstable.
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So, let us look deeply into the structure of the vector field in the vicinity of the fixed point

actually itis - 1, 0 ok. So, let u be - 1 plus.
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Or rather x + 1 and v be equal to y.
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So, in fact, let us look at the let us denoted by x* y*, so that we can keep things symbolic
until we make the final substitutions. So, let us choose a variable © = x-x* and v =

y-y=*inthatcaseu =x—-0 v=y—0.So,u =xand v = y.

So, uand v are sort of the; sort of the behavior. So, if this is the fixed point it is the behavior
in the vicinity of the fixed point ok, near x* y*. So, then this is equal to. So, if I write down
x*x = f(x,y) and y = g(x,y) then I can write this down as f(x, y) and | can write this
term as g(X, y). Now, f(x, y) I can write it in terms of this as f (x* + u, y* + v) ok.
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Similarly, I can write down v v = g(x* + u, y* + v), alright. So, now we can use Taylor

series expansion to write this as

FG%,y%) 4 Of [0x] it + O /07 s yv +

O(u?,v?,uv). So, this is going to be u dot plus order u square v square and u v term; so,

basically quadratic terms. Similarly, we

0X | syt + 09/ 0Y |y + O (W2, V%, uv).
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So, essentially we can remove these this term and this term because x* and y* are fixed

points, it naturally means f(x*, y*) and g(x*, y*) will be equal to 0 because it is a fixed

point.
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And, hence well finally, we can write down (l;) = [g

ax of/a
g%i agjai](s)' So, we

have linearized the system near the fixed point and it depends on the eigenvalues and
eigenvectors of this particular matrix which is also called as the Jacobian matrix. It depends

on the local slopes of the functions, alright. So, let us quickly look at the Jacobian of this.
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So, the Jacobian of this will be del f del x which is 1 del f del y which is equal to - y sorry
- 1 well, - e to the power -y this will be 0, this will be - 1 and we have to evaluate the
Jacobian and the fixed point. So, the fixed point is equal to O rather - 1, 0. So, this is equal

to 1 and at O this is equal to - 1, 0, - 1, alright. So, what are the eigenvalues?



(A-1)(A+1) = 0. So, lambda equal to 1 lambda equal to - 1, these are the two

eigenvalues.
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1 -1y3vly _ (vl .
[0 1 (VZ) = (V2>. So, this eigenvector corresponds to lambda equal to 1 and the

eigenvector correspondent to this will be. So, the other eigenvector will be 0.5,1 , ok.

So, at equilibrium point that is - 1 ,0, one eigenvector is this and the corresponding
eigenvalue is lambda equal to 1 because unstable at the same equilibrium point the other
eigenvector is 0.5, 1 which is a slope like this and it is having an eigenvalue of - 1 that is

it is an attracting manifold. So, this is the stable manifold, this is the unstable manifold.
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So, over on this particular plot over at this point this is the linearization let me use red
color. So, this is the linearization that will that we are; that we are looking at ok. So, the
arrows will be like this, but because of the non-linear effects away from the fixed point it
will tend to become curved and the curve really depends on what the nature of the

equations are.
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Another important aspect of these points rather of such curves they are called as nullclines.
So, nullclines are curves in the phase portrait which correspond to either x equal to 0 ory
equal to x = 0 or y = 0, that is, they are demarcating curves where we know that there

will be either no x velocity or no y velocity, ok.



So, if x = 0 we know that the flow at that point will be solely in the y direction when y =
0 we know that across that curve the velocity will be solely in the x direction. So, let us
try to plot the nullclines as well, ok. It is quite easy to actually plot because we have all

the x and y’s.
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So, we simply need to plot plt.contour X1, Y1, U1, V1 sorry X1, Y1, Ul and levels equal
to simply 0,0. So, this is the nullcline of x = 0; similarly we want the nullcline of y =0
ok.
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So, let us plot this ok. So, this is the nulicline of y = 0 and this is the nullcline sorry, let

me put a different color ok.
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So, this is the nullcline where y = 0. So, the velocities are only in the x direction. So,
along the green line obviously, the velocities are in the x direction while the purple line is
the nullcline of u 1 equal to 0 which corresponds to line in which there is only a'y velocity
and these are not the manifolds.

