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Welcome to the class of High-Performance Computing for Scientists and Engineers and we are 

in the last module of this course which is GPU computing. In the last few lectures, we looked 

in detail on CUDA programming and we have seen CUDA programming can give good 

performance which scales very well in GPU’s for matrix vector products, matrix-matrix 

products, matrix solvers, type of scientific computing applications. 

Well, now I want to show you another paradigm of GPU programming which is OpenACC 

based programming. Why is this important? Due to the fact that we are talking about scientific 

computing when looking into HPC. Scientific computing is mostly done by people who are 

working long; who have worked from long in domain sciences like physics, mechanical 

engineering, chemical engineering, biology, chemistry, materials etcetera and they have as 

expected usually limited exposure to computer science. When we look into GPU computing, 

we understand that there are several issues for which one needs to take care of the flow of 

instruction and flow of data from CPU to GPU and within the GPU itself. 

The optimizations in GPU using CUDA require substantial expertise in that particular field. 

So, somebody when directly coming from a non-computer science background is a programmer 

on its own for the particular applications on which he is working, can find it difficult to work 

in CUDA and write CUDA parallel programs. This is one very serious issue and therefore, we 

will see in a while that multiple industrial organizations came together and thought of doing 

something for the people in scientific computing. 

There are few important aspects for which I thought that introducing OpenACC or an easier 

way of developing accelerated programs can be important here. One is that as I understand 

many of us have limited expertise in terms of computer science or software-based applications. 

We mainly look into our domain specific application, so it will be easy for us to use something 

like OpenACC which requires less involvement in terms of data and instruction handling. 



  

The next might be that many of our CS friends will actually look into the applications 

developed and maintained and utilized by people of non-CS background and see that they are 

using some languages or some a paradigm like this OpenACC through which they are 

paralyzing their program. 

The third issue might be that many times you are not the developer of the program, but you get 

a program, and you have to use it. If you can get hold of a GPU code, you might like to 

parallelize it with your limited expertise. So, you can find OpenACC useful or you are working 

with a group who are using OpenACC or this type of parallelization because as I am mentioning 

every time that many times, people are challenged with their programming knowledge 

specially, GPU you we understand, require certain expertise that is that expertise is missing in 

that group. So, there can be many instances for which this is important. 

As a matter of fact, I collaborated with a group from NVIDIA in Bangalore, India and their 

system analysts and engineers suggested to me that a module of OpenACC will be very vital 

in this course because they are seeing many scientific application communities migrating 

towards the OpenACC program. Well, with this background, we will see what OpenACC is. 
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It uses a directive-based parallelization. So, I will see what is directive base parallelization, but 

you can think that it is very similar to OpenMP type of programming where only we are using 

the directives in that program, we are not calling any functions or not using any libraries only 

using the directives. 



  

How can we do data management in OpenACC? Because we understand that in GPU, calling 

data from CPU RAM to GPU RAM, copying data and copying it back is important, so what do 

you do for that? How can we parallelize a loop using OpenACC? Because most of the scientific 

computing applications depend on iterative loops, how can we parallelize it and we will see 

some of the examples. 

Mister Bharatkumar Sharma as I mentioned him, he is a Senior Solutions Architect from 

NVIDIA and many of the slides I will show have direct contribution from his end and he is one 

of the key people who suggested that OpenACC must be a part of this discussion. 
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So, if you look into the OpenACC forum, what they try to assert is more science less 

programming. A person working in a science engineering domain will be more focused towards 

science less focused toward programming and that is what the community expects from him. 

So, you should spend less effort in writing the program or developing the program and thinking 

how can I bring certain data from device memory, what should be my compute global memory 

access ratio, where should how should it be mapped to the to the shared memory, how it can 

be accessed by different threads, what should be my optimum block size these things we expect 

a scientist to less worry about these things so, that he can do more better science. I mean this 

is inevitable for getting better science, for getting accurate solutions he has to learn large 

problems and looking into GPU’s might be inevitable. 



  

But while doing that, he must be less bothered about parallelization efforts rather you should 

be able to spend more time about science and use more of the developed tools in his domain. 

So, we know GPU’s can give very high scalability. We have seen 90 times scalability in some 

of the matrix computing examples in last class. However, thread management and data 

handling demand serious programming effort. With a very small background like in OpenMP 

with a very initial background, one can jump and start converting his program, but in a CUDA 

program, if you have your legacy code, it is very difficult to directly convert it into a GPU 

code. You have to identify the portions which can be parallelized, you have to do the right 

thread algebra, many things are there to copy data from GPU to CPU etcetera, allocate 

variables, many operations have to be done. 

