
Tools in Scientific Computing
Prof. Aditya Bandopadhyay

Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture – 01
Preliminaries and Data Types

Hello and welcome to this first lecture. In this particular lecture, we are going to look at some

preliminaries and some data types that we will be using in this particular course. And these

data types are quite useful, even if you are doing something unrelated to things that we will

discuss in this course. But just a first word of caution, this is not a course on explaining the

different physical processes or the different mathematics behind the various phenomena that

we are going to discuss.

However, we are going to try to keep it as self-contained as possible. We are going to look at

some background some theory and then, we will look at the particular code. But all said and

done, it will give you the confidence to tackle various problems on your own.

(Refer Slide Time: 01:19)

And that is what so first thing is. First, you are going to have to install GNU Octave. So, just

go to the website gnu dot org slash software slash octave slash index and you are going to end

up on this page. You can simply google, GNU-Octave; you can download this.

(Refer Slide Time: 01:39)

Once you click on download, you get an option of what operating system you are working

with; GNU Linux, macOS or Windows.

(Refer Slide Time: 01:50)

(Refer Slide Time: 01:54)

Now, in this particular case, I am working on windows. So, you can go all the way to

windows and you can choose a 64-bit installer or 32, if you are using an older computer and

if you intend to use GNU Octave for handling very large matrices, you can install this

particular package. But be careful, you need to have a sufficient amount of RAM in order for

that particular version to work.

(Refer Slide Time: 02:21)

(Refer Slide Time: 02:31)

(Refer Slide Time: 02:34)

The other thing that you can install, I mean you can install Python 3. Yes, that is fine; but you

can also install Anaconda. You can install anaconda and it will install everything in one go.

So, you go to you Google anaconda; anaconda dot com, you go to products individual

edition.

(Refer Slide Time: 02:42)

(Refer Slide Time: 02:49)

(Refer Slide Time: 02:49)

(Refer Slide Time: 02:49)

(Refer Slide Time: 02:49)

(Refer Slide Time: 02:50)

And then, you do a download. It will install everything; just follow all the instructions; so, if

you are using windows, just install, just download the 64 bit graphical installer and make sure

you follow all the instructions.

In particular, there is an instruction, you have to deselect the addition of the path to the

environment variable. So, once you install this, you will have installed all the different

packages that we are going to use in this particular course and in particular, you will have a

full access to all the libraries through a very easy installation framework.

(Refer Slide Time: 03:26)

Lastly, you can install PETSc. For that, you need to first have a working GCC compiler. GCC

is a set of compilers released by the GNU group.

(Refer Slide Time: 03:41)

So, you go to installation. So, once you download it, you can install it using dot slash

configure and then, make all ok. It is not a very complicated installation; but yes, it does take

a bit of time.

(Refer Slide Time: 03:53)

(Refer Slide Time: 03:55)

And it is much easier to install on Linux than on Windows. But regardless, whatever we are

going to study is independent of the platform. Whatever I am going to show Octave, Python

all that is available on all operating systems. Whatever you develop on Windows will run the

same on Linux as well.

(Refer Slide Time: 04:22)

So, once you install anaconda, once you launch anaconda, you will be greeted by a screen

which looks something like this. So, you have CMD command prompt, JupyterLab, Jupyter,

Powershell, Qt, Spyder. So, Spyder is something which is quite useful.

So, it is a IDE; meaning, it is a integrated development environment in which we can write

down scripts, much in the way you would write down scripts in MATLAB. There are some

other packages as well. Once you click on Jupyter lab, it will pop up a window which would

look something like this.

(Refer Slide Time: 04:58)

So, Jupyter lab is an environment in which you make notebooks. So, notebooks are file in

which we can input text. So, let me just click on this. So, the beautiful thing about Jupyter lab

is that you can make python programs as well as you can develop octave programs.

So, basically it is a front end of these kinds of kernels ok. These things are called as kernels

and you can run whatever you want. So, I have added into my Jupyter lab these two kernels;

Python 3 and Octave. By default, you will have Python 3 added; but if you want you can add,

octave as a kernel to this as well. Make sure you have installed octave prior to installation of

anaconda.

(Refer Slide Time: 05:52)

Let me click on this. So, it would open a notebook style of file. So, a notebook is something

in which you input text, you input mathematical equations, you input scripts of code, you can

embed figures. So, it is a all-encompassing document which would contain all the things that

one would need in order to encapsulate the entire idea.