It is not to be confused with manifolds because those are something else altogether, but
the nullclines give an idea where the trajectories will straighten or flatten out ok. So, in
this particular example we have already seen what we expect. So, we have performed a
simple linearization in order to ascertain and the linearization depends on the Jacobian.

So, then the question that people who study non-linear dynamics they ask is whether the
structure of the Jacobian matrix dictates the entire picture? Whether the prediction using
the Jacobian matrix that is the eigenvalues and eigenvectors are they strong enough to tell
that yes, even the non-linear system behaves like that?

And, the answer is it depends, it depends whether you are having eigenvalues real and or
even for a complex eigenvalue I mean whether or not you have a 0 real part or not. It all
depends on the real part of the eigenvalue. We are not going to go deep into this, but for

those of you are interested you can look up the Hartman-Grobman theorem.



And, it tells you whether or not the linear picture near an equilibrium point is equivalent
to the entire picture for the entire non-linear equation whether linearization is good enough
to make predictions ok. So, for now we will continue onward and we will try to have a

look at a different set of equations.
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So, let us consider x = —x + x3 and y = —2y ok. So, before anything let us quickly see

how these equations look like.
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We do not really care about the nullclines for this particular equation. But, even before
starting we should be in a position to say how many fixed points does this equation have.
So, the fixed points are where x = 0 and y = 0, obviously, it corresponds to y=0 and x =0

comma.

So, this equation is x(—1 + x2) and if itisequal to 0 x =0 or x = +1. So, we have three
fixed points — (0 ,0), (- 1, 0) and (1, 0), alright. Let us see whether this checks out or not
ok.
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So, when we look at this particular plot we see that the trajectories or the stream lines are
being attracted towards the origin while we do have some kind of a hyperbolic flow

happening around 1, 0 and — 1, 0, ok.
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So, in fact, let me keep these particular streamlines as well along with this let me plot the

trajectories.
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So, let me copy a snippet that we had done in one of the previous example ok.

(Refer Slide Time: 20:53)



- + =8 A
C O ocabont * 9r® |
> g t /-¢-/8T%0 * XY
= Fie Edt Run Kemel Tabs Setings Help
» ShowCX M lectd 26X [ pitchfortX [ phasepoX & Untitled. X B lec13 imX 15 4 ,sz ’
B+ X000 »ucCw Cde v Pyton3 O ,i(__x+’x ) =0
0 e ' : [
fron scipy. integrate iport solve_ivp \\ﬂ = = J
2] def shontraj(xe = 3
P 9 \=0 j, 0 \\JJ =D
=1
°, A
o 1=0, L T
\
) 0,00 (1.0) 3,9
def mysys(t, x): # returns the RHS RS
return [x(8] + x[1], 4*[) - 2*x[1]];
»
tspan = [, 1]
18 = -2.5; y8 = 2
ics = [0, y0]
sol = solve_ivp(mysys, tspan, ics, dense_outputs=True);
tout = np. Linspace(, np.nax(tspan), 100);
xout = sol.sol(tout)(e];
[} ) ‘
NP
0@ 6@ Pon3|L. Swingcomple.. Mode.. @ Ln19,Col. lectd 2d flows Lip. { . - = g

£ T hesesosesch

So, we need this. We need this, alright.
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So, let us take that and so, tspan is going from say 0 to 5 the initial points let us keep this.
We have to change the function, so, it will be - x plus x cube. So, it is - this plus x0 cubed

and this will be - 2y and this is already set to - 2y; so, plt.plot(xout, yout), ok.
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So, we have written on the code | have changed the tspan, so that the trajectories are not
flying off to infinity or - infinity and let us wrap this entire thing inside a function ok. Let

us try to put all of this inside a function, so that we can probe the different initial conditions.
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So, show traj x0, yO, we will wrap all of this x0 let us give some default values ok that is

fine. Let us comment out this particular line, alright.
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Let us create an interactive digit - 1.5 to 1.5 in steps of 0.1 y naught will be the same and

we will display the result; so here, alright.
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Let us go ok. So, the trajectory starts over here.
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As we change this, we see that the trajectory can also be shown.
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And, it crosses off to infinity. It is not as entirely feasible to have long trajectories ok. So,
it is quite obvious that trajectories are flowing in this particular manner ok. So, they are
being attracted towards this and they are repelled away from this ok. So, how can we find

out whether I mean from theory what the nature of these points are ok.

