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Bifurcations – Pitchfork Bifurcation 

 

Hello, everyone. In the last lecture, we had a look at first saddle known bifurcations and 

then transcritical bifurcations. In this particular lecture, we are going to look at the third 

kind of bifurcation that is called as the Pitchfork Bifurcation. 

(Refer Slide Time: 00:52) 

 

So, a pitchfork is a tool that is one uses and it looks something like this ok and in the Indian 

context it would resemble something like a trishul. So, the normal forms that we had seen 

for the saddle node and a transcritical bifurcations they were quadratic ok. 
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And, in the case of pitchfork bifurcations we will go to a cubic form of the normal form. 

So, let us consider the governing equation �̇� = 𝑟𝑥 − 𝑥3. So, this is the normal form for 

what is called as a supercritical pitchfork bifurcation. 

(Refer Slide Time: 01:46) 

 

And, it will be cleared later on why it is called as a supercritical pitchfork bifurcation, in 

particular why it is called as a supercritical bifurcation. 
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So, let us begin let us first copy this bit of code which we will use, alright. So, let me 

execute this. 
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So, we will also require this particular code and also make use of this cell where we will 

simply change the functions that we were using. So, recall that we had used this particular 

snippet in order to study a transcritical bifurcation and the good thing about using Python 

is we can reuse various snippets. 



I mean we can reuse various snippets of any kind of programming language that you want, 

but in the case of JupyterLab we can have a very quick look into what is going on. So, we 

have defined the fx as rx-x^3 and the derivative of it dfdx as r -3x^2 ok. So, once again let 

us give an additional guess point because it is a cubic equation we expect three roots. 

So, even before going into the code we can check out what the fixed points are. So, fixed 

point corresponds to �̇� = 0. So, 0 = 𝑟𝑥 − 𝑥3 which implies 𝑥(𝑟 − 𝑥2) = 0. So, x= 0 is a 

fixed point and 𝑥 = ±√𝑟 is a fixed point. So, these are the fixed points, let us denote them 

by 𝑥∗. 

So, when r is negative x = 0 is the only fixed point when r becomes positive apart from x 

= 0 we have 𝑥 = ±√𝑟. So, these are the two additional fixed points. What about the 

stability and the fixed points? If you recall the stability of the fixed points is determined 

by the derivative of the function on the right hand side with respect to x. 

So, this 𝑑𝑓𝑑𝑥 = 𝑟 − 3𝑥2. So, when we substitute 𝑥∗ = 0, so, when 𝑥∗ = 0 f`(dfdx) is 

going to be r. When x∗ = +√𝑟 this term is going to be 𝑑𝑓𝑑𝑥 =   𝑟 − 3𝑟 =  −2𝑟 which 

is minus. The same thing happens when we choose the root x∗ = −√𝑟 we again obtain - 

2r. 

So, when r < 0, this particular fixed point is stable because when f`x < 0, we have a stable 

root. When r < 0 these roots do not exist; when r >0, however, this particular root becomes 

unstable because r > 0 implies f`at 𝑥∗ > 0. 

However, these two roots are stable. So, thus we have a bifurcation diagram, so r <0 this 

is the root and this is stable. When r crosses 0 these two branches become stable and this 

is unstable and this diagram resembles a pitchfork when it is kept on its side and hence it 

is called as a pitchfork bifurcation. 

It is called as a supercritical pitchfork bifurcation because it leads to the creation of two 

stable branches from one stable branch. The original is the root 𝑥∗ = 0 it loses stability. 