You do not need to write down documentation separately and the program separately and the

figure separately. You can embed everything in one go; once you are done, you can export

the entire file as a PDF, as a word file, as a latex file whatever. So, these things are called as

cells. Inside a cell, you can either encode a code or markdown.

So, markdown is a kind of mark-up language which is used to quickly write down text with

headings, with equations, without really worrying about the formatting. In order to input

mark down into the cell, I will select markdown. Let me put a title. So, this is a very well-

defined syntax for creating titles, for creating bullet points in markdown. So, have a look at

the markdown tutorial. I am not going to discuss about that and let us jump straight in into the

programming part.

(Refer Slide Time: 07:26)

(Refer Slide Time: 07:58)

So, let me create the title of this file. So, in order to execute a particular line, we would press

shift enter; upon pressing shift enter, you see that the title has been converted into a heading

ok. So, data types. So, we have already covered the preliminaries of how to install these

packages; have a look at them, take some time to read through the various installation

procedures. It is very simple to do ok. Let us jump straight into it.

(Refer Slide Time: 08:09)

The various data types for the first and the most-simplest data type will be that of a scalar. So,

in python we can define a scalar directly. Let us define a=2. So, let me change the kernel to

python ok.

(Refer Slide Time: 08:23)

So, a=2 fine. Let me press enter and keep on inputting. So, let me write b=- 1; c= 4 and d

=10. So, now I have defined 4 variables; but I have not yet run the program. In order to run

this particular cell, so things are encapsulated inside cells.

Note that this particular cell by default, a new cell is created as a code. Whatever you write

inside a cell will be interpreted as a code. If you want to interpret it differently, I can change

it to markdown. So, this will no longer be a code, this will be simply plain text; but I want it

to be a code.

So, now I will press shift enter and now, it has loaded all the variables in memory. In order to

check what variables, we have. We can put this kind of a magic command. So, Jupyter lab,

this kind of an environment has different kinds of magic commands. So, this is one magic

command. As we go in the course we will come across many other magic commands and you

can Google it and find out what are the different magic commands.

So, let me press shift enter, it will show me that I have 4 variables. The data type is integer

and the data is this. In fact, let me make d = 10.0; let me press shift enter to execute that cell

once again, now let me press.

So, automatically you will see that python has declared d as a variable and its type is float

and the value it is storing is 10.0 and this is somewhat different from declarations in a much

more imperative programming language like C, in which you have to declare a priori what

are the kind of variable will be.

So, in order to declare a as 2, you have to first write down ‘int a’ and then later on, you can

say a =2 or you can simply write int a= 2. So, the same declaration in C would have been

something like this; but this is not a course on C and we will continue on the style of python.

So, very simple way of expressing your thoughts. So, now, I let me just delete this variable

block.

(Refer Slide Time: 10:54)

So, I can right click on this, I can say delete cells ok. Now, let us perform some arithmetic.

So, I can press the escape key to focus on that cell, try it out; I can press enter to again come

into that cell. So, I lose focus by pressing escape, I gain focus by pressing enter and the

selected cell is shown by this blue border ok.

So, I press escape, I press M to convert the cell from code to markdown. Now, I will write

over here. So, all you can do all of this with the help of all these the mouse things as well. But

I prefer to do it with the help of keyboard shortcuts.

(Refer Slide Time: 11:44)

So, let me write down here, some elementary arithmetic shift enter. So, now, that is

interpreted as text; it is not a code, it is simply a text ok. So, let me write down e=a + b; f = a

- b; g = a * b * c and h =a /d.

I can execute this, there is no error. If there was an error, it would has come right below this

particular cell. Now, suppose I want to print out all the variables; of course, I can do whos

again and it will show me all the variables that we have. So, e = a + b, 2 -1=1, f = a - b. So, 2

--1 is 3; we can verify all these simple things.

(Refer Slide Time: 12:50)

But another way of simply printing out a given variable is writing this print within double

quotes. So, we can write down the value of e = a +b or e is and we can write over here e,

where a = a and b = b. Let me execute this. Upon execution, you will see, I did as printed out

this particular string and wherever we have put down the variable, it will output the value of

the particular variable.

So, for example, the value of e is, so this is printed verbatim. So, this is printed verbatim,

while this is the value of this particular variable. This particular thing is printed verbatim,

then we print the value of a, then this is verbatim and then, we print the value of b.

