
Tools in Scientific Computing 

Prof. Aditya Bandopadhyay 

Department of Mechanical Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 13 

Imperfect bifurcations and catastrophies 

 

(Refer Slide Time: 00:27) 

 

Hello everyone. In this lecture we are going to study Imperfect bifurcations. So, far we 

have studied the pitchfork bifurcation in which we had a vector flow which looked 

something like this. You can it had a very distinct symmetry where x and -x they are 

evolving as per the same function. Now often in many questions there is something called 

a symmetry breaking.  

And a parameter which can break the symmetry of this equation is a simple constant term 

something as simple as this ok. So, given this prototype equation there are now two control 

parameters.  

First control parameter is h and the second control parameter is r. So, upon changing these 

two we can have various characteristics of the equation. So, when h =  0 we do reduce to 

a normal mode of a pitchfork bifurcation. So, let us first look at how this function actually 

looks like. 
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So, let me copy this bit of code. We will need all of this, ok. So, now, let us define. So, 

let us define fx as a function of (x, h, r) and it will return ℎ + 𝑟𝑥– 𝑥3. Let us wrap 

everything inside another function which will take inputs as h let me take the default 

value of 0.1 and r which will take a default value of 0.5 for example. 

Let me put all this inside the function block. So, now, x = np.linspace(-3,3, 100) 100 points; 

y = fx(x,h,r); plt.plot(x,y). Let me define an interactive widget. So, w = 

interactive(show_imperfect, h = (-2 ,2, 0.05), r = (-2,2, 0.05)). Let us display the widget 

ok. 
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So, after running this let me also draw the x axis of plt.axvline sorry plt.axhline(0, ‘k’), let 

me make it something like this sorry ok. 
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 Let me change the y limit also; - 0.5 to 0.5 yeah ok. 
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So, now, let us vary h. So, when h is 0 we have 2 roots for r positive ok. 
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So, when r is positive and h = 0 or rather let me classify it as this. So, h =  0, r is positive 

2 roots when r is negative ok. So, there are no more 2 roots. So, when r falls below 0, there 

is only 1 root ok. And this is a stable root ok. So, this root is stable meaning it is a stable 

fixed point; when r >  0 what do we have? 
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This is stable, this is unstable, this is stable. So, there are 3 roots not 2 roots there are 3 

roots 2 stable and 1 unstable. And this is obvious this simple pitchfork bifurcation ok. 
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When h >  0 there is only 1 root for r >  0 only 1 root and that is a stable root. 
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When r< 0, there is still only 1 root. 
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When r actually is pretty large this presence of 2 roots and r greater than some critical 

value you have 2 roots and sorry not 2 roots you have 3 roots. So, depending on what value 

of r you have and the combination of h. 
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(Refer Slide Time: 06:37) 

 

 But when h is negative ok, again you can have a certain r at which again you have 3 

roots. So, r and h they determine whether the equation has 1 root or the equation has 3 

roots and well it may not be entirely clear what is going on in this cubic equation; we can 

actually split this equation into 2 parts. 
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Let me copy all of this, let me paste it over here we can actually break this equation into 2 

functions. So, when we have we are searching for a fixed point; obviously, 𝑥̇ = 0. So, ℎ +

𝑟𝑥 − 𝑥3 = 0. So, we can plot 2 curves. So, the first curve can be ℎ + 𝑟𝑥 and the second 

curve can be 𝑥3 and then we can look at the intersections of these 2 curves ok.  

Let us actually try to plot this. So, we do not need this. So, actually let us create it from 

scratch, but let us not copy paste ok. So, let us remove this x = linspace. So, y = x**3 

alright. So, let this be y1 = x**3 and y2=h + r*x. So, let us plot simultaneously plt.plot(x 

,y1, x, y2) and the x axis. Let us now wrap everything inside a function show_imp1(h,r) 

let us put all of this inside the function let us remove this ok. So, let us pass h and r. So, 

show_imp1 alright. 
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So, let us execute this alright. So, look when r is negative. So, right over here it is quite 

obvious that h is the intercept and r is the slope and 𝑥3 is 𝑥3 ok. So, 𝑥3is not going to 

change hm, but what is going to change is this; this particular line. 
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So, when r becomes positive and as h changes we can have 3 points where the intersect 1, 