So, CPU based codes are not very easily ported into GPU’s like MPI and OpenMP. You can 

start with the basic C code and then start modifying it, very soon you can develop a parallel 

code. But in a CUDA GPU code, the CPU based codes cannot be very easily ported into GPUs 

using CUDA or OpenCL. You may have to rewrite the code and some of the legacy codes we 

can think about are millions in line size. So, rewriting the entire code might be very difficult. 

Another thing is that performance depends on optimizing several factors like block size, 

memory access, shared memory and many issues. So, if people from different industrial 

organizations working on GPU and accelerator based HPC, thought of proposing something 

like OpenACC or open accelerator where the compiler will take care of the parallelization 

efforts. 

Programmer has to only identify which part of his program he wants to parallelize and the 

compiler itself will take care of that. So, this programming standard developed by Cray, CAPS, 

Nvidia, PGI and the standard is designed to simplify the parallel programming in 

heterogeneous CPU-GPU systems. 

This is a directive based parallel programming model designed for performance and portability. 

So, with less effort, you can get optimized performance that is one aspect and portable means 

you can take it from across different platforms. You can run on a multi-core system, you will 

get good performance, you run on a Nvidia GPU, you will get good performance, you go to an 

Intel multi-core system you will get good performance, you go to an AMD GPU, you get good 

performance all these things have been taken care of. The compiler will see which hardware it 

is working on and look for that performance. 



  

Nvidia supports both multi-core CPU and GPU architecture and can launch parallel parts of 

the computational code in either of them and overall, it can make accelerated computing easy 

for domain experts. 

The caveat is there, this is for shared memory system, this is for single instruction multiple data 

type of model parallelization, for distributed memory system you have to use MPI, OpenACC 

cannot be used that, but it can replace some of the functionalities of OpenMP because it works 

on shared memory system. 
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So, we let us recap the OpenMP program because we talk about directive-based parallelization 

and we can recall the directives we have used in the OpenMP program. So, if we see that in 

particular location, we want to parallelize that use this shared and private memory and then, 

some of the work will be done in a critical manner that each thread will do on its own, there 

will be a sequentiality among them. So, this region will be parallelized, this region will be 

critical; this is done by OpenMP detectives right. These statements #pragma or exclamation 

OMP for Fortran or #pragma for C at the OpenMP directives. In OpenACC similar directives 

are used for parallelization in multicore CPU’s and or accelerator cores or GPU cores. 
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So, let us look into directive-based parallelization in a little more detail. If you have an 

application which has to be parallelized, application means the program which has to be 

parallelized, then there are three general methods for that one is calling parallel libraries. Say 

you have a particular scientific computing example where there is a matrix solver, you call a 

hyper library which has inbuilt parallel matrix solver function. So, you call that function. 

You can use compiler directives like OpenMP we have seen, open OpenACC is also there or 

you can use programming languages say you are using OpenCL that is a programming 

language for parallelization. It gives you very good performance, it is very flexible; however, 

you need to learn the language, you need to learn the syntax and semantics. 

In the library it is easy to use and usually get good performance also, but it is not much flexible 

there, there are certain restrictions on that. But in between that you can use compiler directives 

which are easy to use and you can have your own coding library, you have to use their library 

function which has been built by somebody else, but you can use your own code and parallelize 

it using the compiler directives. Compiler will read the directive and do the part of 

parallelization. So, you have to only have a direct compiler that takes this part and parallelize 

it accordingly. 

So, if we look into an OpenACC program, we can see different directives like #pragma, acc, 

data, copy in, copy out. This is a directive for data movement. How data will go from CPU to 

GPU and GPU to CPU etcetera. #pragma acc parallel compiler knows that this zone will be 



  

parallelized. Then, #pragma acc loop gang, loop vector these are different ways of 

parallelization of the iteration loops. So, these are the directives which you put inside your 

older CPU code and get a parallelized code. 

OpenACC. org presents this set of directives, this is a non-profit organization which in which 

many companies are there and they help scientists to do more science and less programming 

for HPC and this platform is developed by Cray, CAPS, Nvidia, PGI and this OpenACC which 

we are talking about this particular directive base parallelization works on number of platforms 

including Nvidia and AMD GPU and Intel multicores, Intel accelerators etcetera ah. 

