
High Performance Computing for Scientists and Engineers

Prof. Somnath Roy

Department of Mechanical Engineering

Indian Institute of Technology, Kharagpur

Module – 04

GPU Computing

Lecture – 38

Matrix multiplications in CUDA

Hello, welcome to the class of High-Performance Computing for Scientists and Engineers and

we are discussing the 4th module of this class which is GPU Computing. Today, we will discuss

Matrix multiplications in CUDA. In the last few lectures over the last couple of weeks, we are

learning about different nuances of CUDA programming.

We looked into how to parallelize a section to run in GPU in CUDA, how to take care of

memory management in CUDA, what are different off-chip and on-chip memories and how to

utilize these memories efficiently in CUDA programming. Now, with that background, we will

see examples which are very much related with scientific computing and these are matrix

multiplication operations.

So, we understand that dealing with large scientific or engineering problems often requires

utilizing matrices, doing matrix vector products, matrix-matrix multiplications and we will see

how CUDA can be efficiently used for that.

(Refer Slide Time: 01:35)

So, in this class, we will see how using the thread and block id we can point to different

locations of main data because we are using a single instruction multiple data modules

essentially same instructions will be run over different locations of the data and how thread and

block id can be utilized for that. We will see examples of matrix-vector products. We will see

the programs on matrix-matrix products again using CUDA to run on GPU’s.

We will see how tiling, if you remember we have discussed matrix blocks or matrix tiles when

discussing matrix products while discussing OpenMP programming. So, how this tiling and

how utilization of shared memory can improve the performance of matrix-matrix products,

there are certain complicated memory access in matrix-matrix product, cache unfriendliness

can be there which has to be taken care of and we will also see some examples related with

matrix solvers and how the performance is.

(Refer Slide Time: 02:42)

If we look into a CUDA kernel, when it is executed, it launches a number of threads and these

threads are launched as a grid, inside each grid there are multiple blocks and these blocks are

composed of a number of threads. So, kernel launch is essentially a single instruction multiple

thread model or single instruction multiple data model parallelization using multiple threads.

The kernel function is executed on grid size into block size number of times in that many

threads. So, if a kernel is launched, grid size the number of blocks and block size is the number

of threads in each block. So, the total number of threads will be grid size* block size because

each block has the same number of threads.

So, that will be the total number of threads launching when a kernel is launched. And, this

information is available in the execution kernel, what is the block size and grid size programmer

have to specify a block size and a grid size and in the execution kernel which is given by the

variables grid size and block size when you call the kernel.

Then, these variables are of type dim3 so, you can put three integers in grid size and say that

this is the number of blocks in x, y and z directions. Similarly, because there is a dim3 variable,

three integers in block size and say that this many are the number of threads in each block in

x, y, z direction. So, in total, you can launch a large number of threads.

You can find out what is the total dimension of block when the code is being executed , say

you have specifying grid size and block size as dim3 variables, but when you are inside the

kernel, the kernel might need to know what is the total number of blocks and what are the total

number of threads inside the block etcetera, which can be found out by these variables.

A thread is also required to know its identity, what is the specific number of the thread. Now,

if we think of MPI and OpenMP programs, there are function calls by which a thread or a

processor knows it’s rank or identity. In GPU’s because there will be a large number of threads

already in a GPU kernel, if you call functions to identify the number of threads that will have

to be high overhead. So, there are some automatic variables which are blockIdx. x, blockIdx .

y and blockidx. z which gives the local id of the block. In the grid, there are many blocks, and

these are three-dimensional arrangements so, when you look into this variable, it will tell you

about the coordinate of the block or the location of the block inside the grid. Similarly, if you

find the thread id inside a particular block, you will get threadIdx.x, threadIdx.y, threadIdx .z

these are like C++ structures.

But this thread id is the local thread id, is the id of the thread within a particular block. In many

times, it might be required for one to know about the global thread id; that means, say block

number p, there is a thread number q so, what is the global number of threads? How many

threads have already been passed before that? Considering the blocks which I counted before

this block, what becomes a global id of this thread and we will see when this will be important

in a while. It may be important to find the global id of the thread for some problems.