2, 3 ok. So, it is all about how we can rotate the line slide it around. 
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 So, we can have 3 intersections like this by change around h we are having just see over 

here we have one point of intersection near minus 1 and another point of intersection just 

about to originate around something between 0 and 0; 0 and 0.2. So, it is tangential, so, 

that straight line that is h + rx is now tangential to 𝑥3. If I now increase h now, we have 3 

points until this point. 
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Now we have only 2 points. So, the lower branch of 𝑥3 is not tangential and now we have 

only 1 root ok. 
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So, this is how we can sweep across the parameter space and find out the intersections. So, 

in the case of imperfect bifurcations the whole idea is one parameter is not solely guiding 

the nature of the equation. 
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Rather there are 2 params and if we were to extend our discussion to something in the r h 

plane ok. So, there are various combinations of r and h where you have 2 roots rather 1 

root. There are certain combinations of r h where we have 3 roots ok. So, now, let us try 

to identify exactly what is the parameter space and how many roots do we have.  

Is there some demarcation and can we find out how r and h dictate the nature of the 

equation in at least the number of fixed points. We will discuss about the stability of the 

fixed points later on, but at least let us look at how we can summarize the number of fixed 

points of this particular equation. So, let us now write a snippet to find out the parameter 

space ok. 
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So, let us go to the previous lecture we will reuse this particular code. 
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So, parameter space of (h ,r) alright. So, we pasted this and so, the function that we are 

worried about is this. So, (x, r,h)  (x , r , h) and this has to be ℎ + 𝑟𝑥 + 𝑥3. This will be 

𝑟 − 3𝑥2. So, we do not need x anymore. So, we need r_a and h_a and we will need will 

be bothered with r on the x axis and h this will be np.meshgrid(r_a,h_a) alright. 



So, for r in r_a for h in h_a or in fact, this has to be in terms of i and j; for i in np.arange 1 

sorry 0 to np.size(r_a) for h in np.arange(0,np.size(h_a)). This has to be j. So, we missed 

a comma we missed a bracket over here ok. So, then r will be r_a[i] and h will be h_a[j] 

alright. Now we must solve the equation ok. 
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Let me just indent everything. So, now, instead of using the fsolve solver we will now go 

to the Newton solver ok. So, for using that because fsolve solver is not really efficient over 

finding us all the roots in. I know that all in all the previous lectures we have been using 

the fsolve, but using the Newton will give you far better results try to rewrite all the other 

codes in terms of the Newton solver. 

You do not need to change everything, but just follow along it should be rather simple to 

do. So, here let us import from scipy.integrate import Newton ok. Let us sorry some scipy 

.optimize import Newton and over here. 
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So, this has to be Newton and the Newton syntax if I remember correctly. So, f prime we 

have to supply. So, this will be df dx. The initial guess let me define it as xg and we will 

define the guess range = np.linspace(-3,3) let us take 5 points as the guess points in order 

to cover all the 3 roots args have we have to pass r , h and full output will be = true ok. So, 

we have worried about the number of roots. 

So, we do not really bother about plotting it for now alright. So, we do not care about this. 

Let us get rid of this ok. So, in fact, let me create a new cell to show you what the output 

structure of Newton looks like ok. 
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Let me paste this. Let me pass r = 0.2 and h = 0.3 positional. So, this has to be x0 =xg. We 

have not defined xg ok. So, let me fix this as well alright. So, this has run. Let us look at 

let us prove what sol is. So, sol contains these things; it contains root, it contains converged 

which is the array. So, all the roots have converged which is fine and ok. 
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So, we are more bothered with sol[0] which is the root array and sol[1] which says whether 

all the things have converged or not ok. 
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I am trying to show you this; because from this will really get to know something. 
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So, let me change the value of r to something maybe 0 point - 0.2 ok. Still all the roots 

have converged - 0.2, still all the roots have converged. 
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Still everything is converged ok. So, for this parametric set we have 2 roots not 2 roots we 

have 3 roots; one is this root, one is this root and one is this root and we necessarily give 

a large number of initial guest points.  

So, that even if there are multiple roots we converge to those roots eventually. This has 

something to do with the Newtons basins of attraction ok. Regardless of where we start 

we are converging towards these roots. So, now, suppose one of them were to be false ok. 