So, this is how you can put down meaningful print statements, in order to make more sense of

your code and this is especially important when you are debugging certain codes, so

debugging the old school style ok. So, this is a very simple arithmetic operation on scalars

and we have also shown how we can print out the variables. Let us now move into how we

can declare arrays. So, there is a very special module in python, it is called as numpy. So, we

have to first import that particular module.

So, we will write import numpy as np. So, the particular phrase as np implies that np is an

alias for the packages inside the module numpy. Python has a lot of modules one of which is

numpy, there are several other modules called as scipy or opencv. So, opencv is a module for

image processing; scipy is a package for scientific computations; numpy is a package for

numerical methods and data structures.

So, there are various modules; but we will be primarily using numpy and scipy. So, we

import numpy as np. So, let me press shift enter ok. So, now, we are in a position to declare

arrays using numpy. So, numpy arrays, we can declare as a =np.ndarray; so, n-dimensional

array and then, we have to give certain inputs to this particular function. So, ndarray is a

function inside np.

(Refer Slide Time: 15:55)

(Refer Slide Time: 16:01)

(Refer Slide Time: 16:06)

(Refer Slide Time: 16:08)

(Refer Slide Time: 16:18)

(Refer Slide Time: 16:20)

So, in case you want to know the reference for numpy, we can go to help, we can click on

show contextual help, it will pop up this particular screen, we can double click on np and it

will show the various functions that we have. So, we have random, we have linalg, we have

fft, we have polynomial ok. So, we have a bunch of it will show a bunch of tools that exist

and of course, numpy has a very good documentation online and you can always refer to the

online documentation, if ever in doubt.

So, ndarray is a particular function that exists inside the module np. So, when we double click

on ndarray, we will get the contextual help. So, ndarray shape, the data type ok, this is what

we need to give. So, ndarray shape. So, let us give. So, let us make an array of size 5.

So, 5 dtype equal to float. So, let us print what a is. It is a random array. I mean it is

something which is 0 and it is of size 5. So, 5 rows it has initialized. So, this is essentially a

way of initializing arrays and data type float means whatever a will contain will be of type

float ok.

So, in fact, let me write down the let me show the variable space. So, a is an ndarray, whose

type is float 64. So, its 64 bit and it contains 5 elements. Now, how can I access the different

elements ok. So, let me delete this cell. In order to delete the cell, we have to be out of focus

from the cell and press d twice, it will delete the cell. Alternately, you can of course click on

this particular cell, you can right click on it, you can delete cell ok.

(Refer Slide Time: 18:29)

So, we can declare various elements of a. So, a[0], let me write it as 5; a[1], we can write it as

10; a[2], we can write it as 11; a[3], we can put it as -2 and a[4], we can write as 6. So, the

indexing for an array starts from 0 and in case you have noticed this whatever text, I write

after this hashtag is interpreted as a comment.

So, comment is something which is not executed along with the code ok. So, once I execute

this, it would have assigned all the various indices of the array. So, an array; so, let me

convert this cell into markdown. So, an array is something like this a[0], a[1], a[2], a[3], a[4],

a[5] ok. This is how that; sorry, I have to convert into markdown ok.

(Refer Slide Time: 19:52)

So, this is how that array looks. So, now, let us since we have declared the different elements

of that array, let us see how that array looks. So, print a; oh, sorry. Yeah. So, now we have

initialized the array over here. In this particular cell, we have declared the different elements

of that array and then, we have printed out the elements of that array. Let me insert a cell

above this. So, the way to insert a cell is to press a.

(Refer Slide Time: 20:37)

So, let me convert this cell into markdown. So, we can write initialize of an array with some

user defined numbers. So, this is how we declare an array. We can query the shape of the

array. So, suppose you are given an array, I can query. So, np.shape(a.) If I print this, it will

show (5,). So, its 5 rows rather it contains 5 elements. So, python does not differentiate much

if you are declaring an array between rows and columns ok, that is good.

(Refer Slide Time: 21:40)

Now, let us come to some different kinds of arrays. So, we have initialized an array, but there

are various kinds of initializations as well. So, let us initialize b as np.zeros(). Now, suppose

you want to know the function reference for zeros.

(Refer Slide Time: 21:46)

So, we just look. So, zeros shape and data type fine. So, zeros. So, let me define it as size 4 or

let me make it 5 and dtype= float. So, now, let us print b; it is all zeros. Let me define c as a

linear space. So, let me make this as a markdown. So, a linear space is defined as a as an

array which is having elements which are linearly spaced. So, let us look at the syntax.