So, we have put in the functions over here and now let us run this. 
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So, it takes a bit of time ok. So, great we do have the trend that we had predicted. These 

are the stable points; these are the stable points and this becomes unstable. 
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So, let us change the title of the plot to a pitchfork another a Supercritical pitchfork 

bifurcation alright. So, we have missed this and that should be fine. 
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So, let us visualize how this entire thing would actually look like if we were to plot the 

right hand side of this function as a function of r ok. 
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So, let me copy this. Let me make a new cell. So, let us define show pitchfork or rather 

show_fx(r ). Let r be the input to this function. Let us wrap this inside the code and let x = 

np.linspace(-2,2) and let y= f(x,r). Let us then plot it and let us wrap it inside an interactive 

widget alright. Let us display the widget as well, let us run this cell. 
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So, let us make the x axis as well. So, when r = 0, there is exactly one root. 
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When r becomes positive there are two roots alright. So, there are two roots and let us go 

quickly to our notebook and see what we have already discussed. 
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So, over here the �̇� is negative. So, this is  �̇� versus x. So, over here �̇�  is negative. So, it is 

attracting sorry, �̇� is positive and so, it is attracting all the points on this line would be 

attracted towards this point over here �̇� is negative. So, all the points would be attracted 

towards this point. So, this is stable equal or a stable fixed point. 



So, over here the points go towards the right because �̇� is positive over here �̇� is negative. 

So, points go towards the left. So, again these are stable fixed points and this is an unstable 

fixed point. And what about the case where r is negative? 
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We only have one intersection point something like this. Over here it attracts, over here 

also it attracts. So, 𝑥∗ = 0 is a stable fixed point and this eventually manifests itself in this 

kind of a bifurcation diagram. 

So, while this particular algebraic form of the ordinary differential equation is typical for 

a supercritical pitchfork bifurcation, there can be other kinds of function and the key point 

is to have cubic behavior and cubic and a cubic behavior is sort of quantified by one root 

or three roots ok, never two roots and the presence of three roots leads to a shifting of the 

nature of the point. Apart from that there is something else such kinds of problems are 

often dictated by a certain symmetry. 
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So, this particular problem it is symmetric under the transformation x goes as - x. So, if 

you substitute all of these so −ẋ = −rx + 𝑥3  and is the same as ẋ = r − 𝑥3. So, this 

equation is invariant under the transformation x as - x. 

And, the fact that the problem is symmetric implies that the occurrence of the two roots is 

also symmetric. The two roots symmetrically occur while one root vanishes. And, this is 

quite prototypical of a problem. For example, the buckling of a beam if you compress a 

beam nothing happens, but after a certain point it will tend to either buckle towards the left 

or it will tend it will tend to buckle towards the right ok. 

And, whether it chooses to buckle in this direction or in this direction it is quite symmetric 

there is no nothing sacrosanct about which direction it buckles to. So, such kinds of 

problems are characterized by the presence of a distinct symmetry in the normal form. Let 

us look at a simple prototype of this kind of bifurcation. So, it is let me create. 
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So, �̇� = −𝑥 + βtanh(𝑥), let me use a different color,. So, first things first let us plot �̇� =

−𝑥 + βtanh(𝑥). Let us see how that thing looks like. 
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Let me copy this; let me paste it over here. So, fx is -x+ r*np.tanh(x). 
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So, let us run this particular cell and see the widget ok. 
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So, this is a sigmoidal behavior for negative r; hence r becomes positive, we have the 

occurrence of three roots, 1 2 3 and the occurrence of three roots is in such a way that the 

fixed point x = 0 changes its nature from being an attractor to a repeller ok. So far it is 

attracting and then it begins to repel and these are the two fixed points which are symmetric 

about the y axis. 

So, let us try to make the bifurcation diagram corresponding to this kind of a vector flow. 

So, like I have said before this kind of equations are also called as vector flows because 

this govern how points on a line they flow ok. So, if it is like this all these points would 

flow towards the right, all these points would flow towards the left ok it is also called as a 

vector flow because of that precise reason. 
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So, let me copy this, let me paste it over here. Let me change the functional form of this. 

So, the dd so, the derivative of this function will be -1 + r*1/np.cosh(x)**2. So, d/dx of 

tanh(x) is 𝑠𝑒𝑐ℎ(𝑥)2. So, yeah let us run this cell and see what we get. 
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So, we do have that kind of a behavior and notice that at r=1, we have the occurrence of 

the bifurcation ok. So, this beta is what we are calling it as r that is the control parameter. 



