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We are going look at Bifurcations. Before studying bifurcations, let us quickly take a 

look at something which we had studied in the previous lecture that is the stability of 

fixed points. So, we had seen fixed points in the last lecture. So, we have an equation 

( )x f x=  and that curve looks something like this for example ok. So, wherever the 

curve ( )f x  crosses 0, those are our fixed points. 

And now, we had seen that if we have an initial condition over here, the x  at this point is 

negative, as a consequence this point will try to move towards the left. If we have an 

initial condition over here, the x  at this point is greater than 0 and so the point tries to 

move towards the right. Essentially, all the points in this place; all the points in this space 

and all the points in this space, they are attracted towards this point, this fixed point.  

Whereas, if we have an a point over here, the x  is positive so, it tries to go over here. So, 

this point is also an attractor, this point is a repeller because, point over here tries to go 

towards the right, a point over here tries to go towards the left. So, this helps us in 



defining stability of fixed points. So, there are some fixed points which attract like these 

and there are some fixed points which repel. 

What dictates whether a fixed point attracts or not? It is quite obvious that the slope over 

here is positive so, it is a repelling point, the slope over here and over here is negative 

and so, its attracting, but let us try to prove that and while this is not a course for the 

theoretical aspects of all this, but I think this is something which would help us in the 

future. 
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So, let us consider the behavior of this equation near a fixed point. So, let us denote the 

fixed point by *x .  
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So, let us consider the behavior of the difference of x from *x  that is the behavior of x in 

the neighborhood of a fixed point. So, it is in the neighborhood of a fixed point. So, 

*d dx dx

dt dt dt


= −  and ( )

dx
f x

dt
=  while 

*
*( ) 0

dx
f x

dt
= =  because it is a fixed point by 

definition ok. 
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So, now let us write ( )f x  in terms of a Taylor series expansion; so, x so, this can be 

written as *( )f x + . So, 
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 and so on. So, this is 

just a Taylor series expansion. So, we have performed a Taylor series expansion of this 

particular expression and at the fixed point, *( ) 0f x = . So, this boils down to 
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. So, these are all higher order terms and if   is small that is 

if we are really looking into the neighborhood of *x , then   will be quite small because 

x is very close to *x  so, the higher order term contributions will be small compared to the 

leading order term. So, this particular term is the leading order term.  

So, if we just focus on this particular equation, it says that 
*
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and if 

f

x

 
 
 

 is 

positive, then we have exponential growth ok. So, if 
*x

f

x

 
 
 

 is positive, then you have 

exponential growth locally and if 
f

x

 
 
 

is negative, then you have exponential decay 

locally and this is what we have physically seen over here.  

Here, 
f

x

 
 
 

 so, ( )f x at this fixed point is negative and so, this is an attracting point 

because, points nearby will decay that is eta will reduce from this particular equation as 

time increases eta will reduce when 
f

x

 
 
 

is negative.  

For this point as time increases, the   will increase that is the difference between x and 

*x  will increase so, this is a repelling point ok. So, it is an unstable point, it is also rather 

it is called as an unstable point while this is a stable point, this is a stable point. 

And really, you do not need to go into all this algebra to really understand whether a 

point is stable or unstable. We can simply go by the same logic if you start at this point 



dx

dt
 is positive and so, it will move towards the positive x. You start at this point 

dx

dt
 is 

negative and so, you go towards lower values of x. So, what this small proof tells us that 

if 
f

x

 
 
 

 is 0, then you have to look at the higher order terms, but geometrically it is 

much more easier to see.  

So, let us draw the condition where 
f

x

 
 
 

 is 0 something like this. At this point, 
f

x

 
 
 

 is 

0 and f(x) is also 0 so, obviously, this is a fixed point, but what happens over here? If we 

have this as an initial condition x  at this point is positive so, at this point tends to go 

towards the right if we have an initial condition over here, once again the x  is positive, 

and it tends to go over here.  

So, all the points on this side they tend to go towards this, all the points on this side they 

tend to go away from this. So, it is called as a half stable point ok. It attracts half the 

points towards itself and it repels half the points away from it. I mean not half the points 

in the sense 50-50, but one set of points it attracts, one set of points it repels. So, in a 1D 

problem it is called as a half stable point.  