(Refer Slide Time: 15:08) 

 

So, the efforts if we see in parallelizing an OpenACC job, we call them incremental efforts. So, 

is its incremental effort? You have your older serial code, then you can, you have to put only 

the OpenACC directives and then, you can add annotations to expose that they are parallelized 

only introducing these directives will parallelize the code. 

So, you take your older CPU code, look into the parts which can be when parallelized and start 

putting the directive. After putting a directive in one particular region, you see that you are 

getting the right results. You can run into a single processor, it will run like this older code, if 

you run it as a multiprocessor or GPU, it will run as an accelerated code, but the results must 

be the same. Check the results. So, once you check that this part is correct, you understand that 

this part has been parallelized and go to the next part. 



  

So, because of this type of programs, there are fork-joint models of the threads each fork you 

look into and parallelize that. Begin with a working sequential code, parallelize it with 

OpenACC and then verify and annotate that part and go to the next block parallelize it. 

(Refer Slide Time: 16:22) 

 

That is why we call that an incremental way of parallelizing; look into each part and parallelize 

it well. Then, it is portable, you develop a code using OpenACC and that code will run on all 

of these platforms. So, once you develop OpenMP code, it will run in all of these platforms 

and in each platform, like a multicore CPU platform like x86 CPU or we go to an AMD GPU. 

They are different platforms. 

But the compiler will identify what is the hardware, what is the architecture and how data 

should move, how the kernel should be launched, what should be done for the right 

parallelization. So, this will be left on the compiler and it itself will do that optimization. If you 

run on a single processor, the sequential code will be maintained, it will give you the sequential 

results. So, that is why it is a portable program also. 

If the code is run on a single processor system, the sequential performance remains the same. 

The compiler can ignore OpenACC code additions so that the same code can be used for 

sequential and parallel execution. So, when you run on a sequential platform or when you run 

a platform where some of the parallel drivers in terms of hardware or software and missing 

compiler simply ignores the pragma line and runs it as your old sequential code. So, you do not 

need to maintain multiple codes for different platforms. 
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It has a low learning curve. Low learning curves means you say you have written you have 

identified a parallel zone; you have written #pragma acc kernels. This directive tells the 

compiler that this has to be parallelized. How will it be parallelized? You do not need to know 

about that. It is a starting point. You can do certain things to improve the performance, but to 

start with, you do not need to know about that compiler will take care of that. So, it is easy to 

use and learn. 

You only need to know a few directives; you have to identify that this location can be 

parallelized, you have to have some basic idea of parallel computing and call these directives 

and the compiler gets the hint and works with that. Your knowledge in C, C ++ Fortran is 

sufficient. You do not need to know low level details of the hardware as well as how to handle 

managing those things. You do not need to know the details which you know for CUDA 

programming, you no need to go for that. 

So, one of the issues might be that you may not get the best performance because you are 

leaving everything on the compiler and the compiler has been optimized for certain general 

applications; for your specific applications you may not get the best performance. So, for that, 

you will may have to do some other optimization or in some point of time, you may not get the 

best performance using OpenACC we, if we compare in many cases, we can see CUDA can 

give you better performance or OpenCL can give you better performance because you have 

more flexibility from programmers point of perspective there. 



  

But you can get reasonably good performance with less effort in some time, if you are not very 

efficient in CUDA programming, you can do things in a wrong manner, but in OpenACC as 

the compiler is taking care of everything, it will give you reasonably good performance. 
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So, OpenACC syntax is in C, it is #pragma acc then directive with the clauses and then it is 

followed by the structured code block in many cases. In Fortran! $ acc directive and clause and 

then, this is paired with a matching directive surrounding a structured block and, in many cases, 

you show that the directive is being ended by a dollar acc and inside this whatever you put will 

follow the directive. 

Directives are commands in OpenACC for altering our code. Clauses are specified inside the 

directive or additions to the directive. We will see some of the clauses later. A pragma in C, C 

++ gives instruction to the compiler how to compile the code. Compilers that do not understand 

the particular pragma can freely ignore it. It will not give you an error or a bug. If the compiler 

is unsure about a pragma, it will ignore it and the remaining part if you take away this pragma 

or if you take away these two lines, the remaining part is your sequential program that will 

operate in that manner. So, they are very optimized to give you error free outputs, but that can 

hinder the performance. If the compiler is ignoring, the application engineer may not 

understand that the compiler is ignoring that part, but for CUDA or even for OpenMP, if it is 

ignoring you will get an error message there. 