(Refer Slide Time: 06:47)

If we look into a matrix addition problem, when this global id can be important, we will see

here. What we are doing here, we are adding two matrices. If we see when we have launched

the kernel, the total number of blocks inside the grid is 1, grid size is 1 so, there is only 1 block.

Inside 1 block, there are N* N threads, N in x direction, N in y direction. So, the thread id inside

that block will have two components; one is its x coordinate and another is 1 coordinate.

Now, when we call the kernel, we call the kernel function number of blocks which is 1, threads

plus block because these are dim3 variables, it will take in N, N into 1 and in input parameters.

Now, when the kernel function is called it will take matrix A, take matrix B, the output will be

matrix C. So, each element of matrix A will be added to the corresponding element of matrix

B and the output will be an element of matrix C.

How is it doing that? It is identifying the location of an element in matrix A or B or C by the

thread id. So, if I am looking in a particular thread, this thread is taking one element of the

matrix A, taking a corresponding element of matrix B and adding them and getting the

corresponding element of matrix C. This is being done by; this is being done by all the threads

simultaneously. So, which element of thread will pick up that if you look into this code that is

found out by the coordinate of the threads.

Inside the matrix, the element that is being operated by a thread has an index or has indices the

same as the indexes of the thread or the coordinate of the thread. So, far this is simple in a sense

that each thread will do same operation, one thread will pick up one particular location of

matrix A, similar corresponding location of matrix B, add these two variables, put in the

corresponding location of matrix C. So, x id of the thread points to the matrix row, y id of the

thread points to the matrix column and we get the product.

Thread id is used to point to the memory location which will be accessed by the particular

thread. Now, this is simply obtained here because we have launched only one block. Because

we have launched only one block, the thread id x and thread id y can directly correspond to the

element location on the indices of the matrix, each thread can be directly mapped to one

element of the matrix. Well, so we can go ahead with one block, I mean within a block there

can be a large number of threads which can be operated. So, you can go ahead with one block,

but if we now think of it in terms of (Refer Time: 10:04) of the blocks, each block will go to

one streaming multiprocessor. Inside one streaming multiprocessor at one go, one warp of

threads will be active; that means, 32 threads will be active.

So, even we are launching large number of threads, if we are operating over 10 6 * 106 matrix

so, we are launching 10 6 * 106 threads, but we are getting a parallelism only by the factor 32,

because at one go only 32 threads are active. So, we are not getting the right scalability.

Therefore, if we are working on V 100 which has 80 streaming multiprocessors, we can think

of at least 80 blocks as a matter of factor, we have done more than 80 blocks. So, all the

streaming multiprocessors are working together, and we are getting parallelism not only for the

32 threads in the warp, but also multiple streaming processors are active and all they act to the

scalability.

So, you need to launch number of blocks and I think I am clear that if we run in one block, we

will get less scalability, you have to run number of blocks and we have seen less class that what

is optimum block size that depends on a multiple of warp that also has an effect on the

performance. If you just keep on increasing the block size even by multiples of warp, you may

not get the right performance, there is an optimum block size depending on the memory

utilization of the program.

So, we need to launch this kernel in multiple numbers of blocks. So, we need to have multiple

blocks. Therefore, we cannot just pick up one block and say that its x id will correspond to the

particular location of the thread, we need to use the global ids of the threads.

We have to consider that it is like multiple arrangements of threads are there, we have to count

what is the global x id, we have to count what is a global y id and point that thread accordingly.

So, as a single thread is launched, local id and global ids are the same, but when multiple

threads will be launched, they will be different. We have to take care of that.

(Refer Slide Time: 12:19)

This gives us the issue that my threads will be utilized also to point to the memory location. I

will not use any other table or any other pointer to the memory location, the thread ids are the

pointers for the memory location. Each thread will do a small amount of work. All the threads

will simultaneously carry the work therefore, a large problem can be addressed. This is

precisely a single instruction multiple thread model or single instruction multiple data model.

Here, we have a large number of threads and each thread is pointing to one location of the

matrix and therefore, at a go the large matrix problem is solved.

So, if we have only one block, we can use the threadId x as the x coordinate, threadId y as the

y coordinate and locate the location of the matrix. If we have a general two-dimensional grid,

we can extend it for three dimensional also, you need to think of the thread algebra there.