So, in case one of them were to be false it means that root whatever it has returned it is not 

actually a root which is truly returned ok. We have to discard that root. 
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So, then for extracting the true roots. So, roots = sol[0] whetherconv = sol[1] ok. So, now, 

these are the two things. So, now, roots which are converged will be roots of those indices 

which are true ok. Whether converged ok. So, now, roots converged will contain those 

root which have converged, but we want to find out the unique roots. 
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So, now, we will say np.round(roots[whetherconv], 2) let us say 2 decimal places. And the 

reason I do this is if the numerical algorithm has some issue in converging or if it converges 

to 10−8. So, beyond that I mean although it is a is the same root in true mathematical sense, 

but the computer representation does not make it look like a same root. 

If you do a = = b it will says false because it is maybe different at 10 to the power minus 

12th place ok. 
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So, in order to avoid that you can simply round it off to 3 decimal places it will still appear 

correct ok. 
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So, now, out of this we will extract the unique elements. So, np.unique. So, it has now 

given us only this set of unique roots. 
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And so, now, let us print not only the roots which have converged, but also the number of 

roots; so, then np.size(roots_conv), excellent. So, now, we have all the things. So, this is 

the code that we are more interested in. So, we will copy this we will go over here. So, 

then for once we have the solution we will copy paste this thing. 
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So, roots will be sol[0] whether converged will be sol[1] roots converged will be this and 

number of roots will be np.size(roots_conv) and lastly we will assign everything to an 

array C. C[j,i] = number_roots and here we will define C= np.zeros(np.shape(R)). 

So, this is just an initialization of the C array with zeros. So, now, np is the number of roots 

yeah that is pretty much it plt.pcolor(R, H, C) aspect ratio 1 we do not need the limit we 

do not need the x line y line. x label is x and y label is h; plt.colorbar and the title of the 

plot will be it will be bifurcation or the stability diagram. It is often called as stability 

diagram because it shows in the parameter space how many fixed points a given state has. 
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So, let us run this so; obviously, there was some warning, but we ignore that warning for 

now. Maybe it started with this point where it is not able to converge. In fact, let us refine 

the grid. So, we see that something is happening over here. 
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So, let us define the grid from - 0.5 to 2 and - 1.5 to 1.5; - 0.5 to 2 and - 1.5 to 1.5. Let me 

run this. 
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So, let me refine the grid, let me take 100 points, let me run this. 
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And after a while we get this diagram. So, inside this there are 3 roots over here there are 

1 root and this is the boundary which separates the zone from the set of parameters which 

have only 1 root from the set of parameters which have 3 roots. So, this shape is a cusp 

like shape of course, you can keep on refining this and get a pretty much refined shape. In 

fact, I can do this to show you what I mean. 
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But essentially what I am trying to say is the cusp shape is something which is a highlight 

of imperfect bifurcations. 
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There are 3 roots over here or the 3 fixed points over here and there is 1 fixed point ok. 

Something happens when we transit from a parameter space over here which has only 1 

root over here which are certainly 3 roots. And now we are more interested in the stability 

of the roots. 

So, now, let us proceed to sort of probe the stability of the roots. So, let us go back to our 

previous ok. 
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So, I do not we do not need this really, but with the help of this I could show you how the 

output of the Newton solver looks like. The Newton solver is slightly different from the 

fsolve. In fact, if you double click on Newton you can have a look at the contextual help 

of Jupyter Lab it says func x0 f prime and all these things and we have simply specified 

those in the function call ok. x naught, f prime, args and so on alright. 

So, now, let us proceed to find out the bifurcation diagram for different values of h and r. 

So, let me delete the cells let me paste this alright. 
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So, now we have to replace this by the Newton solver. Let me copy this line let me replace 

the fsolve by the Newton solver alright. Let me replace the function definitions from over 

here alright. So, we have changed the function definitions and let me change the looping 

as well alright h. 

So, let us do it for fixed value of h over r. So, meaning we are trying to do this; x star 

versus r for various values of h. So, we know that when h is 0 we will have the pitchfork 

bifurcation something like this ok. So, now we have to make some more changes. So, the 

strategy is for i in np.arange.  

