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Hello this is the MOOCs course on High Performance Computing for Scientists and Engineers. 

We are discussing module 4 on GPU Computing, and continuing with previous lecture on 

Thread execution in a CUDA program. We have looked at thread scheduling, we will see some 

more details on thread scheduling and synchronization and then we will see how memory 

access is done by different threads in a CUDA program. 

(Refer Slide Time: 00:50) 

 

So, you looked about execution patterns of the thread and which involves scheduling at the 

warp level. Warps are collections of 32 threads in the modern GPUs, which are executed at one 

go in the streaming multiprocessor. So, every time we launch a kernel, it launches blocks of 

threads and the collection of the blocks of threads is called a grid, inside the grid there are 

blocks, inside blocks there are threads. 

Each block of thread goes to one streaming multiprocessor and there can be more blocks going 

to one streaming multiprocessor; but one block will as a total will go to one streaming 



multiprocessor and the threads inside that block will be executed in that particular streaming 

multiprocessor. At one go 32 threads among them are chosen and this number is chosen 

continuously as per the thread id and these 32 threads are called the warps which are executed 

at one instance. 

Once this warp goes to the streaming multiprocessor, 32 codes are allotted from them, they are 

executed. As soon as they are being executed, during this execution they  encounter some of 

the latency for searching data or for something else; the next warp is activated and that is when 

it starts executing. Once the first warp latent stage is over, the context goes back to that warp 

and it is executed again. In that way multiple warps are executed with some dynamic scheduling 

within a streaming multiprocessor and that is how a large number of threads much more than 

the number of codes can be executed in GPU with good scalability.  
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Well, and what we have seen from this scheduling aspect is that as one warp is active at one 

particular instance; all the threads of the block will be executed as the group of warps, as a 

collection of warps. Therefore, the block size must be a multiple of warp size .We have seen 

that there is for one particular case, there is a particular block size which gives better 

performance. 

So, depending on block size, performance also changes; because thread scheduling and latency 

hiding varies. So, the optimum block size must be multiple of warp size; if the block size is not 



a multiple of warp size, there will be serious performance degradation. Also, optimum block 

size depends on memory access patterns.  

So, therefore, the same GPU code with changing the block size and the number of blocks inside 

the grid, we can get different performances and there is an optimum performance level. Thread 

divergence has to be avoided which tells that threads within a block must not take different 

execution paths.  
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So, let us see, what is thread divergence? It is recommended that threads in a particular warp 

must follow the same instruction following a SIMD model. SIMD single instruction multiple 

data model; that means they must have the same instruction and different threads will operate 

on different data elements and preferably that should be from a contiguous data set well 

whatever.  

So, the instruction must be the same for all the threads in the warp, and this instruction will be 

executed in parallel in all of the threads. In case the instruction sets are different; some other 

threads are asked to do something else and that can be done through an if else statement. In 

case it is there, the first set of tasks will be operated in the designated threads; the other threads 

will be in a latent manner. The cores to which these threads are assigned go to an idle phase; 

this part of execution will be over by the active threads. 



The next instruction set will be chosen and the previously active threads; because they are not 

supposed to do this next step, they will go to and in a latent manner. Therefore, if there are two 

different instructions set by if else statement, half of the threads are active at any point of time. 

Although warp scheduling tells us 32 threads are active, this is the unit of parallelization in 

GPU, 32 threads are active at any time. However, if else is given for 16 threads; 16 will be 

active, therefore performance will fall by at least a factor of 2. 

Let us see an example that, if i is the thread id, if the remainder by dividing i by 2 is zero; that 

means  thread id is or even, then x[ i] particular location of the vector x of the memory x will 

be 5. If it is odd, then x [i] will be 10. So, when this will be executed; when the even threads 

will come, then the odd threads are in a dormant or latent mode. When the even threads warp 

will be over; then the odd threads will be active, but even threads will go to a latent mode and 

this is called thread divergence.  

This will create two different control paths for threads in a block and always this is limited 

within a block. For the other block that is an independent thing; but the same thing will happen, 

because you are executing the same statement in all blocks. Even threads follow different parts 

than odd threads in the warp, but all threads will reach the same instruction. So, there will be a 

sequentiality of the instruction set. 

First all threads will look into this instruction set and this instruction set. When the first set of 

all threads are looking into this instruction set, only these threads are doing this part; but 

everybody is looking into that.  

Now,  because warp is scheduled together, the threads are active together, so everybody is 

looking into; they see if and if it is not so, they are waiting. When else is done, then everybody 

will look into this and only odd threads will look into that, the others will be waiting and this 

is a performance killer.  