So, we can do the following | am not going to do it for you find out the Jacobian for all

these points and then based on that find out the eigenvalues and eigenvectors. So, it should



be clear that the eigenvalues one will be negative this incoming one and one will be

positive this one ok.

So, this is a stable node. All the trajectories are converging towards this in the vicinity at
least and this is again an unstable load ok. So, this eigenvector should have a negative
eigenvalue which should have a positive eigenvalue, positive eigenvalue, negative

eigenvalue. So, you should be able to figure this out with the help of the Jacobian ok.
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So, let us now move on to the third example where we will see certain case where such
kinds of things may or may not always work the linearization where it will fail, so to say.
So, actually we do not need all these stream plots we can make to with only the quiver plot
ok. So, let me remove all these. We do not need sorry, we need the quiver plot we do not
need the stream plot. So, we get rid of this. We have the trajectory solver let me keep time
equal to 1 and let me just see whether I have broken something or not ok.
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I have not broken something, it works well, ok.
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These are the trajectories great.

(Refer Slide Time: 26:15)

==
X 299
d |
C O obon Y
T Fle Gt View Run Kemel Tobs Settings Help
m | SowCX Elecd2X EpuchiolX HphasepoX S United® B lct3imX
B+X00O» s C» Code Pythond @
= (-1.5, 1.5, 0.1), y@ = (-1.5, 1.5,
B
%
0
1
1 )
0 [ 6@ Prhon3|B. Savingcomple.. ModeComm. ® Ln12Col. Untitedip.

)

4

-
@




‘ Unsed Doyt K

Buto 8 ¢ $-¢-/mTe0- ]

X | B Untitled. ® ¥ lect3 imX

pems O -,u+ q’}((}( ry)
| B LLY

So, let us consider this particular problem. So, just for the record the previous problem was
rather easy to figure out and you should be able to find out the Jacobian and the

interpretation of the Jacobian with respect to the previous problem.
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Let us consider this problem. So, x = —y + ax(x? + y?); y = x + ay(x? + y?). So, this
is an example from Strogatz again, but it serves as a very important example where

linearization does not always provide a good insight into the problem.

But, before that the vectors that we see over here are quite small. In fact, let us fix that, we

need to normalize the vectors. So, if you have a vector like this u, v in order to make the



magnitude of this vector 1. Ok the magnitude has to be 1 is simply divided by square root
of u squared plus V square and square root of u square plus V square’ basically, divided
by the magnitude in order to render it as a unit vector. So, divided by square root of u
square plus V square 0.5, let me copy this and let me paste this.
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So, let us see ok. So, the arrows look much better you can sort of visualize things in a
better fashion. So, let us change the function, so that we have this function over here ok.
So, this will be - Y plus a times X times X square plus Y square and this will be X plus a
times Y times X square plus Y square, ok.
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So, let us pass a as a parameter to the problem let it be 1.0 at the outset.
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So, awill go from 0.8 to 1.2 in steps of 0.05. Let us run this, ok.
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So, when a is equal to 1.
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Actually, it has to go from let us say it goes from - 0.4 to 0.4, that is when the fundamental
change in behavior will happen ok. So, this let it be 0 as the default value ok.
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So, when it is 0, you see that the trajectory is tend to look like a concentric line and | have

forgotten to change the equations which the initial value problem solver will use.
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So, let us quickly fix that ok. So, I fixed it. The time span can be increased to say 5 seconds
ok.
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So, it does look like it is going to end up being a closed contour, alright.
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So, it does appear to be a closed contour let me change it and for all different initial

Y
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conditions it does appear to be a closed contour ok.
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So, now, what happens when | change a ever so slightly? I am changing it to 0.5.