So, with this thing out of the way, let us move on to bifurcations. So, often we will have 

conditions where the physics of the problem will be dictated by some controlling 

parameter. So, let us have a look at the ordinary differential equation 2x r x= +  because 

this is a very famous prototypical problem.  
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So, the problem at hand is 2x r x= + . So, let us try to look at this problem from a 

geometric viewpoint. Let us try to find out the fixed points and their stability. 
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So, let us go to our Python console. Let me copy paste this because we will be needing 

all of this alright.  
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So, now, let us plot that diagram first. So, x = np.linspace(-2, 2), r=1 and xd = r + x**2, 

then we will do plt.plot(x, xd). So, it looks something like this. 
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For completeness, let us also plot the x axis; so, plt.plot(x, 0*x, '-k'). Let us make it a 

black line alright. So, we see that when r is positive, this curve does not cut the x axis. 
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So, what is the meaning of this when the curve does not cut the x axis? It means there is 

no fixed point ok. So, all the initial conditions over here, they will be accelerated towards 

the right because for all points, everything is headed towards the right, all the x dots at all 

these points are positive and hence, all the flows are towards the right.  



Let us make this interactive. Let me remove r, let me pass r as a input to the function. So, 

def see fixed points and the input will be r let us set a default value of 1 and over here, 

we will put everything inside the function definition and we will say w = 

interactive(see_fixed_pts, r = (-2, 2, 0.2)), we will display the widget. So, this is the 

widget. 
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So, let me change r, let me increase it so, obviously, increasing it makes it go further 

towards the upper direction. So, there is, there are no roots.  
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As I reduce r, we see that as we reduce r, there is a point when r = 0, there is exactly one 

point of intersection that point of intersection is obviously, x = 0. 
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When r is negative, we will have two points of intersection and so, we have two fixed 

points.  
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So, when r < 0, we have two fixed points. So, what are the values of fixed points? Let us 

see. At the fixed point, x  = 0 so, ( )x r=  − . So, when r is positive obviously, there are 



no roots, no real roots. When r is negative, there will be two roots, when r is 0 there will 

be one root which is x = 0. 

So, what is happening? As we are changing the control parameter r so, r can be 

interpreted as a control parameter. As we are changing the value of r from negative to 

positive, we are having change in the fundamental behavior of the system ok. So, if I 

draw on this axis r and on this axis the fixed points.  

For r positive, there are no fixed points. For r = 0, 0 is a fixed point. For r negative, there 

are two fixed points ok. So, for r = this value, the fixed points are this and this. So, there 

is a fundamental change in the behavior. As we cross r = 0 ok; r = 0 is a point, is a 

changeover point from having two roots to having no root ok. 

So, here there are two fixed points, here there is one fixed point and here there are no 

fixed points. Therefore, we say that the system has suffered bifurcation at r = 0 and the r 

critical is = 0. This kind of behavior is called as bifurcation because, by changing r, we 

are changing the fundamental characteristic of the equation. So, this occurrence is called 

as saddle node bifurcation.  

And the saddle node bifurcation in this particular context makes no sense because saddle 

node bifurcation is more generally valid for phase portraits in three-dimensions or 

bifurcation diagrams in three-dimensions. So, over here, it is also called as a turning 

point bifurcation. Its called a turning point because we will see why it is called a turning 

point.  

So, now, ( )x r=   is a root right. So, we know that they are fixed points, but what is 

the stability of the fixed points? So, we have just seen that the stability depends on 
f

x

 
 
 

 

at the fixed point. So, the fixed point so, the first fixed point is ( )r− , second fixed 

point is ( )r− −   and the function f that we are plotting is this 2r x+ . 

So, 
f

x

 
 
 

 is to going to be 2x. So, ( )f x  so, remember primes are special derivatives and 

dots are temporal derivatives. So, ( )f x = 2x, it will be 2 ( )r−  and )2 ( r− − . So, when 

r is negative, this is obviously, negative. When r is negative, this is obviously, positive.  



So, the positive root gives the positive value of the slope and hence, it is unstable. So, 

this particular branch is the unstable branch whereas, this particular branch is the stable 

branch and in this particular case, we could find out everything analytically, but let us 

see how to implement this on Python.  
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So, we do have this function where we have wrapped it and now, we are more interested 

to find out the roots. So, I mean here, analytically its possible, but still let us make use of 

Python’s libraries to find out the roots. So, for that let us import fsolve. So, if you recall 

from the previous lectures, fsolve is a solver which finds out roots of non-linear algebraic 

equations. 

So, let us import that. From scipy dot optimize import fsolve alright. So, for using fsolve, 

we have to pass a function handle. So, this particular thing has to be made into a function 

handle. So, def f and it will take as an input x and it will return 2r x+  and let this 

function take as an optional parameter not an optional parameter as an argument r ok. So, 

it will take the value of x and r and it will return me the f(x) that we have in the 

analytical expression alright. 
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So, once we have this, let us say sol is = fsolve the function handle f, the guess value so, 

let me put two guess values one on this side so, let one guess value be -2 and let one 

guess value be 2, the arguments to the function so, args = r and let us pass the full output 

to the solution. 