The programmer himself is doing something which is putting cores into idle stage and 

therefore, performance degrades. However, in many cases you cannot avoid if else statements; 

some threads will do something, some threads will do something else.  

To avoid this, you do more computing in each thread and crunch more numbers; because this 

is a faster process, but do not put any thread into latent state by if else statements. So, write that 

for even there is some calculation for odd, there will be some other calculation. 



So, you combine this if else statement and modify the program execution accordingly. Here all 

threads essentially execute the same state instruction; but they do calculations differently for 

even and odd that is not an issue, but none of the threads are waiting or in idle state here. So, 

that is how thread divergence has to be avoided.  

(Refer Slide Time: 08:55) 

 

In some cases, it can cause deadlock; say we write some of the threads, thread id less than 16 

to run some function, and thread id greater than equal to 16 to run some other function, and put 

a syncthread in this.  

What a syncthread does? Syncthread is a synchronization barrier state; it will not allow the 

threads to do anything else till all other threads in the block have reached till this point. Now, 

threads less than 16 will operate this; threads greater than equal to 16 will not even come up 

here, but the threads less than equal less than 16 are waiting here, they cannot do anything else.  

Therefore, it will go to a deadlock system and the code will stall; half of the threads in the warp 

will execute first instruction and wait for the others to finish till sync threads. But others 

couldn't finish that, because others are here; others are here cannot operate it till this loop is 

over, there is a sequentiality in operation due to thread divergence. The next 16 threads cannot 

start the second task; because the second execution path, the else if has not been activated.  

Therefore, the code stalls. So, these are something which has to be avoided; that means if else 

using thread ids inside a kernel is a strict no. If you do that, your performance will be degraded. 
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However, there are certain cases when you cannot avoid that; when you are writing a complex 

program, sometimes you cannot avoid using logical statements like if else, but you have to 

avoid thread divergence. So, you should not put this if else statement based on the thread ids 

within the kernel; rather few things you can do, you can do at the warp level, you see  the warp 

is scheduled to do some warp at one go. 

So, instead of odd even branching, say if you club all the threads in the first up for thread id 

less than the warp size in to do something else, thread id greater than warp size to do something 

else. So, two different warps will take two different execution paths.  

So, instead of doing if else statement in the thread level, do it in the warp level; diverge at the 

warp level, different warps are doing different warp which is possible. You can diverge at the 

block level; using block id say that, some block will operate on something some, the other 

block will operate take the other execution part.  

Or you can launch different kernels, identify the warp which is say for even you have to do 

something; write a kernel combine them, such that all the even threads now become threads of 

one particular kernel, renumber the threads and rearrange them.  

So, launch different kernels. By these few methods, you can avoid thread divergence and 

improve the performance. Thread divergence kills the performance at least by the factor of the 



number of divergent paths, different execution paths or if else statements inside the kernel 

function.  
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Now, we have seen earlier thread synchronization, sometimes it is important to synchronize 

the threads or put up a barrier on the thread activity. Because, say, we can have multiple blocks, 

there can be some data dependency among the blocks. We can launch multiple kernels, the 

kernel call is not a synchronized call; once you call the kernel, control goes back to the CPU, 

it again launches the next kernel, but there can be data dependency among the kernels. 

Therefore, if you do not synchronize them, especially for case of data dependency the result 

can be wrong. So, many times you need to put a barrier and this sync thread is a synchronization 

command.  

It ensures that all the threads in that particular block have completed the phase of that execution, 

where you put sync threads up to that all the threads in the block have completed that; that 

means, though you are scheduling at warp level, all the warps are activated till all the threads 

in the block have done till that particular job. Then the control can go to the next step, then the 

next executions can be started. 

This adds waiting time as well as latency; because the one warp is finished, the thread readily 

cannot pick up the next warp or the next kernel cannot be launched, there is a waiting time. But 



it is important in many cases, especially when there is data dependency from the previous and 

new execution.  

However, this waiting time can be reduced if we allocate threads in a block as a unit in a very 

contiguous manner that these threads will look into a contiguous set of memory; because 

threads are picking up memory location as a chunk. If the memory allocation and the thread 

allocation on the warp has very close proximity; then all of the threads are finishing their job 

almost at the same time, there is no wait time for one thread for the others. The wait time is 

anywhere less; so even if you put Syncthreads, they are just synchronizing it, the wait time 

becomes less. 