(Refer Slide Time: 30:08)

A

% S ]
AL g e f-¢-/mT%0 rd
% Untitled @ B lect3 imX P 1 3
A3 0 =Y+ 4 w(x 4»7
e | j= %1 & {y’hfz
g : d
i 4 AYM)
ol o /WNLHW
* ‘ UV
|
=131
®
o
06 @ Python3|l. Saingcompe.. ModeComm. @ Ln1Col. Unttledipy B u} <

£ Tpehee o seath

And, it has blown away to infinity.
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So, let me change the time span. Let me make it only 2 seconds.
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In fact, can you see what happens when a becomes positive?
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The initial point is trying to spiral out.
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It is not trying to close into a loop. You can clearly see it when | choose the initial point
quite far from this from the equilibrium point ok; so, first things first. Equilibrium point is
x =0,y =0, this is a fixed point of the system. Now, when we linearize this ok when you

linearize this you are obviously, going to ignore the cubic terms.

So, this term and this term they are the cubic terms in the absence of cubic terms it becomes
an equation which resembles this. So, obviously, when you linearize the equation you are

losing out on the information which is contained by this particular control parameter ok.



So, when a = 0 we have seen that it is a closed orbit when a > 0, we see that it is a outward

spiral and when a equal to 0. Can I guess what will happen?
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If you have guessed it becomes an attracting spiral you are correct, ok. So, it spirals in into
the solution rather into the problem.
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So, it is spiraling into the origin. Let me increase the time span even further. So, we know

that it is spiraling in. So, nothing is going to change a lot ok.
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So, look, it is spiraling in and looks very nice alright. So, it becomes an inward spiral, but

when you linearize the system you only get a system for Jacobian is 0

1

-1
0

Now,

obviously, this has eigenvalues of 1, - 1 rather it will not have one common answer, it will

be purely imaginary ok.
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So, the eigenvalues will be +i and the eigenvalues indicate it will be a closed orbit because
it is purely imaginary. So, this is the fixed point 0, 0 and if you linearize the equation it
will always predict it is going to be a closed orbit ok. It is going to be a closed loop, but
the dependency on a has been washed away by the fact that we have linearized the system.
If we do not pay attention to the entire nature of the equation, it will not work.

But, again for these particular cases for centers so, this is called the center because it is
like a center for a closed orbit. So, for degenerate points and such points linearizing does
not give you the entire picture, but for saddles or spirals or what do we have, nodes. So,
for these particular cases the linearization does give you an accurate picture of what the

equation is going to be happening ok.

So, go ahead and have a look through some other NPTEL courses where they discuss
deeply about the non-linear dynamics part. All whatever | have discussed is a part of the
Hartman-Grobman theorem and that theorem tells you that you can distort the space for

these particular geometries or vector flows.

And, you can obtain a nice solution, but you cannot obtain the behavior using linearization
for these kind of particular cases, but regardless of that Python does give you or
Pythagorean octave does give you an ideal tool set to really change the value of the control

parameter and see what difference it brings into the picture, alright.



So, this is how we can sort of look into the problem without really solving the problem,
but of course, once you do have the tools it must be clear that your analysis is of utmost
importance. What you can infer from these diagrams anyone? So, with the help of
whatever we are discussing you should be now in a position to tell that this is happening
or that is happening, but then what physical significance does it lie that is all up to you.

Let us now proceed to another set of problems in which we have tractor or an oscillator.

(Refer Slide Time: 35:46)

So, in physics we have what is called as a conservative system and typically it is defined
as mix = F and that will be equal to some force, but this force has if it is conservative then
it can be given as the negative of some negative gradient of some potential ok. So, let us
consider the potential V = —1/2x? + Yx*. Let us consider this particular potential ok.

So, what is the force? The force is going to be —x + x3.

So, once we substitute this over here we have. So, let us forget about the m for now. So,
¥ = —x + x3. S0, let v = x alright y be equal to this and so, y = —x + x3 ok. So, let me
change the particular flows that we have over here. So, this is going to be —x + x3 ok. So,

we have encoded the entire problem. So, let us now run this and see what happens ok.
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When we run this everything is blown over to infinity. So, why is that? So, the reason is |

have forgotten to take the - sign over here. So, fis - dV dx. So, this actually becomes x- x3.
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So, this will change and this will change.
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Consequently, our code has to change as well. Well, just do not make this kind of mistakes

that all 1 can tell, ok.
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So, now we have the trajectory which looks something like this, it looks quite nice.
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And, when you reduce the | mean change the initial condition you suddenly have this kind