So, what are the fixed points? So, the fixed points are corresponding to �̇� = 0 that is −𝑥 +

β𝑡𝑎𝑛ℎ(𝑥) = 0 and obviously, x is of x= 0 is a fixed point, but what are the other two fixed 

points? It is not easy to say because this is sort of a transcendental equation, but we can 

interpret this as following. It is 𝑥 = β𝑡𝑎𝑛ℎ(𝑥). 

So, if we plot x versus this curve so, this is the function y = x that is the left hand side and 

tanh function looks something like this. So, depending on the strength of β we will have 

different functions appearing and that leads to the intersection points which are also the 

roots. And, obviously, this problem has a very distinct symmetry, alright. So, why does 

the why does it occur at r= 1, is something which I will let you think about ok. 
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But, just to be just to give you a hint you can analyze, this particular cell to find out what 

is really going on. So, over here we have we do not need this function for now. Let us plot 

plt.plot(x, x) and plt.plot(x, np.tanh(x)*r). 
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Let us see the interactive widget ok. 
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So, two roots once it becomes tangential at r =1 one there is only one root and then 

obviously, there is only one root ok. So, think about what is going on. 
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So, this will help you in formulating some kind of a reason towards assessing by r =1 in 

particular yields the pitchfork bifurcation. Let us now turn our attention towards subcritical 

bifurcation. 
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So, the next thing that we are going to look at is the subcritical pitchfork bifurcation and 

by subcritical it means that upon changing a certain parameter you will have less fixed 

points than you had earlier. So, we expect it to be sort of a inverse. 



So, super critical had, let us go back from one stable root or fixed point we had two stable 

fixed points. So, we increase the number of fixed points. In the subcritical we have we will 

see what we have ok. So, the normal form of this subcritical bifurcation is �̇� = 𝑟𝑥 + 𝑥3. 
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So, let us take this particular code and, let us see how this looks like ok. So, let us change 

this functional form. 
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So, this will be �̇� = 𝑟𝑥 + 𝑥3 ok. So, when r is positive we have only one fixed root when 

r is negative we have two fixed three fixed points and what happens what is the stability 

of the fixed points? You should be able to just look at it and tell that ok this origin is 

attracting and this is repelling and when. 

So, this is the case where r< 0. When r > 0, something like this there is only one fixed 

point. It looks something like this. So, the origin is repelling. So, so, the origin is unstable. 

So, this fixed point 𝑥∗ = 0 is unstable and then it becomes stable. At the same time what 



are the roots? So, the roots are 𝑥(𝑟 + 𝑥2) = 0. So, x=0 is one fixed point and 𝑥 = ±√𝑟 is 

the other fixed point. 

So, this is the curve of 𝑥 = ±√𝑟  and quite naturally they are unstable; so, this rather when 

r < 0. So, the origin this is unstable and this is stable, this is unstable and this is unstable. 

So, we had one stable point which has now become unstable.  

So, this is a this is called as a subcritical pitchfork bifurcation ok. So, what happens when 

we have an initial condition over here? The vectors the flow on this particular line will be 

such that it will keep on continuing towards minus infinity and when the point is over here 

it will keep on going towards plus infinity.  

Consequently what this means is any point any initial condition over here is bound to blow 

up or it is going to grow to say to infinity or minus infinity. And, usually in order to avoid 

that there are some additional terms in the normal form. So, a very easy way of controlling 

this is simply doing �̇� = 𝑟𝑥 + 𝑥3 − 𝑥5. 
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So, this was the let me put a title. So, this normal form is dot x forgotten to put quotes. So, 