So, utilizing proximity of threats both in terms of execution and memory, ordering the threads 

correctly, pointing them to the right memory in an ordered manner; the synchronization time 

can be reduced. Some operations like cudaMemcpy, cudaMalloc when we write these 

functions, they are implicit, do implicit synchronization; though we do not need to write sync 

threads, these operations will implicitly include a sync thread command. 

So, all the threads will wait till these operations are finished. So, they are also synchronizations 

operations. Synchronization works for threads in a particular block only; this is important that 

we are launching many blocks, but synchronization is done only within a block.  

No coordination is possible among different blocks; these blocks run independently; the 

multiple blocks can be scheduled to a particular streaming multiprocessor. But there is no 

synchronization among the blocks; at the block level they are running independently cannot be 

synchronized.  
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How are the blocks scheduled? Blocks run as independent unit sub threads; blocks are 

scheduled on a streaming multiprocessor based on the availability of the streaming multi-

processor. So, there were 80 streaming multiprocessors, but more blocks, 80 will go to 80 

different streaming multiprocessors.  

Then how are the how many cores are available on the streaming multiprocessor based on that 

more blocks will go to that streaming multiprocessor; also, how the on-chip memory is 

available that is another factor. Block to SM allocation may vary differently during different 

execution of the same code and in different GPUs also.  

So, same code how block and streaming multiprocessor mapping will be done is kind of 

arbitrary. Therefore, the order of execution of different blocks; first block will be operated may 

be at the 7 th streaming multiprocessor; 31 st block may be at the fifth streaming multiprocessor 

and 130 th block may go to second streaming multiprocessor  or it might go another streaming 

multiprocessor. There can be random arbitrariness in the operation of the blocks, and this 

creates an interesting situation that the entire job is being executed by threads and these threads 

are going to block sub threads in different grids. Different groups of threads or different blocks 

are executed in different order, because blocks are operated in different order.  

We do round off error in a calculation; sometimes the calculation rounds off error has some 

impact on the final solution. As the operation of the blocks are different, the piling up of a 

round off error becomes different; therefore, different execution in the same GPU will have 



different amounts of round off error, because the order of execution of the blocks will change 

during the different instances of the same code. So, you will get different results. 

However, these differences are only due to round off error which is less than the machine's 

machine accuracy or machine precision. So, you will give your solutions will be correct to the 

order of machine precision; but the round off error makes them different.  

So, correct, but different solutions you will get a different run of the same coding GPUs, 

especially when you run a different GPU also. But all these are correct, the only difference is 

in terms of the round off error, which is anyway part of numerical calculations. We can see that 

if you have a device with 2 streaming multiprocessors, there is an allocation of blocks; in case 

you have a device with 4 streaming multiprocessors, there will be different allocation of blocks. 

So, the operation will be very different. As multiple kernels can launch on the GPU; some of 

the streaming multiprocessor is taken by one previous kernel, then you will see a different 

allocation or different scheduling of blocks happening.  

However, because blocks are populated over all streaming multiprocessors and they are 

keeping the streaming multiprocessor busy. In case you have blocks more than the streaming 

multiprocessor number that does not make a problem, which can create a problem is the thread 

level scheduling or warp level scheduling and that is why the block size has to be optimum 

which is giving right performance. 
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Now, the next important thing is how memory access is done in GPUs? We have discussed 

registers, a large number of registers are available in GPU codes and each thread gets memory 

from the registers, which are on chip memory which are on the streaming multiprocessor. So, 

it does not need to read the memory from the device ram which is a slow process; because it is 

connected through an interconnect reading from device ram is slower. 

But if that memory requirement is more than what can be supplied by the registers, then the 

threads read from the local memory and this is in the device RAM. So, a private memory is  for 

all threads that are created in the device RAM; in case it requires more memory than the register 

and many times it requires so, and this reading becomes slower.  

The threads itself can look into registers and local memory, but the block as a whole can look 

into shared memory which is a small memory 64 kilobyte, 96 kilobyte size of memory attached 

to the streaming multiprocessor directly. So, it is an on-chip memory, it is fast.  

So, we were talking about two terms on chip and off chip; off chip means which is in the device 

frame or GPU RAM and the GPU RAM is connected via interconnect to the streaming 

multiprocessors; but on chip means which are directly on the streaming multiprocessors and 

can be read much faster. 

So, off chip memory has a slower access, smaller bandwidth; on chip memory has faster higher 

bandwidth and fast access. The kernel, when the kernel is launched; the kernel communicates 

with the global memory.  