of change ok.
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Now, let me it becomes a lobe and then two lobes and then it grows into a single orbit ok.
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So, itis quite obvious looking at this diagram that there are actually two fixed points. Well,
I mean by now you should be more than able to tell me what the fixed points are. The fixed
points are points where x x = 0 and y = 0. In this case y = 0 and x will be either 0 or +1.
So, these are the fixed points; so, (- 1, 0); (0, 0); (1, 0).
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And, what is the behavior of the equation near the three points? You should be able to tell
me with the help of the Jacobians ok, but regardless of that it appears if you look closely

over here that this point is attracting, this point is repeating.
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In fact, let me reduce the number of arrows, so that things become slightly clearer ok yeah,

well this is perhaps too few arrows.
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Let me make it 15.

(Refer Slide Time: 39:41)

m [r—— o
C O locabon * ﬁ‘. e e Ve gton ound P ey
= R ) - L t f-2-/mTe¥0D- B-X§
~ Fie ernel Tabs Settings  Help e ¢ 4
» ® pitchford X phasepoX  ® Untitled X % lect3 imX -~ /L— Y.%
C o» Coe v Pyhon3 O
" Jagelpian -
B ) )
TG
cipython-input-81-cd1: . ing: invalid valve b /
% encountered dn true_divide R 8
plt.quiver(X, ¥, U/(U**25V**2)**0.5, V/(U**2V**2)**0.5); 2 N
N i mee— —1,0150, Uv)
0
_/'

I g\
O 6@ Pthon3|l. Savingcomplet. Mode:Comma.. ® Ln1Co.. Untitledipy s ABH ik 4" ks 0 g

P Tpehere o ech

Often time it all depends on how you can interpret the equations ok. Obviously, something
like this at the origin so, you have something like this and this and something like this and

this ok.
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So, you have this at this point you can change this and see. So, this trajectory is going
around in circles ok. So, there is a bunch of closed orbits over here similarly there is a
bunch of closed orbits over here as well, ok. So, essentially it is like you have a closed
orbit like this, closed orbit like this and it going in circle like this ok. A picture is more or
less like this. So, this is a saddle load, this is the center, this is also a center ok. So, this is

the entire phase portrait for this particular plot.
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So, what is what happens when we change the different initial conditions? You see that if
you choose an initial condition over here it will not go into these centers, but it will have

a separate orbit which sort of envelopes this entire set of inside orbits. But, if you choose



an initial condition over here it goes around encircles around this center or it goes around

encircles around this end.

But, once you have once you are having an initial condition over here it goes around in
circles about this center, but it encompasses all the fixed points. So, what really is going
on. So, such kind of systems are called as conservative systems for a good reason; so, this

particular equation that we have ok.
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So, % = x — x3 . Let us multiply this entire thing by x, x% = xx- x3%. Now, this is 1/z(x2)

this is going to be %((x?2)) and this is going to be —1/4(x*)- ok.

So, this implies d/dt(1/29£2— Yox? + 1Ax“) = 0; it means that this entire term is equal to
constant and let us call this as the energy. So, energy equal to constant. So, given this
differential equation this solution in the phase space must also satisfy this additional

constraint if you will that the energy along any contour is going to be conserved.

If you choose an initial condition that is x0O at 0 and x at 0, once you choose this initial
condition you are setting or you are dialing in what the value of the energy has to be. Once
you dial in that particular value of energy, you simply follow the contour in the phase plane
which preserves that energy that is how you can easily find the contour ok. So, with the
help of this let me in fact, now get rid of the arrows as well we do not need the arrows. Let

me in fact, get rid of let me keep this.
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Let me copy this and create a new cell and let us get rid of the contour the vector plot

plotting and let me simply have this, alright.
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We do not need the interactivity in this and whatever | am going to do now.
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Let me indent it back and let me remove this ok.
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So, it shows a bunch of it shows the trajectory, but if you look closely the trajectories are
really | mean wiggling around way too much to increase the number of points to make it

smoother.
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Not only that, let us increase the accuracy of the Runge-Kutta solver.
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So, let me make rtol is equal to 1e - 6. Great.
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Now, we really have a smooth curve. It all depends on how well constrained you want to
make the Runge-Kutta solver smaller the relative tolerance, better will be the smoothness