So, this line so, let me indent everything for i in np dot this if sol[1][ i] = true and this is 

from the previous cells that I deleted. So, root = sol[0][i] slope at root. So, we have to pass 

h as well. Now if it is greater than 0 yeah ok. 
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So, let me run this. So, let me define h = 0.5, let me start from h = 0. 
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So, let me not jump the gun. So, let me start from h = 0 because it is a simple pitch for 

bifurcation excellent. 
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So, this is the diagram of you have to change this as well. This is %f and over here we will 

print the value of h. Imperfect bifurcation for h = this alright. Let me run this again. So, 

where h = 0 we have something like this. 
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In fact, let me print only 2 decimal places ok. So, now let me choose a positive value of h. 

So, we are now proving this entire line and watch carefully what happens I mean. If you 

look very if you observe very keenly, we are actually transecting this line and we are seeing 

that up until this. So, this was r = 0 and this is obviously, h = 0. So, up until this point we 

have only 1 root and this entire zone is 1 root and over here we have 3 roots ok. 

So, up until this point we have 1 root and then beyond this we have 3 roots. So, this checks 

out. Now when we increase the value of h over here. We will see that for a long for a larger 

value of r we will have only 1 root and then we will have 3 roots appearing.  

So, let me redo the plot for a higher value of h; in fact, why do not we put all of this inside 

an interactive function. Let me remove the value of h from this, let me wrap everything 

inside an interactive function. 
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So, def show h variation with the input will be h. Let us make an interactive widget alright. 

Let me we have to show the widget as well excellent. So, when h increases, let us see what 

happens ok. 
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So, we see that for a larger value of r we have only 1 root and then we have 3 roots. Out 

of which the upper branch is still stable there is a unstable branch and a stable branch. So, 

this is unstable and this is stable ok. So, this is how the 3 roots look like alright. 
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So, now, when we keep increasing this; this is how it looks ok. Same diagram or be it with 

a mirror symmetry it happens for negative values of h ok. Obviously, for this value also 

we will have a similar behavior, but the root behavior will be reflected about the x axis ok. 

So, this is how the roots look like. In fact, we have plotted the stability of the points and 

all, but there was I mean there is obviously, a much easier way of plotting at least the fixed 

points ok. 
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So, what are we drawing actually? We are drawing the fixed points as a function of r for 

various values of h. The equation that we are looking at is ℎ + 𝑟𝑥 − 𝑥3 and we have looked 

in one of the earliest lectures in which we were looking at geometric interpretations of this 

and we had made something called as an implicit plot. 

So, we can find out the fixed points using a very simple implicit plot as well. What is then 

implicit plot? We will draw over this entire domain the isoline or the contour of  𝑥̇ = 0. 

We will try to find the locus of curves along which 𝑥̇ will be = 0. 

And those locus should be exactly these points, but just having the locus will not tell us 

whether that particular isoline corresponds to a stable fixed point or an unstable fixed point, 

but what we can do is we can later on pass those x and y values of the isoline check the 

slope and then change the color or something. I am not going to do that now. I am just 

going to show you the isolines ok. 

I am just going to show you how we can make use of the implicit plot. I have not done this 

for the other plots, but it is really easy to understand. So, let me do this. 
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So, r1 = np.linspace(-2,2) x1 = np.linspace(-2,2) again then we will have [R1 , X1] = np 

.meshgrid(r1,x1). Now we will define the function 𝐹 = ℎ + 𝑅1 ∗ 𝑋1– 𝑋13. In fact, this 

has to be R1 then we will do plt.contour(R1 , X1 , F) value. So, just to be clear let us go to 

the contextual help of contour(x,y,z) and what is the extra. 
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So, in order to draw certain levels, we can ask the computer to plot for us only a certain 

level. 
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So, over here we will pass levels = 0.0 meaning it will plot for us the 0 line. 
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So, let me run this ok. So, all this is outside the function. So, we must include them inside 

the function let me run this again ok. 
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So, let me reduce the number of points we have in the r_a so that we can clearly see the 

overlapping of the 2 things. 
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That is let me just make 20 ok. So, let me run this great. So, now, we can see how the 

contour lines and the stability and the instability of the points are reflected in a single plot 

ok. So, I hope through this little exercise you will be in a position to figure out for any 

given equation or a vector flow what the fixed points or the contour of the fixed points 

should look like ok. 

And with the help of the other snippet you will be able to determine whether those points 

are fixed stable points or fixed unstable points. In fact, by making use of the Newton solver 



you wish you should be able to find out the shape of the curve without actually using the 

implicit plots. 