So, whatever we are copying from the CPU, memory is copying into the global memory and 

the kernel reads from the global memory. This is usually uncached; but now from kernel to 

thread level, we can see there are L 1 and L 2 caches in modern GPUs. The kernel can read and 

write to the global memory, etcetera.  

So, we can see that the global memory and local memory are from the device RAM. So, 

accessing global memory and local memory are slower compared to shared memory or register 

access; these accesses are faster, but these are small memory units, especially global memory 

is a large memory’s units. 
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When a CUDA kernel accesses a data region in the global memory repeatedly,  say it is doing 

a matrix multiplication; so many times, it needs to access elements of the column. Then this 

access is called a persisting axis. Many times, during the kernel execution that memory is being 

accessed. On the other hand, if the data is accessed only once and, in this data, comes and is 

loaded in the registers and it works, it is considered to be a streaming access.  

Persisting access requires many accesses with the global memory and is a slower process, and 

adds more latency. DRAM global memory is connected to the SM-s through memory 

interconnects and hence memory transfer from the DRAM has lower bandwidth and higher 

latency.  

So, persisting access is costly. Different levels of caches are used in GPUs; however, the caches 

size for each streaming multiprocessor cache is not big is of kilobytes, hundreds few kilobytes. 

So, we can see that because we have a persisting memory access which is costly there from 

GPU memory. So, this is the CPU memory which copies to GPU memory; from GPU memory 

to streaming multiprocessor and there are L2 and L1 cache. 

These caches are not large caches, small cache sizes; but with development of modern GPUs, 

the cache sizes are increasing. Starting with CUDA 11.0 devices of compute capability 8.0 and 

above have the capability to influence persistence of data in L2 cache, providing higher 

bandwidth.  



So, one is that, making different cache for persisting and streaming memory and providing 

more spaces for persisting memory. As well as from compute capability 8, data , specially the 

persisting data is fetched and put into the L 2 cache, so that the read is faster and this adds to 

the less latency in access to global memory.  

So, one important issue also comes here that is cache friendly programming; because data will 

be now pulled from the GPU memory and put into the L 2 cache. Earlier we had an idea 

especially for the older version of GPUs, there is very less amount of cache available.  

But now as L2 cache and specially for persisting data, there is sufficiently large L2 cache; 

cache friendly programming is important, so that data can be perfected and resides in the cache. 

As soon as the streaming multiprocessors are accessing the data, it can directly look into the 

cache data. So, the bandwidth is not lost.  
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As global memory reads are slower; one important part is compute to global memory access or 

CGMA, that is how much calculations you are doing for each access to global memory.  

How many calculations are done for each access to global memory? If you are loading many 

global memory data and doing small calculation; then the CGMA value is small. If CGMA 

ratio, CGMA ratio should be higher for good performance; if CGMA ratio is one, that means 

for one operation we are doing one memory access. Now, memory access is always slow; so, 

the computing speed is being limited by the memory access speed. 



So, we should try to have higher CGMA access compute to global memory access that, for one 

global memory access, more computing is being done. Due to this CGMA which can get 

sometimes close to one even small; we do not get the theoretical peak performance, because 

theoretical peak performance is based on how many floating-point operations the core can do.  

But now if you have one memory access per floating point operation; then your speed is limited 

by the floating-point operation and the speed reduces in that respect. For better performance, 

more calculation should be done compared to global memory access and cache friendly codes 

are better performing. 
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A very important performance consideration for programming CUDA capable GPU 

architecture is the coalescing of global memory accesses. Why? If you coalesce instead of a 2 

D address; if you put into a 1 D contiguous array, coalesce the global memory. When the warp 

reads the memory, when one’s memory element is read, the entire 32 threads requirement is 

coalesced and put into the cache. 

So, all the threads can readily read the memory and the memory access time reduces, the cache 

can be used efficiently. So, coalesce memory access is an important aspect. Say if you are 

accessing memory, each thread is accessing a memory which directly points to the memory 

location. So, each 32 threads can go and utilize the entire bandwidth, fetch the 32 memory 

element data and can read it; but there can be offsets one thread may need more memory 

elements. 



In case there is a misalign, but an offset issue; one thread when it is reading, it is fetching some 

data in the cache. So, in case there is a regular access, the cache is helping to fetch the next 

elements of the data and effectively it is getting the same bandwidth. In case the access is not 

regular, then there is a cache miss, and therefore, many times it has to access global memory 

and based on the CGMA value, the performance will fall down. 