  

A directive in Fortran is specially formatted. So, the specially formatted comment starts with 

an exclamation. So, if it is if the compiler does not understand it, it is an explanation, it will be 

ignored by the simple Fortran compiler. Acc informs the compiler; both case acc is present that 

it is an OpenACC directive. Similarly, you know open OpenMP you have seen OMP is present 

there ah. 
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OpenACC provides compiler options for porting the code from multicore CPU-s and GPU-s 

and this is very important; this is a PGI compiler instance is shown and PGI is one of the 

developer groups of OpenACC. So, when you run this, you put the compiler option -ta = tesla 

managed. It shows that when this will be compiled, this will be compiled for tesla is a GPU 

Nvidia tesla GPU card compiled for a GPU card with managed or uniform memory access data. 

If you write a compiler option - ta multicore, the compiler will know that it is compiling it for 

multicore CPU-s. So, just by giving the compiler option, the same code that can be compiled 

for different jobs. It is a unified or managed memory access model because we are using tesla 

managed, separate CPU to GPU copy or vice versa is not practiced. 

So, data is not copied separately from CPU to GPU or GPU to CPU rather we consider a unified 

memory access that the entire data is present in somewhere combining CPUs and GPUs and 

whichever host or device will require the data will migrate towards that. 



  

You remember at the beginning of discussions on GPU, we talked about unified memory 

access. So, by using tesla managed, we can use unified memory access. So, this is a general 

CPU-GPU access, there is a CPU RAM, there is a GPU RAM and data is copied in between 

them. In a managed memory or unified memory access, there is a single combined memory 

and data is migrated towards CPU and GPU based on the application. So, that also you can do 

by providing the compiler access that it will consider a GPU and considered as a unified 

memory access GPU. 

So, the memory management is the same as SIMD multicore programs and you develop a 

program for multicore OpenMP type programs using OpenACC for multicore systems using 

SIMD model. The same program just with changing OpenACC program not an OpenMP 

program, for OpenMP you can also use GPU but some other features are included, but if you 

develop a OpenACC program multicore program, the same program can run. If you write - a 

multicore with the compiler option, it will be built for running in a multicore system. If you 

write - ta tesla managed, it will run in GPU’s. 
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If you want to run this in a non-unified memory system like the memory systems, we 

considered in our previous CUDA examples CPU has a different memory, GPU has a different 

memory and data will be copied from CPU to GPU or GPU to CPU as required just use the 

compiler command - ta = tesla. Tesla managed will give you unified memory access; simple 

tesla will give you non-unified memory access. In CUDA also, you can use unified memory 



  

access in the recent versions of CUDA. We have not discussed that, but you can use that you 

can look into CUDA C programming guide and find that. 

Well in OpenACC in unified memory accesses are important because then the same code you 

do not need to copy from device to host or host to device, it is like a unified memory or managed 

memory case and the same code can go to both multicores and GPUs. 

In a multicore system, especially in unified memory access or UMA multicore systems there 

is a single RAM which all the cores are accessing. So, if you are using managed or unified 

memory, it is working in a similar manner. 

Without manage memory, code required to be rewritten for data management similar to CUDA 

that is CPU to GPU copying and this CPU to GPU copying is obtained by data directive that 

you write pragma acc data with the clause that CPU to GPU or GPU to CPU how the copying 

will be done using this directive, you can copy the data. We will see some of the examples 

soon. 

The data directive defines the lifetime for data on devices beyond individual loops. During the 

region, the data is essentially owned when we give in the data directory within this region, any 

data we talk about is owned by the accelerator it is on the GPU from that. If using an unmanaged 

system, then you have to copy from CPU to GPU and within the directive, it will be in the GPU 

and then we can copy back to from GPU to CPU. Data clauses, the clauses express the direction 

of movement and shape and size of the data. 
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These are the clauses. Copy tells that memory is allocated on GPU and data will be copied from 

CPU to GPU and GPU to CPU as required. When copying from CPU to its GPU will be done, 

then will be CPU to GPU during entering the parallel part, after the parallel part it will be 

copied from GPU to CPU. So, both CudaMemcpy host to device, device to host is taken care 

of. Copyin says it will be copied from CPU to the GPU. It will do CUD Malloc allocate the 

memory as well as it will do the copy in. Copyout will do GPU to CPU copy along with 

allocation. 