�̇� = 𝑟𝑥 + 𝑥3 − 𝑥5. 
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Let us copy this. 
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And, let me show you what the presence of the 𝑥5 term brings into picture ok. So, we have 

done this, essentially, we are plotting this. 
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Let me change the y limit to something more manageable. Let me increase the number of 

points ok. 
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So, when r= 0 we have three roots 1 2 3. So, r = 0, three fixed points and at r = 0. This 

thing is obviously, attracting because the vector points over here will try to go towards the 

right and the vector points over here will try to go towards the left. This is attracting, this 

is ok. So, it needs to be figured out what this is, while over here also it is attracting. So, it 

has three fixed points, two end points are attracting. Let me make the r< 0. 
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So, r < 0 gives us 1 2 3 4 5 fixed points ok. 
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So, let us analyze what those fixed points behave like. So, we have something like this and 

this point is obviously attracting; this point is repelling; this point is attracting; this is 

repelling and this is attracting. So, this is stable, this is also stable, this unstable, unstable, 

stable. 
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So, we can sort of imagine the bifurcation diagram to be something like this. So, on this 

axis we have r. So, on this axis we have the fixed points when �̇� or rather when r is 



negative, there is only one fixed point ok. So, there is only one fixed point up until a certain 

negative r. So, from - 0.3 to -0.2, we are having the occurrence of multiple roots. 
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Let me increase the resolution of this slider. So, at r = - 0.25, we have 1 2 3 roots ok. So, r 

less than this we had only one root and r =0.25, we have the occurrence of three roots ok. 
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And, when r crosses this so, when that happens what is the stability of the two of the three 

points? Yeah. 
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So, what is the stability of this point? So, obviously, this is a half stable point, this is also 

a half stable point. The trajectories are all going towards the left. So, origin is still stable 

ok, the trajectories will go towards the left, towards the right. So, the origin is still stable 

and what about this point? They are half stable. 
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But, when we increase it further, then these end points they are stable, but these 

intermediate points they are unstable ok. So, the curve actually looks something like this. 

So, this these are all the fixed points till here. The origin is stable, then over here also the 



origin is stable, but these roots these particular roots they are unstable, but these roots are 

stable. So, we have five roots over here on this axis we have five roots; so, 1, 2, 3, 4, 5 ok. 

So, 1, 3, 5 are stable 2 and 4 are unstable beyond that we have 1, 2, 3. 
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Let me increase r and let us see what happens. When you increase r we have only three 

roots and this is stable, this is stable and this is unstable. So, the origin becomes unstable. 

So, we have a whole lot of things going on. Let us find out the bifurcation diagram 

numerically. For this we can simply reuse the same snippet, no harm done. 
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Let me go over here. Let me change the functional form. So, this is 𝑟𝑥 + 𝑥3. This is going 

to be 𝑟 + 3𝑥2. So, this is going to be a subcritical pitchfork bifurcation, there you go. 
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So, there was stable point it become unstable and these are the two other unstable branches. 
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What happens when we put the additional term? This term is basically to make some far 

boundaries well behaved because of this 𝑥5 behavior, roots which would fly off to infinity 

and minus infinity they are now bounded ok. If these roots were not there then obviously, 



the initial condition would fly off to infinity and fly off to minus infinity ok. So, once we 

have done this we know that there is going to be five roots. Let me put a few more guess 

points, let me run this. In fact, I think we have forgotten to do this ok. 
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So, there is something which is going on let us use more points r has to have a sufficient 

resolution. So, r_a must have say 200 points now. 
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So, obviously, we are not getting those roots let us put some greater better guesses. 
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So, let me create a variable xg and xg = np.linspace( -2,2, 20), let us take 20 guess points. 

Let us run this. 
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Great. So, there you have it. What does this diagram mean? What does this diagram mean? 

Let me open the snipping tool. 
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Let me take it over here. So, these are the stable fixed points, these are the unstable fixed 

points, these are the stable branches, this is unstable, this is stable and this is also stable. 

So, if I have this parameter r, suppose I choose this parameter r so, suppose r = 1 let us go 

over here oops let us go over here and set r = 1. 
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Now, at r =  1 quite obviously, the far roots are the stable ones while the origin is unstable. 