So, the first case gives highest bandwidth, the entire bandwidth can be used, 32 data can be 

read and accessed. In the second case, though there is a misalignment; whatever is read here, 

the next data is always sitting in the cache, the offset value is accommodated by the cache. So, 

effectively the bandwidth is the same; though it requires some off-set data, but that is already 

residing in the cache, it can utilize the cache probably. 

In the third case, we can see that with increase in stride size; the first thread requires first data 

in first location, second thread requires data in the third location, in case we have more stride 

size; we need more offset data, the performance can degrade heavily.  

We can see that, if data access is of this pattern, performance can fall down and we may get 

even worse performance than CPUs; because memory access due to smaller cache, memory 

access is lower here. In CPU you have a large cache; so even if you are using striding memory 

access, the entire data is sitting in the cache and getting better speed.  
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Now, these are the few memory units; register, local, shared, global, constant, texture. You can 

see from the name texture, it is more related with the graphics processing; because GPUs are 

graphics processing units, the names have some legacy of their original use.  

The register and local memory are assigned to the threads; they are read, write memories, local 

is cache memory, register is not cache, then this is a very small amount of memory, you do not 

need to cache it.  

The local is an off-chip memory; so, it's a slower memory, register is on chip faster. Shared 

memory is an on-chip memory which is not cached, which is a small memory; but all threads 

in the block can look into the shared memory. See even one warp write something in the shared 

memory that will reside in there and all the threads can utilize that.  

Global is the main of chip memory which is now cached in L1 and L2 memory, earlier it was 

not cached, and these all are read write memory; there are some read only memory which are 

constant and texture and they are off chip, but these memories can be very first read by the 

streaming multiprocessor. So, there are some hardware benefits there.  
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Let us look into it in detail. Constant memory is 64 kilobyte memory on the device; this space 

is cached and constant cache is best when threads in the same warp accesses only a few distinct 

locations. 



If the all threads in the warp access the same location, this constant can be as fast as register 

access. So, though it is in the off chip, it can be very fast; if it has a constant value, all the warps 

are trying to thread in the warps are trying to read the same memory, it can be done very fast.  

Texture is a read only memory, constant and texture both are read only memory. In certain 

situations, especially certain addressing situations;  reading device memory through texture 

fetching can be advantageous, then reading device memory through global and constant 

memory. Some filtering aspects, special mostly for graphics purpose; we will not discuss here 

the texture memory from scientific computing perspective. 

Local is named, because this is local; this is like a private memory to the thread and this does 

not physically, it is not local memory physically it is not sitting close to the thread, it is sitting 

in the device, close to the global memory. It is off chip and it is an expensive memory as global 

memory; but if a thread requires some memory private to it, which is more than the register 

memory, then it takes from the local memory which is  in the device RAM itself and it is a 

slow memory.  

Local memory is used only to hold automatic variables; the variables which have the scope of 

the thread do not live after the thread is over. This is done by the NVCC compiler, it determines 

if there is sufficient space in the register to hold the variable; if not then these are placed in the 

local memory.  

So, we should also try to put this automatic or private variables small for each thread, so that 

local memory is not much required; because local memory is a slower memory, its access will 

degrade the performance.  
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Shared memory is an important memory, it is this memory is shared by all threads in the block; 

this is the memory sitting on the streaming multiprocessor. So, its size is typically 64 to 96 

kilobytes in V 100 96 kilo byte is total given and it can be configured for both; part of it will 

be shared and part of it will be L 1. Shared memory space shared by an L 1 cache.  

However, because this is an on-chip memory it has much higher bandwidth and a lower latency 

than the local and global memory. This has the scope of the block; once the block is active, its 

threads can read the shared memory space.  

If one warp can fetch data from global memory and put it into the shared memory and the all 

threads in the blocks are okay with that shared memory; then only with that read, the memory 

resides in the shared memory location and the next warps can utilize this memory and can be a 

very fast process.  

Shared memory is allocated in the per trade block. So, all threads in the block have access to 

the same shared memory. Threads can access shared memory loaded from global memory by 

other threads within the same thread block.  

So, once it is loaded in the shared memory, it resides till the block is active and the threads can 

operate over there. In many cases we can see, we can get optimized performance if we can use 

the shared memory; but its size is small, the maximum size is 96 kilobytes.  



So, the memory requirement has also to be reduced for this activity. However, as different 

threads can try to access the same memory location in shared memory, there can be race 

conditions leading to errors in calculation.  