We have to use that threadId x is the local threadId, blockId x is the id of the block and

blockDim x is the dimension of the blocks in x direction; that means, in x direction total each

block has that many number of threads in each direction. Block ids, thread ids everything starts

from 0 to the number of threads-1.

So, if a block has an id blockIdx. x in x direction, there are total blockIdx .x blocks which

(Refer Time: 04:04) before that. So, each block has blockDim.x threads in x direction. So, the

total number of threads in x direction will be there multiple and then, we add the local thread

id.

Similarly, in x direction, similarly in y id, we do that and we find out the global thread id using

this. Global id of the thread is obtained from the local thread id, local block id and block size.

Using this three information, whatever the block arrangement be 2D, 3D we can find out the

global thread id and local thread id. In certain cases, there can be some more complications,

but I mean using simple algebra that can be found out.

(Refer Slide Time: 14:44)

Now we will look into a multi block matrix vector product and this program that will show is

written by one of my interns Mister Dilip Subbaian was a B-Tech from Shiv Nadar University.

So, we think of a matrix vector product. What is in a matrix product? Matrix row will be chosen

that will be multiplied with the vector as a dot product with corresponding column element will

be multiplied with the corresponding row element of the vector and we will get one row element

of the matrix vector, vector product.

So, we can see that the matrix d is multiplied with vector r. Now, while looking into this

product, this is a serial subroutine, a simple C code. One thing we can see is that this matrix

instead of d being a 2D matrix it has been put into a vector order. So, we have somehow

coalesced the memory access.

Instead of writing the matrix, in this order, 1, 1, 1, 2, 1, 3 we have coalesced the entire matrix

into a one-d array. So, 1, 2, 3, 4, 5, 6 so on. So, the entire matrix is coalesced into a one-d array

and that is why row i and column j is written as n * i + j th element. So, there have been i rows

and j columns there, and that is multiplied with j th row of the vector.

So, the matrix is put into a one-d array for coalesced access. Why is coalesced access

important? If we go back to the fundamental concepts of CUDA programming from reading

from the device ram to the GPU cores require a coalesced access and that is a cache friendly

access also. So, that is why we try to put the matrix in the coalesced access that gives us better

performance.

(Refer Slide Time: 17:05)

Then, when we write this programming GPU instead of doing this through a function, we call

a kernel mvm and this kernel takes what is the block size is u, n by n is matrix size the order of

the matrix, a is the input matrix, x is the input vector, b is the product each location of b is

initialized to 0 and then b is equal to b * (corresponding element of a)*(corresponding element

of matrix x).

Well, another thing that we can see here is that we are finding out the global locations of i and

j where the thread should point by blockIdx.y* blockDim.y + threadIdx.y and blockIdx.x *

blockDim .x + threadIdx.x. So, we are utilizing the global locations. As we have coalesced the

memory access, we are operating for over an index int, this index gives us a coalesce of the

memory for the vector.

We are accessing the memory in a coalesced manner and this ind *n is the total number of

elements which has covered in the previous rows and goes to the particular row, the previous

row it covers the previous row and looks into the location and the particular column of that

row. So, that is why we are using coalesced memory access here.

A coalesced global memory access pattern is followed, and this gives us better speed up. We

can see that for the 1280, 1280 matrix, CPU takes 0.44 seconds and GPU takes 0.38 seconds,

and this is not very high speed up why? Because the computing is small, 1280 by 1280 is a

small matrix problem, small matrix vector multiplication and we are doing it only once. So,

speed up is not substantial in this case.

Now, also you need to copy the entire matrix and vector and from CPU to GPU and then copy

it back from GPU to CPU that is the product. So, it takes up a large time. In case, if you have

a large matrix, then you get better advantage of the parallelization and we have seen that.

Well, one very important thing is that when we are looking into matrix vector patterns, a

coalesced global memory access pattern is followed and this index ind is introduced for that.

We are instead of considering the matrices as 2D matrices, we are coalescing them into a single

row and doing the operations based on that. This is extremely important to note here.