So, this makes sense. 
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Let us now choose r = 0. At r =  0, the far points are still stable while the origin is sort of 

half stable ok. So, this is stable, this is stable, origin is half stable. 
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Let me reduce this. So, now, we have zones over here in fact. 
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Let me reduce the r range from - 0.5 to 1 we do not need so many control parameter points. 
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Let me change the aspect ratio to 0.4, yeah. 
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So, let me create a new snip so that we can discuss this better. Let me copy this yeah ok. 

So, over at these points so, when r is between - 0.25 and 0, we have five fixed points 1, 2, 

3, 4 and 5 ok; So these are the five fixed points and out of that the far branch is stable, the 

inner branches are unstable while the origin is stable. The origin is stable over here. You 

can easily figure out and this is what it looks like. 
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Now, when we keep reducing r then again we have only one root and the origin is stable. 

So, if we were to look at this branch if we were to look at this branch in its totality, if we 

were to have this stable point and if we were to change the control parameter from next 

stable point what would happen to this fixed point not the stable point to this fixed point?  

So, if we have a this particular value of r so, the fixed point is over here. If I now reduce 

the value of r, the fixed point will still slide along this particular branch. This will be the 

fixed point, then if I reduce the value of r further this will be the fixed point, this will be 

the fixed point. So, when we are already on some fixed point branch ok, when we are 

already using a solution in which the initial condition gives us this particular fixed point 

ok. 

We have this particular fixed point and when we are reducing the value of r, we are sort of 

sliding on this particular branch up until this point. Now, at this point when we reduce the 

value of r further, it will simply jump from this branch to this stable branch ok. 
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And, then it as we reduce r further it will move along this let us again take a look when r 

is large the origin. So, this suppose we focus on this point ok. This is that stable solution 

this is the fixed point which corresponds to this equation. 
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As r is reducing look at the stable point how it is shifting. It is reducing, it is reducing what 

I mean is look at focus on this particular point it is moving. So, the value of the fixed point 

is reducing ok. Let me go again. So, it is reducing, reducing, reducing, reducing and then 



suddenly now it becomes half stable and then it suddenly whatever fixed point was here it 

suddenly jumps to the origin. This is what is happening. 

It is suddenly jumps to the origin. It does not have access to these fixed points ok. It never 

goes to the unstable branch ok. Once again you just focus on the right fixed point this. It 

is reducing, reducing. 
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And, at this point let me increase the resolution of r further let me make it something like 

this ok. We start off with this; the fixed point is shifting towards the left meaning that the 

fixed point is reducing. 
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So, it is reducing the fixed point magnitude is reducing. 
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And, at a certain point over here, it undergoes a transition it becomes half stable and there 

is no more root and root particularly vanishes and suddenly jump towards the origin. 



(Refer Slide Time: 38:58) 

 

Inversely, if we start at this particular parameter say - 0.5 and we increase the value of r 

we are originally sitting at this branch; so, 0 0 0. So, focus on this point focus on this one. 

It is still 0s that is the only stable branch. Now, as we increase further oops, as we increase 

further suddenly 0 it is still attracting towards 0 ok. 
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0 is still attracting and now 0 is repelling. So, it will move along this branch up until this 

point that fixed point will still be 0 and suddenly we will have a jump from this fixed point 

to these fixed points. It means that if we have initial conditions of 0, it would obviously, 

stay on 0. 

I mean if we had a solution which would converge to 0 and we changed the value of r it 

would obviously, lie on this branch because 0 is not unstable, 0 is stable. So, it would stay 

on this branch up until this point, after this 0 becomes unstable. So, when the parameter 

crosses the value of 0 the 𝑥∗ goes on to one of these two branches. And, these two branches 

are obviously, symmetric and they are characteristic of this subcritical pitchfork 

bifurcation. 