So, c = np.linspace(). So, linspace has the has a it takes input a, b and the number of points;

where a is the first point, so let us say 1; b is the second point and how many points you want

between 1 and 2? So, let me take 5 points. Let me print c. So, c is an array which goes from 1

to 2, if you look at this over here, it goes from one all the way to 2 and 5 is the number of

elements in c.

So, it has 1 2 3 4 5. So, this is how we can declare a linspace. It is a very useful command. It

will be extremely useful to define meshes to define grids on which we will solve various

kinds of equations. So, this is extremely important.

Another important function that is quite important which is quite relevant for this

computational course is logspace. So, let us define d =np.logspace(1, 4,4) and let me take 4

elements ok. So, let us see what d is. So, now, logspace, it defines a linspace going from 1 to

4 and it makes 4 step. So, 1, 2, 3, 4; these are the 4 elements that you will create.

But now because it is a logspace, it will make 10 to the power first element, 10 to the power

second element, 10 to the power third element. So, in the above expression, we basically have

10 to the power 1, 10 to the power 2, 10 to the power 3, 10 to the power 4 because these

exponents are what we have declared over here inside the function.

So, this is a very easy way of generating a geometric progression of values ok. It is

essentially a way to generate geometric progressions. Linspace is a way of generating

arithmetic progression or logspace is for geometric progression.

(Refer Slide Time: 25:11)

Now, let us add 2 arrays ok. So, this is a very useful thing to do. So, e=np. Random.normal

(0,1,5) print e. So, do not worry about what I have written. It is essentially I am using the np

module to use the random module to generate a normally distributed variable with average 0

and variance 1 and the number of elements is 5.

So, in case you are confused on the syntax, you can click on this and it shows ok. So,

location, scale and size. So, we have generated e. So, let me just quickly print out two things;

but first let us save this file, I think it got saved. Yeah, its saved over here. Let me rename

this; so, lec 01.

So, let me print out some of the arrays that we can use to demonstrate ok. So, we have these

two arrays; the first array is a, the second array is e. So, let us define b=a + e and let us print

b as well. So, we have added this. So, it is an element wise addition ok. So, this is an

addition.

So, it takes each element of a and e and so, a [0] is added with e[0], a[1] is added with e[1]

and so on and it is assigned to elements of b. So, this is a very simple way of doing element

wise addition. Similarly, we can easily do element wise subtraction, element wise

multiplication.

But this is not recommended. It is not recommended to do element wise multiplication like

this, it is better to do np.multiply(a,e). So, let us print out c. Let us print out d as well ok. So,

this is how you obtain element wise subtraction. So, you can easily verify using these arrays

and element wise multiplication as well.

(Refer Slide Time: 28:03)

Similarly, we can do an element wise divide as well. So, the beauty about using cells is you

can modify it and rerun the cell. Whatever is there in the previously run cells, it stays and that

new cell that you are executing, all the variables inside that get updated ok. So, yeah. So, this

is how you do element wise scalar operations.

You can obviously, add a single scalar to all this as well and it is much easier. You can

simply do. So, let us make this simple scalar operations. So, I can make c= 2* a; let me print

out what c is. In fact, let me print out what a was as well for reference.

So, with the help of this, we have multiplied all the elements of a with the scalar 2. So, scalar

multiplication is quite straightforward. Just remember when you are doing element wise

operation between two arrays in particularly multiplication and division, it is better to use np

dot multiply and np dot divide.

In fact, we can use np.subtract and np.add also in order to avoid certain mishaps that can

happen when you add elements ok. So, this is how we can perform simple operations using

arrays. A very important aspect of arrays is to pick out various elements of an array.

(Refer Slide Time: 29:49)

So, let us see, we have the array f. So, let me print f. Suppose, I want to pick out element

number 2 to 4 of f. So, I will simply do f [2: 5]. So, this is called as array splicing. So, when I

input 2, 5, it goes from; so, ok.

So, this is the; this is element number 0, element number 1, element number 2. So, this has

chosen element number 2. So, 18 is what I have chosen from this. So, this is 0, 1, 2, 3, 4. So,

the thing about array splicing is whatever index you put over here, it will return the n - 1th

index.

So, if you put 5, it will return till element number 4. So, this is 0, 1, 2, 3, 4. So, this gives us

elements 2, 3, 4. So, this is 2, 3 and 4 ok. Let me define a slightly longer array. Let me make

h =np.random.normal(0, 1, 10) and let me print what the value of h is. So, now, suppose I

want to choose the third element all the way to the nineth element; so, or rather to the eighth

element.