of a solution.
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If I reduce this to 1e-2 look at how errors are being accumulated ok. The orbit should not

degrade into so many orbits.
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It should be a single curve. That is why increasing this will really make things look much
better ok.
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So, now let me create a new variable called as e and that will be this energy equation that
we have not the equation, but the expression for the energy it is Y2*yout**2 — .*xout**2
+ Y4 *xout**4, alright. In fact, apart from this let me actually we have seen the trajectory,

let me show you how energy looks like ok.
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So, energy is varying over a extremely small bandwidth and this is due to the errors
accumulating in the Runge-Kutta solver. So, the energy is decreasing, but it is not
decreasing very fast over the entire time span it has hardly changed from 6 sorry, 2.886 to
2.88 something plus 5 into 10 to the power - 6 to something like 2.88602 plus 1 10 to the
power - something. So, for a mean value of around 2.88 it is changing by 10 to the power
- 6 is really quite negligible.
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And, how can you show that it is negligible you simply has the y limits of this plot. So,
you do plt.ylim and say you go from 0 to 2 or 1 to 3.
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It is almost like a straight line. So, the energy is hardly changing. So, we now know that
along a certain trajectory, the energy is not going to change ok. Can we somehow connect

this particular phase plot? Or let me make a new page.
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So, the double will potential actually looks something like this ok. So, this point is - 1, this
point is 1, this point is 0. So, as you can imagine if you have a ball over here and if you try
to roll it like this, it will try to oscillate like this and this particular oscillation is nothing,

but this particular trajectory.



So, as it is oscillating in this potential it gives this trajectory in the xy plane if we initial if
the initial point is somewhere over here let me just track this over here. So, then we have
this trajectory and it corresponds to this trajectory. But, now if I increase the velocity if |
increase the velocity even if | start over here it will sort of cross the barrier, alright.

So, it is having enough energy to oscillate all the way from this to this, it is doing this
oscillation that corresponds to this entire sort of closed orbit. But, if you have small
energies you are only oscillating inside the neighborhood of one and - one and hence you
see that.

So, can we actually plot this? I mean obviously, you can sort of make the connection that
this phase plot and the potential they do have a certain thing going on over here something
like this and trajectories like this ok. So, what is this center point? That is called as a

homoclinic not that point rather.

This particular orbit is called as a homoclinic orbit or a homoclinic trajectory because it
starts the trajectory starts from this point and it ends at this equilibrium point ok. So,
whenever a trajectory originates and ends at an equilibrium point that particular trajectory
is called as a homogenic orbit, ok. So, this corresponds to this; this small oscillation will
correspond to some internal oscillation similar to this over in this lobe as well, but can we

plot it in the energy space?

(Refer Slide Time: 50:35)
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So, imagine if | were to plot energy on this axis. So, when we have small oscillations when
we have small oscillations these are oscillations corresponding to low energy ok. So, there
will be small lobes, but when you have large oscillations then the trajectory is whatever is
shown over here. So, can we show that? Can we arrive at some kind of figure like this let

us see; let us see how to do that. So, this is the plot that we have, let me copy this.
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Let me copy this over here. So, now we have X, y and energy. So, we will do mlab. plot3d

(xout, yout, E); let me see what this looks like. So, we have to do mlab.show as well ok.
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So, we have this trajectory and this trajectory is actually corresponding to this trajectory

alright.
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So, now let me choose series of initial points and let us reconstruct this entire 3-

dimensional phase space. Well, it is not specifically speaking a phase space because E is

basically a derived quantity from x and x basically x and y. But, still it gives you a nice

picture of how the double well potential connects to these trajectories ok.
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So, I am just going to pick this up I am going to make a loop. So, for y0 in np.linspace 0.1
to 2.5 in steps of say 0.1. | am going to indent whatever is over here inside and lastly, I am
going to show that plot let us run this let me close this let me run this ok. There is an error

what is the error.
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sol = solve_ivp(mysys, tspan, ics, dense_outputs]

tout = np. Linspace(8, np.nax(tspan), 208);
Yout = sol. sol(tout)[@];

yout = sol.sol(tout)[1];

E = 1/2%0ut**2 - 1/2°%0ut**2 + 1/4%x0ut**;