Create we will just do the allocation part. Then, sometimes we use an update command which 

is like a synchronization command. If there are multiple iteration loops, the data which is lying 

on the CPU and on the GPU, it is required that they are synchronized, so use update that it 

considers one of the data and checks that it agrees with the CPU-GPU data. So, whatever part 

is not copied, it copies it there and they have their utility for some of the examples about 

synchronization you need to update, if you need to use an input from CPU unit copyin and so 

on. We can observe their similarity with CudaMemcpy and CUDAMalloc. 
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The data clause in OpenACC is pragma acc data copy, copyin and copy A of size a has size 

n*m and Anew has size n*m; that means, A will be copied to accelerator when needed and 

copied back from the accelerator when the part is done and Anew will be only copied from the 

CPU to the GPU. GPU is the accelerator. 

Now, this copy is defined only for the parallel region, but we might require the data even 

outside the parallel region and may be again the parallel another parallel region will be done 

and the similar variable will be operated, but if we say that was available only for the previous 

parallel region, again we have to copy the data, copying from CPU to GPU is the costly affair. 

So, we can set that when this will be copied to the GPU and then we can say that it is flushed 

off, it is deleted from the GPU. These terms we also can set using directives and data regions 

are always not very structured and some data may be required to remain in the device even 

after the parallel region is over. 

Enter and exit clause with the data directive can help us enter the clause that will tell that data 

will go in the GPU and stay there. Exit will say that now this data is not required, GPU will 

erase the data. So, this is like pragma acc enter data copyin so, a, b is copied into GPU and they 

will stay in the GPU and c is created in the GPU, c will also stay in the GPU as long as we 

require it and then we write c = a+b. So, a, b is de-allocated from the GPU, GPU does not store 

any part of a and b, c still receives copy from CPU to GPU, but yeah so, a, b, c all erased from 

the GPU memory. 



  

But if we run another loop here, with another parallel loop here and few more parallel loops 

run a sequential loop etcetera here, the a, b and c will still remain in the GPU that GPU copy 

will be unaltered. This eliminates excessive movement of data from device to host and vice 

versa and therefore, increases performance. 
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OpenACC parallelization directive, when we have seen earlier the simplest parallelization 

directive is kernel. If we can identify a particular region which has to be parallelized and write 

the pragma acc kernel, this construct will identify this region that takes that region of the code 

and check if it thinks that it may contain parallelism. This parallelization is done by the 

programmer, the directive is given by the programmer, but it is left on the compiler to 

parallelize it. Compiler will check that whether there is sufficient data independence and 

iterations are there, it considers it for the parallelization and then, if it checks that there is 

sufficient data independence, then it will automatically parallelize it. So, the compiler will 

analyse the region, identify which loops are safe to parallelize and then accelerate those loops. 

Developers with little or no parallel programming examples or who are working on functions 

that contain many loops which you cannot go in individual loops and parallelize; you can find 

this kernel directives a good starting place for OpenACC acceleration. Pragma OpenACC 

kernels and there are many parallel loops it will try to see which of the loops can be parallelized 

here. 



  

Programmers need not find data independence and parallelization scopes; compilers will do it 

for the target device or accelerator. So, you just write pragma acc kernel, it will take care of the 

rest. 
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Parallel loop is similar to the OpenMP equivalent. Instead of a kernel, you can use parallel. 

Parallel gives you more flexibility and more liability as more responsibility as a program that 

you have to identify that this is a parallelizable loop and you have to tell how the program will 

parallelize it. 

Parallel loop is an assertion by the programmer that this is safe and we desire it to be 

parallelized and then the compiler will parallelize it. In a kernel compiler programmer may not 

know that if it can be parallelized. Programmer thinks that it is a compute heavy zone; ask the 

compiler to parallelize it. In case of; parallel, programmer has to be sure that this has to be 

parallelized and also programmer has certain flexibility in terms of how that can be parallelized. 

When encountering the parallel directive, the compiler will do something. Because we think of 

parallelizing in accelerators and GPU’s, the compiler has something in mind. In a parallel 

region, it is known to the compiler that this is for sure to be parallelized. It will try to do some 

equivalent of the blocks, threads etcetera. So, what will it do? In the parallel regime, it will 

launch many gangs.  



  

Each of the gangs will do exactly the same work, but now if there is an iteration and we ask 

this to be a parallel for loop, then each gang will take part of the iterations and operate over the 

number of iterations. So, it is something like what each block is doing, and each block is 

operating a number of threads. Similarly, the gangs will execute that. 