By using the Newton solver you will have the exact values by using those exact values and 

finding out the slope of the vector flow with respect to x, you should be in a position to 

tell whether that point will be stable or unstable. 
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I have written up a small snippet actually I have basically copied whatever we had done in 

lecture 9 for the logistic plot and I have changed all the functional forms it appears over 



here. So, basically it is a it is a function which passes r h initial condition and the end time 

and we are solving the initial value problem of this particular form and we are plotting it 

for various values of r and h. 

So, let me run this let us try to ok. So, solve_ivp we have to import from scipy.integrate. 

So, from scipy.integrate import solve_ivp oops. So, that is the question. I have written that 

line anyway. 
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So, yeah after running this let us see for h = 0.24. Let me copy this over here so that we 

can make sense of whatever is going on. 
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So, that we can you can make sense of whatever is going on. So, let h be 0.24. Now let us 

change r. So, let me go from this positive value ok. So, the fixed point is 1.5. So, possibly 

we need to change the fixed point to the initial condition further. So, let me increase this 

to 2 alright. 
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Let me pass h = 0.24 as the default value and let the default value of r be = 2. So, let me 

let this be also 1.7. So, that with this initial condition default initial condition h and r we 

have an asymptotic value of something close to 1.5. 
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So, x is 1.47 something, good. So, now, let us reduce the value of r. So, as we are reducing 

the value of r, we should be able to obtain these particular sets of fixed points. 
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Let us see. So, x is 1.45, x is 1.41 let me reduce t end. So, that we do not have to do so 

many integrations ok. 
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 It is slowly decreasing and at r = - 2 we should come very close to 0.15 or something. 
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It is reducing, it is reducing is still positive, still positive and fine. So, we do have this 

monotonous reduction but now, when we start over a value somewhere near to this. So, let 

me change x0 so that for r = 2 we end up with this initial condition ok. 
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So, x0 has to be something close to -2. So, let me re execute this x0 has to be something 

close to -2, r has to be something like this so, yeah ok. So, x is -1.34 something. So, we 

are over here. Now as the value of r reduces, we will follow this stable branch up until this 

point this is; obviously, the unstable root, but for this parameter value this is also a stable 

point. 



At this parameter value that is r = something between something close to 0.7. So, this is r 

= 0.7 this and this are like 2 stable points. After this once we reduce r further, it has to 

jump from this branch onto this branch and then continue along this branch. 
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Let us see whether that happens or not. So, let me reduce the end ok, let me reduce r ok. 

So, x is reducing, x is still reducing, just a word of caution in order for this to happen 

quickly. 
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Your computer has to be quite fast because you are actually solving an ivp every time you 

change the value of the slider my computer is a decent computer and it runs reasonably 

well cannot complain ok. 
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 1.23 still negative there will be a certain point. 
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 1.23 still negative. There will be a certain point when r is something close to 0.7 where 

there will be a sudden jump from this stable branch to that stable branch ok. 
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We are getting there r is 0.8, 0.76, 0.75, 0.73, 0.7, 0.69, 0.68, 0.67. 
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Actually we have to increase the time there you go, my bad. 
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So, is - 0.84 r is reducing from 0.9, 0.84, 0.83, 0.78, 0.77, 0.76, 0.75, 0.73 is still in the 

negative branch boom from r = 0.72 we have the final asymptotic value of 0.98. So, we 

have made a jump from here to here and this value is actually pretty close to 1 and our 

mathematics and the intuition that we have obtained from the imperfect bifurcation 

diagram everything checks out. 

So, this particular thing is called as. So, we have essentially what we have jumped between 

the 2 stable branches and we have a catastrophe ok, if catastrophically jumped from 1 



stable branch to another. You can vary the value of h find out this bifurcation diagram then 

plot the you can solve the ivp and plot the asymptotic values and you can check for yourself 

whether everything works out. 

Now a small task if you will just try to find out why exactly does the evolution of the ivp 

look something like this. Look we are at r = 0.72 and h = 0.24 ok. 
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So, look r = 0.7 let us say we plot everything at 0.7. Can we explain why the plot looks the 

way it does? Let me make h = 0.24 and r = 0.6 ok. So, we have started so, this is the curve 

of 𝑥̇ versus x ok. 
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So, this is 𝑥̇versus x h is 0.24 and r is something like 0.7 well give or take something like 

this. Now, look we have started the initial condition is somewhere on this curve; suppose 

the initial condition is somewhere over here. In fact, let us see what the actual initial 

condition was. 