So, now I have told you how this entire thing looks like and this is what is called as a 

catastrophe it suddenly goes from this stable thing and suddenly it jumps onto another 

branch ok. And, this particular thing is hysteresis because by increasing by reducing the 

parameter I am going on a curve which looks something like this. 
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I am reducing the parameter it is going something like this, but when I am increasing the 

parameter it looks something like this.  

So, the fixed point is jumping around branches, but it is not doing so in a reversible fashion 

and this thing is called as hysteresis. So, I have said this many times that the evolution of 

the equation goes on to a fixed point �̇� = rx + 𝑥3 − 𝑥5 for some value of r with some 

initial condition what do we mean that it goes to a fixed point?  

It means that in time it settles on to some value of x and this is the fixed point. So, now we 

should be able to solve this initial value problem and assess how that jump actually 

happens we should be able to see that jump, let us see let us find out. So, for this we have 

to solve the differential equation. 
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And, we have already written an ivp code. So, I have gone ahead and made this particular 

function it is based on the logistic map that we had done in a previous lecture. I have 

simply modified that function, so that it takes the parameter r and the initial condition and 

the time at which we should integrate this.  

So, t end is this particular time. I am defining the right hand side as this. So, this function 

is called as xd and I am passing that to the solve ivp function. So, solve ivp solve ivp 

function is something which integrates the differential equation. It helps us in solving 

initial value problems. 
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So, before this we have to import solve ivp from scipy. integrate ok. So, this is the this is 

how we pass the arguments to this. So, the slider it contains a slider for r let me go from - 

0.5 to 1 or say 0 point and we can go to 0.5 also because by 0.5; in fact, we can go to 0.2 

as well, it makes lot of big difference; let me take 0.01 ok. Let us take initial conditions 

going from minus 0 point or let us take initial conditions from 1 to 5 in steps of 0.1 ok. 
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t end takes steps from 10 to 50 in steps of 10. So, let us run this. 
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Oops. So, this has to be plot subcritical. So, that is the danger of reusing code. If you make 

changes in one name make sure you make changes everywhere. There is still some error 

solve we have not yet run the cell. 
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So, we have not imported solve ivp ok. So, now, we have it. So, let us look what happens. 

When we have an initial condition of 1, if function for this particular value of let me make 

it 0.4 ok. 
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So, when r is 0.4 when r is 0.4 they I am I am plotting the last I am plotting the last point 

that the solution returns. So, by that I mean  that when the solution returns me this entire 

array, I am fetching this last value and I am plotting it because that last value if it is if it 

asymptotically converges towards that point then it is the fixed point. 

Essentially this entire value of x is the fixed point. So, that fixed point is 1.137420 ok. So, 

I am plotting that as well. Now, with that fixed point I am able to see that when x = 1, I 

am reaching that fixed point. So, let me erase some of these lines. 
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So, when r is 0.4, I am reaching this fixed point and obviously, this fixed point is 1.1 

something which checks out. Now, let me slowly reduce the value of r. Look the value of 

the fixed point is also reducing. 
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In fact, to better assess that let me fix the y-axis or let me fix it from - 1.2 to 1.2; so, then 

that the y-axis is locked ok. 
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So, when it is 0.4 this is the value when we reduce the value of the fixed point is reducing 

ok. It is reducing, it is reducing. 
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Now, we are reaching r= 0. No problem, we are still reducing, reducing, reducing ok 

everything is fine till now, it is still reducing. So, now, what is happening? We are sliding 

along this curve, we are obtaining fixed points. So, all these points are obtained using an 

initial condition of 1 ok, but we are still reducing r the fixed point is still reducing. Look 

this is the  𝑥∗  =  1 line. 



So, we are still reducing r. We are at - 0.1 ok somewhere over here we will still reducing 

and we expect to reduce up until 0.75. Let us see whether that happens or not; still reducing 

and still reducing, still reducing. 
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We are coming close to the fixed point of 0.75. Now, what have happens I mean now what 

happens? We have we have reached this point. Now, we expect that once we reduce r 

further we will suddenly jump onto this curve. We should suddenly see the fixed the fixed 

point of this system to jump to 0 ok. 
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Look it has I have reduced r further now it is taking this path and it is asymptotic to 0. So, 

the final value of this equation the asymptotic value of this equation is going towards 0. 