So, we need the full output because we need to know whether there has there is a root 

found or not because obviously, for r positive, there will be no root. So, fsolve will say I 

did not find anything.  

So, in order to assess that information whether it has been able to converge or not, it will 

pass all the information. In fact, let us take this in a different cell ok, let me copy this, let 

me go back to the previous cell, I do not want to disturb this cell, let me go to a different 

cell ok. 
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So, let me make the correct ok. So, let me run this and see if this is an error. So, it ran 

properly. I have not yet passed r from this cell; it is using the r from the previous cell. So, 

let r = 1. So, now r is positive, and we expect the solution to not have converged. So, let 

us see what sol is excellent. 
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So, it contains two values and then, it says that the iteration is not making good progress 

ok. So, the meaning of this is its not able to converge properly ok. It is trying to do 

iterations, but its finding nothing. 
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So, in that case, let us see what sol[0] is? It gives this.  
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What sol[1] is? Sorry.  
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What sol[2] is? It says 5. So, the thing about fsolve is if it gives an output, this sol[2] 

object will be 1 ok, this particular value that it is printing if it is not 1 that it means it has 

not converged and how do I know that? Let me double click on this and go to contextual 

help ok. 
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So, function, 0x , args so, this is how you pass everything, we can pass the Jacobian as 

well, we do not need to do that. 

(Refer Slide Time: 22:03) 

 

It returns what? It returns x and the info directory. So, this is the info directory that we 

just read, number of function calls, number of Jacobian calls we do not need all that. It 

outputs an error integer. It is an integer flag, it is set to 1 if solution is found, otherwise it 

will not return 1, it will return some other value. So, it has returned to us a value of 5. It 

means the solution has not converged.  
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So, let us make use of that information. So, after this line, we have obtained the value of 

sol. So, if sol[2]   1 or rather if sol[1] sol[2]  = 1, then we should do something with it. 

So, if sol[2] = 1, let us classify the roots. Meaning, when I know that roots are there like 

this, I know that there are roots, let me check the value of ( )f x  at those roots and 

classify those roots as being a stable fixed point or an unstable fixed point.  

So, if sol[2] = 1, this obviously, means solution has converged. So, now, I do not know 

how many roots this has ok. I know in this particular question that I have two roots. In 

general, I will not know how many roots I have. So, I must loop over sol[0] because look 

sol[0] will that number of elements of sol[0] will be the number of roots that fsolve has 

found. 
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So, then I will say for i in np.arange(0, np.size(sol[0])). So, just to give you a context, 

np.size (sol[0] ) = 2. If I had 5 roots, np dot size of sol would have been 5. 
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So, I do a loop over all the roots for i in this. What should I do? I should check the root. 

So, root = sol[0], i. So, this is the root that we extract. So, I will loop over all the roots 

and sol root will contain iteratively the first root, the second root, the third root, the 

fourth root, the fifth root how many number of roots you have.  



So, after this, I will check slope at root is = 
f

x

 
 
 

, I have to make a function 
f

x

 
 
 

 

which will evaluate the slope of root. So, let me make that function, def dfdx(x, r), 

return 2*x ok. So, it will return the slope at the root. If slope at root is greater than 0, 

then I should plot it. So, how should I plot it? I should plot as a cross because it is an 

unstable point. 

So, plt.plot so, I have to plot on the x axis the r so, over on the x axis, I have to plot the 

value of r and on the y axis, I must plot the value of the root and I must plot it as an x. 

Let me make it as a blue x ok, else plot r comma root as a red circle. So, if it is a stable 

root, it will plot a red circle. If it is an unstable root, it will make a blue cross ok. 
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So, let us see what happens ok, there is an error duplicate argument in function. So, this 

has to be x ok. 
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So, obviously, there was no root so, there is no plot. Let me make r = -1. I have to pass 

two functions. Well, obviously, we have made a small mistake, this should not be 2 ** x, 

this has to be only 2 * x ok. 
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So, let us run this. So, obviously, this is a unstable root as we have seen over here and 

this is a stable root as pointed by the red circle. 
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So, now, what do we need to do is to loop over various values of r and draw this entire 

diagram. So, what should I do? I have to make r_a = np.linspace(-2, 2) and I have to 

wrap everything inside a loop which will iterate over various values of r. So, I must put 

everything inside here over here inside a loop, inside a for loop.  