The actual initial condition was - 2 ok. So, the initial condition is - 2, let us do that. So, it 

starts from - 2. The initial condition is over here. Let me draw this curve parallely. So, the 

initial condition somewhere over here; I mean not over there. The initial condition is 

somewhere over here this is x0= -2. 

So, the value of  𝑥̇  is positive. So, the point starts to move towards this, but it moves very 

slowly initially. So, x so, from this to this x increases slowly in time and that explains that 

well is it really something like that let us check. It is slowly increasing in time. 

So, there is a very fast behavior like this, but that fast behavior is quickly superseded by a 

very slow behavior. Actually that fast behavior also we should be able to explain. 
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Let me go back to the plot and in forget about the y limit and let us rather take a y limit 

from - 4 to 4 perhaps which is 0.24 and r is 0.7 ok. So, we are starting somewhere over 

here. So, there is a very fast motion and then slowing down. The slowing down continues 

up until this point.  

So, this point corresponds to x = minus. So, this is slowing down up until this point and 

this corresponds to something between somewhere near - 0.5. So, at 0.5 there is a minimum 

velocity after that minimum velocity the velocity again increases. So, once the particle 

reaches this, there will be a fast motion towards the right that x will increase and eventually 

again there will be a slowing down and then a fast motion all the way to the fixed point 

ok.  

So, this point and then the maxima is somewhere between the maxima is somewhere near 

0.5 ok. So, let us see; let us see the max and the equilibrium is near 1 let us see that ok. So, 

x = 0 point - 0.2 we started at - 0.5 we have a change in behavior. 

So, at - 0.5 we have very slow increase to a fast increase so, a transition from slow to fast. 

So, this is that inflection point in the x versus t curve. After that we see another change in 

curve from this. This fast increase to a slow increase again at x = 0.5. 



So, in the x-t curve wherever you see inflection points be aware that in the 𝑥̇ versus x curve 

you will encounter this kind of local minima or maximum. And it means that you are 

changing behavior from a positive slope to a negative slope ok. 

So, for example, at - 0.5 we are changing from negative slope to a positive slope and this 

is that area of negative slope. So, you are increasing time, but x is changing very slowly 

and over here increasing time and now x begins to increase rapidly. So, that is the change 

over in the behavior of x versus t and over here also this is increasing in time this is 

decreasing in time. So, there is a change over here. And the change over corresponds to x 

= 0.5 something around, but it takes a long time for it to reach because of the slowing down 

of everything. 

In fact, this particular slowdown is quite large. Can you tell why this slowing down is very 

large compared to this crossover? It is slowing down and there is a crossover, but over 

here there is also a crossover, but it is quite rapid. This is quite rapid than this. So, the 

question is why. And the answer is quite straightforward if you look at this curve the 𝑥̇ 

over here is really close to 0. 
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 So, the 𝑥̇ over at this point is going very close to 0 while the \𝑑𝑜𝑡{𝑥} over here is 

something which has a positive value ok. So, because it comes very close to 0 the velocity 

of the point on the number line it becomes very 0; because we are studying the motion of 



this red particle on the line. And when the velocity itself comes very close to 0; there is a 

very slow motion towards the positive side. 

So, despite the velocity being positive it is a very slow it is a very it is magnitude is quite 

low and therefore, it encounters a very large slowing down and then the changeover 

happens ok. So, this slow dynamics is being captured in the vicinity where you would get 

2 points.  

So, this catastrophe happens and that catastrophe is sort of preceded by that is dramatic 

slowing down. Because, once we increase the parameter further we will get rid of that 

slowing down then it will not happen anymore ok. 

(Refer Slide Time: 52:53) 

  

So, when r reduces when r reduces that slowing down is slowly lifting up ok. So, you have 

no longer have that dramatic slowing down. When r is very close, so that this branch comes 

very close to 0; you will have a very dramatics length now. 