Let me increase the size further ok. If at all I think that it has not reached the asymptote let 

me increase the t end. Increasing the t end will clearly show that it is trying to go towards 

the asymptote. 

So, we have successfully shown that this particular branch jumps to this particular branch 

in a catastrophic manner ok. You can see how the curve asymptotically goes to 0 just by 

sliding the parameter. Remember that is entire branch we have obtained by using an initial 

condition of 1.0. 

Because when we started the set of simulations we started with a parameter of r = 0.4 and 

we started off with an initial condition which gave us that final value of x that is the fixed 

point for this value of the initial condition. 
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Actually, let us do this again. It should not depend on the initial condition at all. Let me 

change this ok. So, it is independent of the initial condition even if I change this asymptotic 

value is independent because those initial conditions sort of settle on asymptotically to that 

fixed point ok. 
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So, let me start with a different initial condition, let me reduce this. So, you see it is again 

doing that thing the fixed point is reducing that is the asymptotic value of x is reducing. 
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And, at a certain point it will catastrophically drop to 0. 
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Is reducing, reducing catastrophic drop to 0 ok. I hope it is clear. Now, let us do the inverse. 

Let us start with an initial condition over at this point which starts at 0 and let us increase 

the value of r, let us see what happens. 
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So, let me choose let me in fact, get these initial conditions from - 0.1 to 0.5 ok. So, I what 

I am trying to do is to find out the other hysteresis branch ok. 
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Let me choose some negative value of r and x0 as 0.2. So, now, we will start with the other 

branch. We will start so, let me rub this off and if you are not convinced over about 

whatever is going on, you can try all these things you can make the sliders on your own 

and what the other thing that you can do is watch this video again and get a feel of it 

because this is quite important, understanding hysteresis is quite important. 

So, now we start over here for a negative value of r for initial condition of 0.2 we have an 

asymptotic value of 0. Now, what we expect? Keeping the same initial condition when we 



increase the value of r we should stay on the same branch. Let us see whether the equation 

still asymptotes to 0. 
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We are increasing r it still asymptotes to 0, still asymptotes to 0, still asymptotes to 0 and 

at r =  0 something happens. 
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So, at so, we have reached this point and now suddenly we expect that this stable point 

should jump all the way to some value over here and let us see. 0 0 ok sorry, yeah 0 and 

then suddenly we see that there is a jump in the asymptote and if you are not convinced 



whether a t end of 30 seconds is able to capture that asymptote, we can increase the slider 

further. 
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So, now, you see that at for this particular value of the parameter there is a sudden jump 

and this signifies this particular jump, ok. I repeat. The fixed point that you see in whatever 

discussion is like the asymptotic value of x that the ODE will give us over very long time 

ok. It is the fixed point meaning whatever the condition is it will go towards that point. So, 

this is the fixed point. 

And, we have shown through integrating explicitly the differential equation how that fixed 

point shows that jump catastrophe and hysteresis. This is wonderful because Python allows 

us to change the sliders at will and see how the transition actually happens. 

Just saying this that when you move on from this to this, it is not entirely convincing to 

some people we are completely missing out on this unstable branch and why would the 

point go to the unstable branch that unstable branch means that those set of fixed values 

will never be reached when we integrate the differential equation. 

Suppose, this is the unstable x star our differential equation will never try to go towards 

here because it is unstable. Our differential equation will try to go towards this asymptote 

always. So, it will never go to that unstable branch. So, this is what all the physical meaning 

of whatever is going on ok. 



The fact is python or even octave they give us they are enabling us to analyze these 

equations in a much user friendly manner than what was previously available ok. It helps 

us in visualizing the solutions in a more obvious fashion. And, with this I end this 

wonderful lecture and I will see you again next time with imperfect bifurcations. Bye. 