So, for r in r_a, then I have to indent everything because I want to execute this entire 

chunk of code inside the loop and that is it. So, let us execute this cell and see what 

happens excellent. 
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(Refer Slide Time: 28:35) 

 

So, we do see, let me change the aspect ratio of the plot. So, ax = plt.gca(); 

ax.set_aspect(2) and let us make the x limit all the way to the r range that we have.  
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So, plt.xlim(np.min(r_a), np.max(r_a));. So, this is how the bifurcation diagram looks 

like.  
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Let us plot the x axis for completeness. So, plt plt.axhline(0). So, axhline is just a quick 

function for drawing a horizontal line passing through 0 ok. So, this shows us how the 

bifurcation occurs.  
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As we are changing the value of r right, let me make it 1.  
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So, as we are changing the value of r from left to right, we are going from a pair of roots 

one unstable, one stable, we are reaching the critical value of r at 0 after which we have 

no more stable, unstable points ok, everything vanishes, there is no fixed points in fact.  
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So, r_c which is 0 it indicates that once the parameter crosses this value of r, we will 

have no more fixed points.  
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So, this kind of bifurcation is called as a saddle node bifurcation ok. So, this is how we 

can do it. Now, all this is fine I mean it may appear that this is a very very specific 

condition I mean why would I expect this kind of a ordinary differential equation to 

appear. Well, let us delve further into what is going on. 
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So, first of all, what is happening at the point of bifurcation? You have a function of x 

and which looks something like this and as you are changing the value of r, it reaches 

this critical condition where it is just becoming tangential to the x axis. So, for the saddle 



node bifurcation, we have what? We have f(x) vanishing we also have so, f(x) vanishing 

is trend amount to that point being a fixed point that is for sure. So, we just have a fixed 

point which appears and the other condition is it is tangential to the x axis. So, 
f

x

 
 
 

 

must also be 0 at that crossover condition. 

So, what was xf(x)? So, f(x) was = 2r x+ . So, for what value of r does it happen? So, 

f

x

 
 
 

 = 2x. So, this has to be 0 and this has to be 0 at the point we achieve a crossover 

from two stable roots from two fixed points to no fixed point. So, when this is 0, it 

implies x = 0 and when we substitute x = 0 over here so, this is the that fixed point which 

takes part in the bifurcation and we substitute this over here, we obtain r_c that is the 

critical control parameter to be  0 as well. 

So, r = 0 and x = 0 are like the critical pair. So, r_c = 0 is the control parameter critical 

and it corresponds to x = 0 and this is the place where bifurcation occurs.  
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So, now, it is not just this equation that exhibits such a behavior. Let us look at an 

example. Let us look at an example such as 
dx

dt
.  
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Or in fact, let me write it as x  is =r -x - e - x ok. Let us try to see what the bifurcation 

diagram for this looks like. So, because we have already written the code, we can simply 

modify our function and the derivative for having this kind of an output. 
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So, let me copy this entire cell, let me make a new cell this will be r - x - np.exp(-x) and 

the derivative will be -1 + np.exp(-x) 

. 
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So, let me run this and see what happens. Well, we do have a bifurcation what happens 

over here, what do we see. So, as r varies from -2 to 2 at a certain value; at a certain 

value so, there are no roots so far, but after a certain point, there are two roots one is a 

stable root, the upper branch is a stable branch, the lower branch is an unstable branch 

ok. 
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Let us put those annotations as well. 
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Let us have a look at the function. So, x, y, string ok. 
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So, I need to pass the x y over here. So, let us put the string at 0.5 and -1.2 ok. So, it is 

the unstable branch and let me put another string on top which will say it is a stable 

branch alright. So, the stable branch and unstable branch are these and there is a critical 

point somewhere over here. I mean we could obviously, increase the resolution of the r. 

So, let us increase the resolution of r_a, let me take 200 points to pinpoint where that 

happens ok. 
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Actually, it is very difficult to pinpoint by just looking. So, you what you should do is 

find out the first occurrence of r where this condition fails ok; where this condition fails. 

When this does not return 1, it means that it is not having two solutions, but the moment 

it starts returning 1, you have two solution or you have roots not just two solutions when 

you have roots. I am not going to do it right now, but you can try it when you have time.  

So, it is clear that even this equation does have a saddle node bifurcation behavior and 

why is that? Why does this equation also have a saddle node bifurcation behavior? Let us 

look deeply into how this equation reacts in the vicinity of the fixed point. So, let us 

expand let us expand this around x = 0. So, expx r x x= − − −  so, this becomes what? 

2 !1 / 2x x− +  and so on. So, this becomes r - 1 this x cancels out + x2/ 2 factorial. 