(Refer Slide Time: 53:12) 

 

Now when r is increasing that branch is actually never reached because this root this 

particular point is splitting into 2 roots; this is 1 roots and this is 1 root. And it will 

continuously reach only this root it will not reach the other root ok. So, whole lot of thing 

happen in the bifurcation space, I am not going to discuss about the three dimensional view 

of this equation. I am however, going to put a small snippet of how to visualize this in 3D 

ok. 
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So, just for completeness I have put in the small snippet of visualizing the 3 dimensional 

plot in mayavi. So, basically let me just tell you what I am trying to plot over here. 
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So, if we have r over here h over here and the fixed points. So, the fixed points should give 

us some curve in this plane and there will be zones in which we have only 1 fixed point 

and then there will be three fixed points in a certain zone and there will be a surface in this 

\𝑑𝑜𝑡{𝑥} r h volume which will correspond to an iso surface which will correspond to a 

surface in which \dot{x} is 0 all over. And that surface will be the surface of all the fixed 

points ok. 

That is the meaning of that. So, this will be the iso surface of all fixed points and those 

three fixed points should also be visible. 
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So, let me enlarge this further ok. 
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So, I have drawn the R H plane in green and the plane the iso surface of the fixed point is 

shown in orange ok. 
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So, look at how what things are, here is the cusp here is the cusp. If you look closely at 

this triangle not triangle, but this thing is the cusp it tells you the folding of a sheet of paper 

ok. So, well I cannot really show it with this A4 sheet, but you get the point ok. It is a S 

shaped curve this S shaped curve and where it starts becoming flat again. So, it goes from 

this S shaped curve to being flat again and that entails this cusp over here ok. So, that cusp 



is visible in the HR plane. So, this is the HR plane and here there are 3 routes here there is 

only 1 root. 
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There are 3 roots; 1 root, 1 root, 1 root ok; there are 3 surfaces. The top surface, the middle 

surface and the bottom surface. So, these things these overlaps .I have made it transparent 

so that if you stack multiple transparent layers you have something which is more opaque. 

So, it helps us in effectively visualizing that these there are more layers over here and more 

layers corresponding correspond to larger number of roots. There is only 1 root over here 

there is only 1 root over here. So, that cusp is something which we had seen in the HR 

plane ok. So, in the 3D zone, the HR plane has that cusp and we do have that cusp grid. 
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In the XR plane. So, this is the H axis this is the H axis. So, if we look at this the fixed 

points as a function of R for different values of H ok. So, different transects will give you 

different values of H and then you can vary R and see what happen. And the thing is this 

inside fold that is an unstable branch ok. 

These things this is stable this is stable, but this inside fold is unstable. And we are now 

looking at the HR curve let me show the HR curve. We are essentially looking at this 

across different transects. So, H = 0.24 it will be somewhere over here that transact will 

be somewhere over here ok. 

It is just a matter of how you can visualize whatever is going on. In fact, the H and R are 

swapped, let me quickly check this H and R are swapped if I am correct X level is H it is 

correct anyway. So, yeah I think the H and R axis are swapped and that swapping happens 

because of this mesh grid structure. 
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It does not give you something which is like ji stuff that ji transpose business happens. So, 

let me close this, or let me redo it yeah ok. 
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So, if we look at the X versus R stuff and we have to look at it at different transects then 

you will get that kind of a behavior where jumping across different kinds of curves ok. 
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So, you have to take different transects in this direction to find the iso H lines and similarly 

if you have the time you can do the plot fixed point versus H for different values of R for 

different transacts of R and you will see this kind of S shaped curve. 
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 And that s shaped curve as you keep changing R you will end up with only 1 root ok. So, 

this 3D stuff is visualized not with the help of matplotlib, you can do certain things with 

matplotlib, but typically in scientific computing you use data structure called as VTK. And 

VTK is a data structure which is quite robust and you can really visualize large data sets 

and Mayavi is the name of a module which is available in Python. 

It has been made by Enthought and it is a very robust library to deal with 3 dimensional 

data sets. Another very popular software that deals with VTK files is called as ParaView, 

you can have a look at that as well. You can export various random NumPy arrays of 



Python to VTK files which you can then later on visualize using ParaView and ParaView 

is also a free open source software ok. 

So, with this we end this particular series of lectures on bifurcations and next week we will 

start with flows on a circle and 2 dimensional flows. So, with this it is goodbye from me, 

happy problem solving and it is goodbye until then bye. 