#olt.plot(xout, yout)
nlab.plot3d(xout, yout, E)

mlab. show() .
i Y
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So, obviously, this has to be a number of intervals let me keep 10 ok. So, look, let me

enlarge this.
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So, this is that limb; this is that limb where it is confined to the low energy oscillations as

we go towards higher levels we have these outer orbits.
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tspan = [¢,20]
* for y8 in np.linspace(0.1, 2.5, 30):
=11

dcs = [x0, y8]
sol = solve_ivp(mysys, tspan, ics, dense_outputs]

tout = np. Linspace(@, np.nax(tspan), 200);
xout = sol.sol(tout)(];

yout = sol. sol (tout)[1];

E = 1/2%0ut™*2 - 1/2%0ut™2 + 1/4*%0ut**;

#plt.plot(xout, yout)
nlab.plot3d(xout, yout, E)

mlab. show()
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In fact, let me increase the number of contours so that it will be even clearer ok.
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So, this is that initial condition and as y increases it transitions from having these small
orbits. So, this is like the heteroclinic orbit it is just about to touch and you might be

wondering why this orbit is not there because | am not starting initial points over in that



part of the loop ok. So, | am starting my initial conditions over at ok. So, | am starting the

initial conditions somewhere over here ok.
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And, as | am slowly increasing y as | am slowly increasing y, | am transitioning into this
double lobe.
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% def mysys(t, x): # returns the RHS
retun ([x{1], x[o]-x(e]**3]);

tspan = [0,28)

* for 0 in np.Linspace(@.1, 2.5, 30):

X

0= -11;
ics = [x0, 19]
sol = solve_ivp(mysys, tspan, ics, dense_outputs]

tout = np. Linspace(s, np.sax(tspan), 200);
Yout = sol. sol(tout) 0];
yout = sol.sol(tout)[1];
E = 1/20Y0ut**2 - 1/2%00t**2 + 1/4%0ut**s;

#plt.plot(xout, yout)
nlab.plot3d(xout, yout, )

mlab. show()
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So, in fact, it will be nice if we can color these 3-dimensional objects. So, let us do that.
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In fact, in order to color them nicely let me first output what the value of the energy is and

I will tell you why | am doing that.
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So, let me just print mean of E because energy is obviously going to be preserved along it
is going to be preserved in time for a given initial condition. So, | do not find any utility
in printing out the entire string of energies for a given initial condition. So, | will just print
the average energy for a given initial condition because we are looping over all the

different initial conditions ok.
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So, let me close this ok. So, it is starting from - 2.23 - 2 point.
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So, let us say - 0.3 to 3 ok. So, the energies are going from this ok. So, color equal to and

we have to interpolate between - 0.3 to 3.
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So, what we want to pass to color is a tuple rgb right something like this and we want to
map the energy to how the color changes. So, we want to map. So, the minimum is suppose
this is the energy axis and this is the color axis. So, it has to go from 0 to 1 over here and
- 0.3 to 3 over here. We want a linear variation in color like this. Obviously, C - 0 will be
1 upon 3.3 times E - of this; so, E plus 0.3.

So, let us encode this color over here. So, this will be color equals 1 upon 3.3 times np dot
mean of E plus 0.3 and the other colors we can keep up 1 and 1. Let us run this and see
what happens ok.
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xout = sol.sol(tout)[e];
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So, the diagram looks something like this.
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It is more colorful and yeah the whiter the diagram becomes the more energy that particular
trajectory has; the bluer it is the lesser energy it has in fact. We can change this further by
pasting this for the other color channels as well, ok.
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So, let us run this ok. It is all blackish.
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We can in fact, invert this to get some other color scheme then this looks this looks good.
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This is how you can make this kind of curves and you can show the entire physics of how

changing the energy is changing how the trajectories look like in the x, y energy space ok.
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So, with this we end this particular lecture. There is been quite a lot of things we have
discussed. In the assignments there will be questions which will ask you to make use of
these tools to delve deeper into certain problems which are of interest to biologists or it
deals with some other kinds of problems which you might have done in class 11 for
example. And, it will hopefully whatever you have done it will enable you to delve deeper

into the science and the physics of it.



So, with this I end this particular session. | will see you again next time. Bye.