Therefore, especially data dependency as it is available to the whole block; one warp is over 

and the next warp is launched, which is taking care of the next part of the execution and they 

are trying to look into the same data. However, some data is still not being written and therefore, 

there can be a race condition among the threads. 

Therefore, syncthread is must ,especially if you have data dependency in a shared memory. So, 

say you see the example that, you are reading something in shared memory and wrote s [t] = d 

[t] and you will change the memory locations d[ t] will be s [tr],and t is the thread id.  

So, you put a sync thread here that, all the threads will finish up to this part and then this next 

will go. A shared memory has to be declared as shared in the kernel itself; if we looked into a 

Jacobi solver for matrix solutions and we can see that, when the matrix size is small, shared 

and without shared performance is similar.  

Actually, without using shared memory, performance is better; because matrix size is small, so 

everything is fitting in the cache and only reading from cache is sufficient enough. But for 

larger matrices, when we are using a Jacobi solver at least 15, 20 percent improvement in speed 

happens when we use shared memory. 

Because now, the entire matrix cannot fit in cache; so, you fetch the data required by the block 

and put it into the shared memory and the one warp will do that and the other warps can work 

on that, other threads can utilize that and operate first. 
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To achieve high bandwidth, shared memory is divided into equally sized memory modulus 

called banks, which can be accessed simultaneously. 

So, shared memory has many equally sized memory modules or banks and each thread can 

directly access a bank and read from there. In the warp there are 32 threads; so, at a go they 

can read 32 bank locations and fetch memory from that, this increases the latency. There is no 

sequentiality in memory reading among the threads or also there is no race condition in memory 

reading; because 32 locations are directly read by 32 threads.  

But now programmers have to be smart enough, so that each thread looks into a particular bank;  

a number of threads do not look into the same bank, there is no bank conflict. Any memory 

read or write request made to n addresses that fall in n distinct memory banks; therefore, can 

be served simultaneously, yielding an overall bandwidth which is n time faster than a single 

module. But now if multiple addresses of memory request map to the same memory bank. The 

accesses are serialized; if many threads try to read from the same memory bank, now this will 

be serialized. One thread can look into one memory bank; if many thirds are looking into the 

same memory bank, this will be serialized. Hardware splits memory requests that have bank 

conflicts into many separate conflict free requests as necessary and therefore, effective 

bandwidth reduces. We can see that this has no bank nor bank conflict. So, all the 16 threads 

here this is the previous GPU where there are 16 threads per warp, now there are 32 threads; 



but all the 16 threads are readily reading from this memory, so the effective bandwidth is 

actually 16 times more. 

However, the reverse condition happens here that all the 7, 8 threads read from the same bank. 

So, one by one the threads are reading their effective bandwidth is reduced by 8 threads here. 

So, it should not be done, thread should look into distinct memory locations, so that bank 

conflict is avoided.  

They should not look into many threads, should not look into the same memory location, 

especially when using shared memory. This has to be taken care of by whom? Programmers 

will take care of how threads are accessing the memory.  
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In case many threads are trying to read modify write in the same variable which is often done; 

one variable is being updated by many threads and this is done through atomic operation. 

AtomicAdd reads a word at the at some address in a global or shared memory, adds a number 

to it, and writes the results back to the same address. This avoids race condition and 

contentions; we have looked into atomic, many threads trying to modify the same memory 

elements. So, in order to avoid conflict, they are done in an atomic way. 

So, there is a sequentiality among the threads; each thread one by one writing to that memory 

location. Then you can see this atomicAdd system where this address each thread comes and 

adds 10 with this atomicAdd, and  after the kernel is activated, there is a synchronization which 



says that this atomic add has given them correctly. The other operations are atomicSub, 

atomicMin, atomicMax, etcetera.  

However, this operation is essentially serialized and they can degrade parallel performance for 

large block sizes. So, when we are doing atomic operations, this can avoid race conditions and 

can give us right results; but we have to be careful while doing so. 
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Well, these are the references I have used; in the last two lectures, we looked into thread 

scheduling in forms of warps. Threads are scheduled as a group of threads within a block or 

run in the streaming multiprocessor and this group is called warp, this size is 32. Warp 

divergence or thread divergence reduces the performance, we looked into that. 

Memory access issues during GPU thread execution is seen; it is seen that shared memory 

specially for large problems if we can break down into smaller blocks and utilize shared 

memory efficiently, then performance improvement is there. Shared memory is accessed in 

banks; while accessing shared memory, bank conflict has to be avoided.  

Well, in the next class we will look into matrix operations and well we will move forward with 

the concepts which we have discussed till now. 

 