So, obviously, the first root that will occur over here is x = 0. So, this expansion of the 

function that we are doing is near the bifurcation point. So, near the bifurcation point, the 

equation behaves like this and it has the same form. So, 2 / 2x c x= + . So, it does have 

the same form so obviously, near the bifurcation boundary, it has the same prototypical 

behavior as this particular equation alright. 

So, that is why studying such prototypical problems is quite important and such a 

reduction of a problem in the vicinity of the bifurcation point is called as a normal mode 

or a normal form not a normal mode. The normal form for a saddle node bifurcation is 

this is this. 
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So, this is a normal form for a saddle node bifurcation. So, obviously, there are different 

normal forms for different kinds of bifurcation, but for now, we have only studied the 

saddle node bifurcation. 
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Can we prove this rigorously? Can we prove that near the bifurcation point? It will 

always reduce to a normal form and the answer is yes. Let us take a quick look into that. 

So, what are the conditions when the bifurcation occurs? So, the conditions are that f(x) 



has to be 0 and 
x

f

x

 
 
 

 also has to be 0. So, let us write down ( )x f x=  and it is a 

parameter of r as well. So, it is a function of x and r. So, this can be written as 
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Now, by very definition of being a bifurcation point, f (x) will be 0 essentially, f(x, r) 

will be 0. So, *( ), cf x r  will be 0 because that is the bifurcation point and hence, this term 

will vanish.  

Similarly, 
* ,

*( )

cx r

f
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 will also be 0 and hence, this particular term also vanishes 

obviously, there are higher order terms, but because we are studying the behavior of the 

system near x star and r c, this is what we can write and essentially, x dot eventually 

boils down to 
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2
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.  

And quite obviously, you can obviously, cast this as 2Ar Bx+ where A and B are various 

constants which contain all those various terms. So, this has to be at *( ), cx r  and hence, 

these such equations under the conditions of a saddle node bifurcation do reduce to that 

kind of a normal form ok. So, this is what I wanted to discuss about saddle node 

bifurcations. 
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Before ending this lecture, let me also show you how you can geometrically think about 

this particular equation sorry this where is it, where you can geometrically think about 

this particular equation. So, how do you geometrically find fixed points for this? 

Obviously, I mean you can plot it and see, but it is comprised of two functions, (r-x) and 

e-x.  

So, at the fixed-point x  will be 0 what that means, is (r-x) = e-x. The curve for e-x looks 

something like this and (r-x) is a straight line and depending on what the value of r will 

be we will have a family of straight lines which will look something like this. So, now, 

we all we have to do is probe whether or not (r-x)  cuts e-x at one point, at no points, at 

two points and so on.  

So, when r has a large value, it cuts the curve at two points. So, when r is large, 

obviously, there are two roots, and this is something which we can corroborate with this 

diagram over here.  

When r is 0, this is what it will look like and obviously, there is no root. In fact, for quite 

some time, there will be no root until it reaches this tangentiality condition. So, when (r-

x)  becomes tangential to e-x, we will have only one root and that is the condition for 

bifurcation, it is going from no roots to two roots through that particular tangency 

condition.  



So, at the point of bifurcation; at the point of bifurcation, we will have two things; one is 

the blue line intersecting with the yellow curve that is (r-x) = e-x that is one condition and 

the other condition is the slope of (r-x) = the slope of (r-x) ok. So, the slope of (r-x) is -1, 

the slope of e-x is - e-x.  

So, what are the conditions under which this is satisfied? So, this is satisfied when x = 0, 

this equation is satisfied when x = 0 and when we substitute x = 0 over here, we have r = 

1. So, r = 1 is the critical control parameter where bifurcation occurs and the fixed point 

which corresponds to this particular bifurcation is = 0. So, over here x = 0 so, the y axis 

is x and r = 1 is the point where bifurcation occurs. So, we can go ahead and plot that 

line as well.  

(Refer Slide Time: 45:01) 

 

So, plt dot avline axvline and we have to plot it through 1. So, that is the zone of 

bifurcation and it is obviously, separating two roots; one is a stable branch, and one is a 

unstable branch. You can obviously, write a nice slider function to check the presence of 

roots, I am not going to do that you can try it out on your own. You know how to do it by 

now ok. 

So, this is all I wanted to discuss about saddle node bifurcations. In the next lecture, we 

are going to look into the other kinds of bifurcation namely transcritical bifurcation and 

pitchfork bifurcation.  



Until then, its goodbye from me. Try to experiment as much as you can. Experience is 

your best friend, bye. 