There will be a parallel regime, if there is a parallel regime that will be executed by all the 

gangs. If there is a parallel for regime, then each gang will take part of the iterations and do it. 
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Say we have a OpenACC parallel, pragma acc parallel and then pragma acc loop; that means, 

this for loop has to be parallelized, then each gang will take some iterations of the loop and run 

them in parallel. So, if we look into OpenACC, this has its own paradigm of parallelization, its 

own hierarchy. 

The gang is the largest unit of parallelization. There will be multiple gangs, each gang working 

in parallel. Inside each gang, there are workers. Workers are the next group of parallelization 

which has all the workers share the same cache. Inside the worker, there are many vectors and 

vectors are the units of parallelization. 

OpenACC introduces these three levels of parallelization: gang, worker, vector. This helps the 

directive to port into different SIMD architecture starting from multicores to GPU’s. For 

GPU’s, the mapping is implementation dependent. Some cases, a gang is the block, if there are 

going to multiple streaming multiprocessors, each streaming multiprocessor gets a gang and 



  

worker is the warp inside the gang which is operated at once and there can be multiple warps 

inside the gang like multiple warps inside the block, there can be multiple workers inside the 

gang and vectors are the threads of the warp. 

In some cases, we do not need to think about the warp, we just look into the gang and then the 

vector. So, based on the implementation OpenACC does this parallelization of how it will 

assign workers or whether it will assign workers or not. 

What will be the block size? What will be the thread size? If you do not specify anything, you 

can do something on specifying the gang and loop, where the gang will be activated, where the 

vectors will be activated, what is the unit of the workers, you can do something on the 

specification in OpenACC.  

You can look into a OpenACC best practice guide and find that, but if you do not want to do 

that, OpenACC will itself do it. If you do not specify any block size, by default grid size is 1 

and the total number of threads are block size. If you do not specify any block size, it will go 

to only 1 block, 1 thread. But if you do not specify anything on gangs loops, vectors, OpenACC 

will do the optimization and run it as the number of gangs and vectors it thinks efficient and 

optimized for that application. 
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So, OpenACC development cycle is typically specified by OpenACC best practice guide and 

the engineers working on OpenACC. So, this is a formal way of approaching a large program 

and see how we can parallelize it. 

First you have to analyse the code and determine the places where parallelization is required. 

How to do that? If you take the code and profile it, find out the total runtime, runtime of 

universal routines with Nvidia nsight; you can profile it and there are many profiling software 

available and hardware counters. Identify the portions of the code which took longer time and 

find out which is the hotspot which has to be parallelized. So, analyse the code, profile it and 

identify which has to be parallelized. 

Then, parallelize that part, in a code there is a particular total run time of 39 seconds something, 

takes 30 seconds something, takes 90 second like that and consider that 30 second part, 

parallelize it using the OpenACC part. While parallelizing it, look into the data transfer part, 

look into the non-data dependent locations and use the right parallelization directives there. 

Once parallelized, optimize that using the loop and data management and then you get the 

parallel program and this is the most formal way of approaching a scientific computing job that 

you have your own legacy code, profile it, find out the hotspot, parallelize it and then try to 

optimize the performance. 
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We can see an example that this is the immersed boundary based CFD solver and this was 

published in one of my students' papers. So, he found that 73 percent time is taken by one 



  

particular sub routine and that has been parallelized and then, it took 43 percent time and most 

of the time is spent on GPU, it went to GPU and as GPUs are faster the overall time requirement 

is reduced. This basically required iterative solvers. So, from multi core CPU, 64-Processor 

Xeon CPUs, 2 GPU’s, there are 3 to 3.5 times speed up. So, OpenACC tune GPUs can give 

you much faster performance than 64-Core Processor CPU’s. 

These comparisons between CPU and GPU time for this immersed boundary solver. In CPU, 

in a single CPU, it was taking something like 1300 second; it came down to little less than 100 

seconds in a Multicore 64-Processor CPU whereas, in GPU, we can see that this time required 

is around 10 or 20 seconds. So, the performance can be very well improved if you identify the 

hot spots and then parallelize and optimize a legacy science engineering code using OpenACC. 
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Well, so, we looked into OpenACC tutorial from Mr Sharma of NVIDIA, OpenACC 

programming guide best practice and programming guide and openacc.org has sufficient 

material available on OpenACC which you can start reading and utilize for getting your 

application ported in GPUs as well as on multicore CPUs. 
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We looked into OpenACC programming model, data and parallel directives and performance 

study for a sample case. 

 