(Refer Slide Time: 20:16)

In a matrix-matrix product, as we can see when we think of a matrix-matrix product in CPU,

we take a row of the matrix left-hand side matrix, a column of the right-hand side matrix and

take a dot product between them and make them the corresponding element of the product

matrix.

Now, when we look into the CUDA kernel, we would do essentially same thing each thread

points to one particular element of the product matrix not on the left and right matrix because

in in left in the multiplied and multiplied matrices, it will go over the entire row and entire

column and make dot products.

So, it looks into our particular row of the multiplier matrix a the threads x coordinate, the

threads y coordinate looks into a particular column of the right multiplier matrix b and the

threads itself also looks into i and j or the threadIdx. x and threadIdx. y looks into the particular

row column location of the product matrix cd.

So, these matrices cd, ad, bd because they have been copied from the host to device, host matrix

a, b, c and these matrixes are ad, bd, cd and this is this addition is done over all the elements,

this is dot product over all the elements in a particular row and column well. Now, what we

can see we have coalesced the memories instead of 2D matrices, we are considering them as

3D matrices and writing it to the particular location which is given by the global thread ids.

Now, there are few observations. There is a large number of memory accesses. In each row

operation, for winding out one element in cd memory of access is done for the entire row of a

and entire row of b. So, if n large number say we are talking about a million-by-million matrix.

So, for finding one element in the c matrix, I have to go for 1 million elements in the row of a

and 1 million elements in the column of b. So, a large number of memory accesses are required,

2 million memory accesses are required and we will get 1 million operations by adding them.

CGMA ratio is very wide, but as we have a large number of memory accesses, it will be a

slower process.

However, for memory access, we avoid reduction of bandwidth by utilizing the cache. What

cache does? It prefetches some of the memory elements in the contiguous location, but here

what we can see because row a is row is multiplied with b’s column, in a from k 0 to n the

memories contiguous, but in b, memory is not contiguous because it is multiplied with n into

k, it is looking into the column elements, memory is arranged along the row. So, either we have

to store it as transpose of b which is possible yes, there will be a problem. So, what we see here

that this access, the way we are accessing bd is a cache unfriendly access pattern.

Because we have to read from the global memory to take from the device time global memory

and bring it to the CUDA course and many memory readings are required, it will be a cache

issue that is affecting, its bandwidth will be low, it will be a slower process.

So, utilizing shared memory might help us and utilizing tiling; we have seen it earlier that if

we consider blocks of the matrices and do the multiplications, only within this block, we can

use most many of the cached variables and that also can help.

So, using shared memory and tiling can help us in terms of memory access and improve that

performance. This particular program will have some performance issues.

(Refer Slide Time: 24:58)

So, we look into NVIDIA CUDA programming guide, the example is given. So, when you do

multiplication in between two matrices, you read the entire row of one matrix, you read the

entire column of one matrix and only get one product here. Instead, if you take a block of or a

tile of number cr and if you take a tile of number cr, you first multiply them, get the products

here.

Again, this product is not the final one, so you have to take another block here, another tile here

and I will not use a block here, block makes a different sense here. You take another tile here,

multiply them and write it back here.

So, this into this will give me some products in this particular operation yellow, this into this

will also give me some products here, this into this also give me some products here, this block

into this block will also point to this particular row. So, you have to go over loops of tiles and

then you can get the product here.

So, what is the advantage? The advantage is that once you read this entire block, all the products

can be done here, you do not need to read the memory values; what means that when you are

reading, we are reading from the global memory. So, you will not need to read it again and

again.

Also, as you are considering a small time in both A and B matrices, the memory of these tiles

might be small enough. So, that they can directly feed into the shared memory. So, and once

something is ready in the shared memory, it will remain the shared memory until unless you

overwrite it.

So, you one warp can read it, but other warps also can utilize it. So, read one block of one tile

of data from matrix A, read one tile of data from matrix B, put them into the shared memory,

do all the multiplications required for matrix multiplication for getting the product matrix in

between them, write in product matrix C.

Again, write another tile from matrix B, you may utilize this tile which is already in matrix A

and do the products and add in the product matrix location. In that way, different tiles can be

allocated to different threads and that way you can get better performance.