(Refer Slide Time: 32:05)

So, I will do; so, I can splice it using h. So, the third element in this particular case is 2

because the numbering has an offset from 0. So, this is 0, 1, 2 ok. So, and I will go all the

way to; so, this is 9, this is 8, this is 7. So, this is the index number 9. This is index number 0.

This is the tenth element, but the index number is going to be 9.

So, I want it till the eighth element. So, I will simply put equal to 8 and let me assign this

spliced array to something; let me assign it to k, then I can print out what k is. Excellent. So,

we have chosen from the second index ok. So, this is 0, 1, 2 and we are going all the way till

the seventh index.

So, 0, 1, 2, 3, 4, 5, 6, 7 ok. So, this is the last index. Another way of looking into it is the

choice of the index number to the element number; but anyway, once you start using it, you

will be comfortable in what it really means. You can have a look at the video as many times

you want; but it should be comfortable to you, once you start using it. So, this is how you can

splice an array and assign it to k.

Now, I can query the third element of k. So, the third element of k will be 2. So, I can print

that particular element out as well. So, the third element is this. So, 0. So, this is 1, 2, 3; but

the index number is 0, 1, 2 ok. Let me print out the first element of k that is index number 0.

So, it is this this particular value ok. So, the important thing to remember is arrays and

matrices in fact have an offset from 0. This is very much similar to what happens in

MATLAB as well. Rather, in C as well; in MATLAB in fact the offset is from 1.

A similar set of a similar notebook will be made available in Octave as well. Whatever we are

doing in Python, it will be made available in Octave; I will put up the download link to these

notebooks. So, you can download them and run them on your own computer.

But in view of time, we are going to discuss some of the specifics and whatever you are able

to do in Python, you should be able to do equivalently in Octave as well. So, with the help of

the notebook files that you can download, you should be able to see how to do it. So,

proceeding, let me show you a simple Booleans that you can do on various arrays. So, let me

print again k for reference.

So, now, suppose I want to find out in the array k, whether there are elements which are

greater than 0. So, let me just write m=k>0. Let me print m as well. So, m is an array which

contains various Booleans or logicals. So, it says false.

So, k is not equal to 0, this particular element, so it says false, true, true, false, false, false. In

fact, I can do this also. So, n = k[k >0]. So, it will let us see what it prints. So, let me print n.

So, n only contains those elements of k which are greater than 0.

(Refer Slide Time: 36:12)

So, the meaning of this statement is finding out the indices of k which is greater than 0 and

assign them to n or equivalently, I can write p equal to; so, yeah, I mean this is how you can

obtain various conditionals without having to do a loop. So, traditionally, you would have to

loop over each element of k and do a conditional whether k[i], if i is the iteration variable is

greater than 0, it is less than 0; but now, you can do a scalar operation, you can broadcast,

you can broadcast.

So, this particular check, you can apply on all the elements of k without having to worry

about doing a loop over all the elements ok. So, we can declare array matrices as well. So, in

the same way, we have declared the arrays, we can declare matrices as well. So, let me

declare a =np.ndarray().

(Refer Slide Time: 37:37)

(Refer Slide Time: 37:42)

(Refer Slide Time: 37:43)

(Refer Slide Time: 37:44)

(Refer Slide Time: 37:45)

So, let us go to the documentation of ndarray quickly. So, it says shape and data type ok. So,

we have to supply the shape and the data type.

(Refer Slide Time: 37:55)

It will be say 2 cross 2 and the data type will be float; let me print a. So, it has initialized this

array to me, I mean whether a was declared as something like that.

(Refer Slide Time: 38:31)

So, it initializes a 4 cross 4 matrix which is all zeros. In fact, we can make a random matrix as

well. So, let me write np.random.normal(0,1,shape=[4,4]) ok.

(Refer Slide Time: 39:00)

(Refer Slide Time: 39:13)

(Refer Slide Time: 39:18)

So, this is how we supplied the size of the array over here. So, if you look into the contextual

help for normal, you will see that you have to supply the size as well ok. So, the size is to be

given as a tuple. So, this is called as a tuple.

(Refer Slide Time: 39:31)

Basically, it is a ordered number 4 cross 4; in fact, if I can make it 4 cross 3, it will make 4

rows and 3 columns ok. So, this is how you can create array, create matrices. So, we can

apply the same operations. Let me make it 4 cross 4 and a, let me declare another array as e

equal to np dot ones.