(Refer Slide Time: 27:11)

We will see an example. So, what are we doing? We are taking one tile of matrix A, putting it

into shared memory. This is where we are doing M to N is equal to P. One tile of matrix M and

putting it into shared memory and doing the multiplication putting them in here.

Then, we are doing multiplication among all the blocks and putting it here. Then, we will take

another block here and maybe another block here and some element will again come here. So,

we will keep on adding these elements.

(Refer Slide Time: 27:40)

So, the program looks like you identify the global threadId, get the blockId, consider the local

thread id also and use a shared memory variable. In the shared memory, you basically look into

the local threadId in that particular block and inside the shared memory, now this shared

memory is only on a particular block, shared memory has no scope outside the block. So, the

shared memory valuables you use using the localId and use this global id for fetching data from

the global memory, put it into the shared memory and do multiple tiles still it finishes all the

rows in the of the matrix to multiple tiles for that particular block and keep adding on the global

memory itself.

So, these memory accesses are local memory or shared memory access. Shared memory is a

small memory unit, so entire memory is something like cached, entire memory is directly

readable using the shared memory banks etcetera. So, you do not need to think about coalescing

the memory.

The cache friendly access which might be required for larger matrices, but shared memories

here we are discussing only 16 by 16 it is a few kilobyte, 64 by 92 kilobyte it is the maximum

space. So, you do not need to coalesce the memory access here, but the device memory or

global memory which you are accessing must be coalesced.

So, non-coalesced access is used for shared memory as this size is small and bandwidth is high.

For a 1280 by 1280 matrix, sequential code takes 214 seconds, this optimized code takes 6.38

seconds. So, nearly 30 times more than 30 times, speed up has been obtained using the GPU

card here .Why is the speedup more than matrix vector product?

Because first is that we are using this optimization based on shared memory and tiling and also

the total computation is quite larger. In matrix vector product, total computation is small only

getting one row of the product matrix compared to this; there order of n and here the

computation is of the order of n2 .

(Refer Slide Time: 30:04)

We look into matrix solvers. These are very important in scientific computing calculations and

we will look into conjugate gradient, biconjugate gradient and Jacobi solvers. If you look into

all these solvers, these solvers are the maximum costly part or computable part inside the solver

is matrix vector product.

So, a parallelized matrix vector product here, now matrix vector is not as costly as compared

to matrix-matrix. The good thing is that these are iterative solvers, so matrix vector products

are required again and again.

However, matrices remain the same. So, you do not need to copy the matrix many times from

host to device. So, copying the matrix is done only once, but the copied matrix which is laying

on those GPU devices is operated again and again for matrix vector product and large number

of iterations are done and if you see a Xeon 2650 versus P100 speed, if we keep on increasing

the matrix size say 40000 by 40000 in a conjugate solver symmetric matrix, we get near 90

times speed up.

For BICG also, we get high speed up and as we increase BICG and this is nearly 30 times speed

up because the matrix size is small ;as we increase the number of rows of the matrix, the

speedup is more. So, these are for unstructured non-symmetric matrices and conjugate

gradients for symmetric matrices. As we increase the size, the speed up increases here also. So,

that is one observation also this follows the basics of parallel computing performance that as

you are increasing the problem, the speedup is better and to get that we in GPU there is a

challenge of memory access we have to be very cautious while looking into the memory access.

So, matrix solvers and matrix-vector, matrix-matrix products are very important in scientific

computing, but we can see that if we write the GPU codes efficiently, we can get very good

speed up and this up is comparable to even more than a large CPU based infrastructure, you

need many more racks of CPU, a big room with air conditioning to get something like what we

are getting around 90 times speed up, you need maybe 100s of 200s of CPU’s there.

But a simple single GPU card, if the CUDA program is tuned properly can give you similar or

better performance.

(Refer Slide Time: 32:44)

Well, mainly you have used CUDA C programming guide and CUDA C best practice guide,

there these are very important in case you try to develop your own CUDA program for this

lecture.

(Refer Slide Time: 32:58)

We have looked into basic thread algebra for vector and matrix operations, shown

parallelization of matrix operation and optimization using shared memory and what is called

tiling here and performance of parallel matrix solvers are also presented.