(Refer Slide Time: 39:54)

So, let us look into the documentation of ones; shape data type. So, the shape will be equal to

4 cross 4 and that is it. I mean we do not need anything else; we can print e. So, it creates an

array in which all the elements are 1. So, now, we can do a matrix multiplication.

So, we can do np.multiply(b,e) ok. So, let us see what f is. So, quite naturally, all the element

wise operations. So, b=f ok. So, similarly let me in fact, declare g=2*f. Let us print what g is

ok. So, I have multiplied all the elements of the matrix f by 2.

So, now we can multiply two matrices in the sense of a true matrix multiplication. So, true

matrix multiplication is not an element wise multiplication. So, if I were to multiply this

matrix, so this entire matrix and this entire matrix, the first element of that matrix would be

this row multiplied by this column; the second element would be this row multiplied by this

column.

(Refer Slide Time: 41:55)

So, that is a true matrix multiplication and the way to do it. So, h = np.dot(f,g). In fact, let me

print out what h is. In fact, one should always use these kind of functions to avoid any

ambiguity; you may imagine writing f times g, you can simply write n=f*g.

But what is this multiplication? Is it an element wise multiplication between 2 numbers or is

it an actual matrix multiplication in the sense that we know from class 11, 12? A matrix

multiplication is not a element wise multiplication, it involves rows multiplying various

columns ok. So, it is not the same; it is not the same ok.

So, let us do the Boolean. So, let us do the Boolean of; so, let us choose this array g, this

matrix g ok. So, first of all we can choose various indices. So, we can choose the first

element, let me print this out; print g and it is this first element. In fact, I can print out the first

row, second column; it comes out to be this. So, this is how you can pick out the different

elements of a matrix. Alternately, you can do the Boolean as well. So, let me print g <0 0; so,

it says false, true.

So, this is less than 0; hence, this is true and so on. So, you can do all those things as well.

Let me show you something useful as well. So, let us declare p =np.where(g>1); so, where is

a kind of logical broadcasting. So, let us say where g greater than 1 suppose ok. So, let me

print out p as well.

(Refer Slide Time: 44:22)

So, when I do p =np.where(g>1), this particular function call will give me all the indices of

the matrix g, where this particular conditional is being satisfied. So, where is g greater than 1

being satisfied? At row number 0, column number 3.

So, row number 0 is this and column number 3 is this. Remember this is column 0, column 1,

column 2, column 3. Similarly, its being satisfied at row equal to 1, column equal to 1; this is

row equal to 1 and this particular thing is column equal to 1 ok; similarly row equal to 1,

column equal to 2; row 1, column 2.

So, as you can see np. where() is a very versatile function, where it will broadcast that

conditional all over the array g or over the matrix g. It also works for arrays as well and it

will tell you all the indices, where that particular conditional is true. So, in this particular

case, it is true for all those pairs of i and j’s if you mean. So, then how can I get all the values

where this conditional is satisfied? I want to. So, I have obtained all the indices. So, I can

simply say let me print out g[p[0],p[1]).

So, when I do g [p[0], p[1]] this essentially means g of all those row values comma column

values. So, g[p[0], p[1]] means g[0,3]. So, let me print g[0, 3]. So, it comes out to be this first

value, then what is it g[1][1]? So, we get the second value.

So, instead of manually writing down each value, we can simply supply whatever indices we

have find found out. So, these are the row indices and these are the column indices which

satisfy that particular conditional. We will supply those row and column indices into the g to

get back the values, where this particular conditional has been satisfied.

(Refer Slide Time: 47:28)

An alternate way of doing it, let me delete this which is simply g[g>1]. It gives us the same

value. So, there are multiple ways of getting things done in Python. I have shown you how to

declare scalars, how to declare arrays, how to declare matrices, how to do some simple

operations on them. As the course progresses, we will look into the various functions that will

find useful and we can have a small discussion about that particular function at that point of

time.

I do not want to overwhelm you with so many functions. Many of you might be knowing

Python, many of you might be new to Python or in fact, programming this is a very good way

of starting off programming. Have a look at this. Try to implement these on your own.

You may run into some issues; you can e-mail me. You can Google, Google is a very good

resource for learning Python as well. So, with this, we end this particular lecture. In the next

class, we look at some basic programming constructs and a very simple program which

makes use of those constructs.

Its bye from me. Until then, have a good day. Bye.

